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ABSTRACT Lane marks on roads are among the most important items of road scene information in the
process of autonomous driving, and lane-mark extraction based on visual cognitive computing is one of
the most important components of advanced driving assistance systems in intelligent transportation system.
Onboard cameras mounted on the front of autonomous vehicles capture road scene images from which
lane marks are extracted. This paper proposes a new lane-mark extraction algorithm with four major parts.
First, this paper handles the road images captured from onboard cameras by grayscale and fast median filter.
Then, we exploit the characteristics of lane marks in road images as constraints to propose lane-features filter
based on multi-constraints used to extract lane marks. Then, a clustering algorithm based on the double point
removal of a p-least squares algorithm is proposed to cluster features, and recursive dichotomy algorithm
is used to fit the candidate lane marks. Finally, we carry out verification and optimization on candidate
lane marks to obtain more accurate and stable extraction results. In our experiment, we divide the common
complex road scenes into four categories. The results show that the proposed method can robustly extract
lane marks under various complex real conditions. This paper also proposes forward a method to evaluate
the results of lane-mark extraction, and partial test results are evaluated.

INDEX TERMS Autonomous driving, ADASITS, lane-mark extraction, lane-features filter,
multi-constraints, cluster features, fit, candidate lane marks, verification and optimization, complex
real conditions, robust.

I. INTRODUCTION
With the rapid development of intelligent sensing technology
and Internet technology, autonomous driving has become a
promising field. And the autonomous vehicle market has
become a battlefield. The market share of vehicles is also
rising. According to the United Nations, fatal accidents on
the road that are not due to drunkenness are mainly caused
by misjudgment and carelessness of drivers. Advanced
driving assistance systems in intelligent transportation
system (ADASITS) can alert the driver to dangerous situa-
tions, and can even take active measures when driving [1].

Both autonomous driving and ADASITS require the ability
to analyze the road scene just as a human does. Drivers
rely mostly upon their visual systems. Compared with
active sensors such as LIDAR, a passive sensor such as an
onboard camera is nonintrusive and has high resolution, low

power— requirements, and low cost and it is easily integrated
into the environment [2]. Lane-mark extraction is a basic task
of road scene analysis. We can utilize extracted lane-mark
information to localize, which determine the relative position
between a vehicle and the road. Most existing methods based
on computer vision lack robustness, and they are sensitive to
complex driving environments and bad weather.

The objective of many studies [3]–[7] has been to extract
lane marks using the specific color information and thresh-
olds. These methods are effective only on structural roads
under ideal conditions. Chao’s method [8] used a sim-
ple K-means algorithm to segment the image. Ohashi’s
method [9] used the hill-climbing algorithm in the three-
dimensional CIELab histogram of the image, and the K seeds
for the K-means segmentation were automatically deter-
mined. When lane-mark edges are merged into shadows or
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dirt on the road, this method often performs unsatisfactorily.
The authors of other studies [10]–[15] eliminated noise edges
in complex scenarios in various ways. The objective was to
retain the edges of the lane-marks and remove the residue
edges of shadows. These methods are not robust when fac-
ing bad weather such as rain. Other researchers [16]–[22]
remapped the road points in images coordinates into points
in the same world coordinates by perspective transformation.
It is necessary to obtain the parameters of onboard camera
used to collect road images, including camera position, orien-
tation, and optics. Most existing lane-mark extraction meth-
ods are in applicable in complex real conditions. Improving
the robustness of lane-mark extraction is essential, compli-
cated, and challenging.

In this paper, we propose a new lane-mark extraction algo-
rithm consisting of four parts. To extract the features of a
lane-mark more effectively, we use grayscale algorithm and
fast median filter to preprocess a road image captured from
an onboard camera. The lane-mark feature can be effectively
extracted as one of the determinants of whether a lane-mark
extraction algorithm has high robustness. Taking a series
of lane-mark characteristics in road images as constraints,
a lane-mark feature filter based on multi-constraint is used to
extract lane-mark features. For the distribution characteristics
of lane-mark features and the inevitable noise in feature point
extraction, we propose a clustering algorithm based on the
double removal of p-least squares algorithm. Then recursive
dichotomy fits lane-mark features into the candidate lane-
marks. These candidates are selected by a dynamical van-
ishing point. We optimize the lane’s stability according to
Image inter-frame correlation and Kalman filter, and we use
tracking results of the Kalman filter to set a dynamic region
of interest (ROI). This step avoids the waste of computing
resources caused by operating on the whole road image and
falsely detecting lane-mark features that can affect the final
extraction results. In our experiment, we divide common
complex road scenes into four categories, and we propose a
method to evaluate the results of lane-mark extraction. The
results show that the proposed method can extract lane marks
robustly in various complex real conditions. The flowchart of
our method is shown in Figure 1.

The remainder of this paper is organized as follows.
Section 2 surveys some related work. Section 3 presents the
preprocessing process. Section 4 explains lane feature filter-
ing based on multi-constraints. Section 5 provides the details
of the lane clustering and fitting algorithm. Section 6 explains
verification and optimization of the candidate lane. Section 7
reports on our experimental results. Section 8 provides our
conclusion.

II. RELATED WORK
Extracting lane marks based on computer vision is an
important component of autonomous driving and ADASITS.
Digital images are traditionally represented by a set of unre-
lated pixels. Therefore, valuable information is often buried
in such unstructured data. Existing lane marks extraction

FIGURE 1. Flowchart of proposed method.

methods based on computer vision are either region or
feature-based.

Region-based methods [3]–[7] consider lane-mark extrac-
tion as a problem of extracting the region of a lane-mark
using specific color information and thresholds. This method
is simple, and is only suitable for an ideal state such as a
road with clear lane marks and no shadows and dirt etc. More
adaptable and robust feature-basedmethods have beenwidely
used in recent years. The algorithm proposed in this paper
relies on a feature-based method. A feature-based method
typically comprises four basic steps: image preprocessing,
feature detection, fitting, and candidate validation and track-
ing, as shown in Figure 2.

Preprocessing involves removal of noise and preparation
of the image for subsequent steps. Since objects are likely to
exhibit certain invariant features in various real-world imag-
ing conditions, image features that are stable across varying
scales, rotations, illuminations, or viewpoints are desirable
for recognition and indexing tasks.

Feature extraction is the extraction of lane-features in
road images using various filters or statistical methods. Lane
marks constitute a strong cue, since these they usually have
clear edges and relatively high intensities. Algorithms such as
edge distribution function [23], [24], directionally adjustable
filter [25], canny filter [26]–[28], sobel filter [29], [30], etc.
are often used in lane-mark detection.

The main ideal of fitting is to describe the lane-mark
visually. The position of the lane-mark is displayed in the
road image. Several common mathematical models such as
straight line [31], quadratic curve [8], cubic curve [32] and
recursive dichotomous [33] are used to fit lane marks. The
results of fitting by common models are shown in Figure 2.

To achieve robust system performance, spatial and tempo-
ral domain constraints are widely used to validate features
and obtain correct lane-mark locations. By using constraints
of symmetry [34]–[36], continuity [36], [37], lane-mark ori-
entation [38], [39], etc., the effect of noise caused by shadows,
puddles, and tire skid marks on detection results can be
alleviated to some extent. A lane tracking process uses
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FIGURE 2. Basic steps of a feature-based method.

previous information to detect new features in an approaching
image area [16], [36], and updates model parameters just in
time.

III. PREPROCESSING
A. GRAYSCALE
Before performing the lane-mark detection process, we must
convert the image from the RGB color space to a grayscale
intensity image. On a real-road, a lane-mark is only painted
in white and yellow, which form a strong visual contrast with
the surface of the road. To enhance the character of lane
information, we want to retain more white and yellow infor-
mation. Therefore, we weaken the proportion of B channel
component values. The equation is

Gray = R× 0.5+ G× 0.5, (1)

The following equation is usually used for grayscale:

Gray = 0.30× R+ 0.59× G+ 0.11× B, (2)

Different grayscale methods can affect the extraction of
lane-mark features. We compared the effects of two different
grayscale methods on a data set in this phase of lane-mark

TABLE 1. Number of extracted lane-mark features.

feature extraction. The test data set consists of 179 images of
size 1, 280×1, 024 pixel.We counted the number of extracted
lane-mark features using the two grayscale methods. The test
results are shown in the following table.

In general, we can get more features after using
Equation (1). Figure 3 shows extracted features after using
Equation (2) and (1) respectively. Themissing part of features
are circled out in Figure 3. Our method can detect a subtle
change of lane intensity values, especially when a white or
yellow lane appears in the image. Therefore, it can enhance
the accuracy of image processing.

B. FAST MEDIAN FILTER
Somemethods [40] use a classical median filter to preprocess
the image. A median filter is a typical nonlinear filter, which
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FIGURE 3. Extracted features after using Equation (2) and (1).

uses a unified method to deal with all statistics. It not only
changes the value of the noise, it changes the value of the
signal point, and spreads noise in the neighborhood.

FIGURE 4. Overall intensity distribution and histogram of lane gray value.

As shown in Figure 4, when we analyze the overall inten-
sity distribution and the histogram of lane gray values, it is
not difficult to find that the gray distribution of road images
is an approximately Gaussian distribution, and the gray value
of the adjacent pixels has changed little.

The 3 × 3 field window used in this paper processes
the signal and noise respectively, when using a fast median
filter. The road surface portion that includes the lane-mark is
preferentially processed. The window of the fast median filter
starts from the bottom left of the road image and slides from
left to right and bottom to top. We need not to calculate the
median value of each pixel in the field window, just when the
following condition holds

{fN1, fN2, fN3} 6= {fO1, fO3, fO3}, (3)

We can then find the median fm in the field window. In the
above formula, fO1 fO2 and fO3 are sliding-out window pixel
values, fN1 fN2 and fN3 are sliding-in pixel values. Figure 5
shows the direction of movement of the field window of the
fast median filter.

FIGURE 5. Field window of fast median filter.

Next, we must determine whether the central pixel in the
field window is a signal or noise. If it is a signal, we do
nothing and let fm(x, y) = f (x, y). If it is noise, we acquire

the median. We judge noise and signals by the following
function:

f (x, y) =

{
noise, f == fmax||f == fmin&&|f −fm| > T
signal, else,

(4)

Where fmax is the maximum of the field window, fmin is the
minimum, and T is the decision threshold. The results show
that the filtering effect is better when T=30.

IV. LANE-FEATURE FILTER BASED ON
MULTI-CONSTRAINTS
After image preprocessing, the traditional methods of lane-
mark feature extraction [41], [42] perform well only when
lane-mark edges are clear and pure. In method [43],
Wu et al. used canny filter and opposite gradient orientation
as a constraint condition to eliminate false-edges. However,
it is not enough. Shadows, surface water, bumps, light, and
other uncertainties increase the difficulty of lane-mark feature
extraction in a real driving environment. These uncertain
environmental factors will lead to false or missed detection,
and affect the final result. Considering these factors, we
decided to use adaptive threshold and lane feature filter based
on multi-constraints to select and filter candidate features,
and then obtain reliable lane-mark features.

A. ROI INITIALIZATION
The road area is generally located in front of the automobile
and is not far from the vehicle as it moves forward [43]. This
is why our ROI is selected on the bottom side of the image.

When the current input road image is the first frame or the
Kalman filter is invalid, we conduct initialization operations
of ROI. We set the field of lane-mark detection below 0.4H,
where H is the height of the input road image. The purpose
is to not only narrow the range of effective detection, but to
exclude the interference of the background of the sky, trees
and buildings on the road image. We use the cue that the
location of the lane-mark may not shift too much between
two adjacent image frames. As the onboard camera’s fixed
position changes or the sizes of the collected road images
differ, the ROI can be adjusted accordingly.We divide squares
of ROI into windows of interest (WOI), whose sizes adjusted
adaptively with the change in size of the adaptive dynamic
ROI. We make full use of the results of the Kalman filter and
the location of the vanishing point to set an adaptive dynamic
ROI, and use the vanishing line (the Y-axis of the vanishing
point) as the border of the ROI.

We construct a table to label the blocks that are occupied
or close to the lane-mark model from the result of the Kalman
filter. Figure 5 shows the process of initializing adaptive
dynamic ROI: yellow lines are the result of the Kalman filter
calculated by previous frames. The windows enclosed by
yellow lines are the possible WOIs for the present frame. The
table plotted at the right of Figure 4 shows the status of the
WOI. If the window is in the regions enclosed by yellow lines,
then we will mark the window as T; otherwise, we will mark
it as F.
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FIGURE 6. Initialization process adaptive dynamic ROI.

When the lines pass through the intersection of the win-
dows (the red circle), we set all the adjacent windows of this
corner as T. Those WOIs that are set to T connect to the ROI
we need. Next, we will extract the lane-mark features in the
current frame of ROI.

FIGURE 7. Overall gray intensity distribution.

B. PEAK-FEATURE CONSTRAINT
Figure 7 shows the overall intensity distribution of the road
image where a darker color indicates a larger the gray value.
As can be seen from the figure, the part of the lane-mark
compared to the surrounding road surface has a higher bright-
ness, and a greater magnitude of change. It is like the altitude
distribution map, and it formulates a mountain-like lane area.

In the process of actual autonomous driving, an onboard
camera will shake when the car hits bumps, resulting in the
lens not being able to focus. Or, when an autonomous vehi-
cle turns quickly, the rapid shift will cause blurred motion.
In the overall intensity distribution of road images, these
phenomena cause the lane-mark area to be fuzzy with an
increased width. Due to the difference between pixels, mul-

FIGURE 8. Line 230 of pixel gray scale change.

tiple peaks will appear in the near range. As we show in
Figure 8, it is necessary to combine the local adjacent peaks
that satisfy certain conditions. If a peak has been detected in
the vicinity (12-pixel field) of another detected peak and the
value of the adjacent peak is closer (

∣∣gp − gp+1∣∣ < 20, where
gp and gp+1 are the respective gray values at the two peaks),
we select the peak with the higher luminosity value as the
reserve peak and all troughs between the adjacent peaks are
deleted.

Account for the effects of light changes or distribution
unevenness in peak-feature extraction, this paper designs
a cosine function based on the proportion and translation
transform to dynamically determine a brightness difference
criterion threshold. The peak whose brightness difference is
higher than the threshold is retained. The cosine function is
expressed as follows:

T =


10, 0 ≤ Ri ≤ 20

10+
[
cos(Ri−20160 ×π+π )+1

]
×80, 20<Ri≤180

40, 180<Ri≤255

(5)
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FIGURE 9. Brightness difference threshold function.

FIGURE 10. Color table.

Shadows are often formed by trees on both sides of the
road. At the shadow junction, the brightness shows as dark -
bright - dark. Therefore, the brightness value at the trough
cannot be too low. In this paper, we only retain the trough
that satisfies gp > 0.4×Ri corresponding to the peak, where
Ri is the brightness difference threshold of line i.

C. GRADIENT ORIENTATION CONSTRAINT
The lane-marks consist of two parallel sideline. In the gray
scale of the road image, the gray value appears to jump.
As shown in Figure 7, it corresponds to the trough formed
by both sides of the peak. Therefore, while we extract the
peak characteristics, we also recode the troughs on the left and
right sides of the peak. In other words, trough characteristics
should emerge in pairs.

The two parallel sidelines of a lane-mark have opposite
gradient orientations [44]. The gradient orientation G(x, y) of
an edge pixel can be represented as:

G(x, y) = tan-1(
dy
dx

), (6)

Where dy and dx are the gradients in the vertical and horizon-
tal directions, respectively.

We estimate the number of possible edge-orientations in
four levels by using the four quadrants. The pixels with edge-
orientation in the first, second, third, and fourth quadrants are
plotted in red, green, blue, and yellow, respectively. The color
table is shown in Figure 10.

D. LANE-MARK ‘‘LOCATION-WIDTH’’
CONSTRAINT FUNCTION
The lane-mark has vertical characteristics that extend forward
and horizontal characteristics that have a certain width in the

FIGURE 11. Sideline orientation color for ROI.

FIGURE 12. Picture capture diagram of onboard camera.

FIGURE 13. Diagrammatic sketch for road images captured by onboard
camera.

road image, which is the most important point [45]. Accord-
ing to national standard GB 5768.3-2009 [46], the horizontal
width of a lane-mark is generally 10∼15cm in China.

An onboard camera mounted behind an autonomous vehi-
cle windshield has a certain height. Its line of sight presents
an overlooking state from top to bottom, and it has a certain
inclination. Figure 12 shows the schematic illustration of an
onboard camera capturing road images, where H is the height
of the camera from the ground.

The mathematical model for Figure 12 is abstracted as
follows:

As Figure 12 shows, we establish the geodetic coordinate
OXY, where the point O is the origin, OX is the x-axis, and
the XY direction is the y-axis direction. F is the focus of the
onboard camera. Line FO is perpendicular to plane OXY and
the foot of a perpendicular is point O. In the image coordinate,
pxy is the image plane. Connect point F to point Y and point F
to point X. The segment FY and FX intersect the image plane
at y and x, respectively.

According to the spatial geometry and the triangular
similarity principle, it is easy to arrive at the following
conclusions: any two parallel straight lines mutually mapped
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to the image coordinate are bound to intersect at one point.
We refer to the intersection as the vanishing point of the lane-
mark. The vanishing point can be expressed as:

(xvp, yvp) = (
f

tan θ
,
kf
sin θ

), (7)

where f is the focal distance, θ is the inclination of sight, and
k is the linear slope in the geodetic coordinate. Therefore, the
road images captured by an onboard camera always have a
strong perspective effect. The lane-marks in road images have
the characteristics that the closer the distance, the larger the
width. That is lane-marks at the bottom of the image look
wider. With increased distance from the bottom of the image,
the lane-marks look narrower.

FIGURE 14. Lane-mark ‘‘position-width’’ function.

We researched on the perspective effect of lane marks
in the road image. The corresponding mathematical model
is established as shown in Figure 14. We use the spatial
geometric relationship to get the lane-mark position-width
function:

Wi = (AiPi − di)× 2, (8)

where AiPi =
VP0+i
VP0+h

× (Wh + dh) × 1
2 , di =

VP0+i
VP0
× d0,

VP0 =
d0

dh−d0
× h.

V. LANE FEATURE CLUSTERING AND FITTING
A. FEATURE CLUSTERING
1) REMOVAL OF OUTLIERS
The Hough transform (HT) and least squares (LS) are two
common algorithms used to obtain straight lines. In the HT,
the problem of straight-line detection is transformed into the
peak problem in the Hough space [28], [35], [40]. By the con-
straints of the algorithm itself, HT has some limitations [47].
When the HT is applied to noise-containing features, the
number of units in the coarse resolution will be distributed to
several smaller discrete parameter units under fine resolution.
If the resolution 1ρ is too small, the accumulator cannot
accumulate enough votes to cause the detection to fail. There-
fore, the HT can only achieve limited detection accuracy due
to the influence of noise. LS obtains an exact line of the given

Algorithm 1 Algorithm for Removal of Outliers
Input: Hough transform parameter list (delta-Rho,

delta-Theta etc.)
Extracted feature points set P={P1,P2, ...,Pn}
Distance error limit d , mean error threshold ε

Output: Parameters of the straight line and all the points
on the line

Step 1: Initialize the straight lines set L = {L1,L2,...,Ll}
by using progressive probabilistic Hough
transform

Step 2: For every line Li ∈ L, do:
Find the feature points in feature points set P

that are not greater than distance d from line Li.
These feature points constitute set Si
= {P1,P2, ...,Pm}

Step 3: Use the least squares method to determine the
regression line parameters k and b, and the
mean square error e of the set S

Step 3: For every point Pj(xj, yj) ∈ Si, do:
Step 3.1: All the feature points that satisfy condition

kxj + b > yj form a subset Spos
All the feature points that satisfy condition

kxj + b < yj form a subset Sneg.
Step 3.2: Select point Pp and Pn from set Spos and

Sneg respectively.
Pp = arg max

Pp∈Spos
d(Pp),

Pn = arg max
Pn∈Sneg

d(Pn).

where d(P) represents the distance from
the point P to the regression line

Step 3.3: if (e > ε)
Remove point Pp and Pn, update set Si
and feature points set P

data set in the sense of mean square error [27], and LS is
extremely sensitive to outliers that deviate from the regression
line. The introduction of strong noises improves the standard
deviation of the entire data set, which causes the noise points
to be easily mistaken for normal data points, so that these
outliers cannot be removed.

FIGURE 15. Fitting noise-containing data by LS.

As shown in Figure 15, when these data points are rel-
atively concentrated but include some noise points that are
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FIGURE 16. (a) Distance similarity (b) Direction similarity.

equal in intensity and distributed on both sides, the new
regression line will be more biased in the opposite direction
after removing noise from one side. Therefore, it is more
difficult to remove the noise points in the opposite direction.
To ensure a final regression line that mainly includes normal
data points with error near zero, we always remove noise
points of error maximum not only on a single side, but
simultaneously on both sides of the regression line.

In complex real conditions, the lane-mark will inevitably
introduce noise in the feature-extraction stage. We primarily
consider how to cluster effectively and determine the location
of the lane-mark when the data points contain noise. Consid-
ering the high efficiency and drawbacks of HT and LS, we
propose a new straight-line detection algorithm that combines
with the advantages of the two algorithms and can eliminate
outliers.

2) SIMILARITY MEASUREMENT
To determine the affiliation of these straight lines, two simi-
larity measures called distance similarity and direction simi-
larity are introduced. Figure 15 is a schematic representation
of these two kinds of similarity measure.
P1(x1, y1) and P2(x2, y2) are the two end points of line L1.

P3(x3, y3) andP4(x4, y4) are the two end points of line L2. The
angles θ1 and θ2 are the respective inclination angles of line
L1and line L2. The inclination angle of a straight line defined
by points P2 and P3 is θ . We use the following formula to
measure the approximate consistency of two straight lines in
distance and direction.

dis = |(x3 − x2) sin θ1 − (y3 − y2) cos θ1| (9)

+ |(x3 − x2) sin θ2 − (y3 − y2) cos θ2| ,

dir = |θ1 − θ | + |θ2 − θ | , (10)

These straight lines with approximate consistency in dis-
tance and direction are considered part of the same lane-mark.
Those points on the lines that belong to the same lane-mark
are clustered into the same category. Next, we must describe
lane-mark and determine its location by using the recursive
dichotomymethod, which fits those feature points that belong
to the same category.

B. LANE FITTING
The accuracy of a simple mathematical model used to
describe a lane-mark is usually low, but a complex math-
ematical model is terrible in real time. Considering the

accuracy and real-time performance comprehensively, a new
lane-mark description method named recursive dichotomy
is adopted in this paper. A horizontal straight line divides
the ROI of the road image into two sub-regions. We use a
straight line to fit each sub-region, so we can use polylines
consisting of straight lines to describe the lane-mark. We use
a rationality index (denoted by R) as a basis for whether this
region should be re-subdivided, and whether it is reasonable
to select the designated dividing line. We then use every
sub-region as an input region and recursively implement this
method.

FIGURE 17. Rationality index of recursive dichotomy.

As shown in Figure 17, when the division of time j is
carried out, the line yj divides the ROI into two sub-regions
(regions A and B), and straight-line equations are obtained by
the least squares algorithm in the two sub-regions.{

y = kax + ba
y = kbx + bb

(11)

where the point Pj(px , py) is the intersection of two straight
lines, Fj represents the longitudinal distance from the inter-
section to line yj , i.e., Fj =

∣∣yj − py∣∣; and Ej represents the
slope difference between the lines in the two sub-regions,
i.e., Ej = |ka − kb|. When the angle between the two lines
is the largest after division and the intersection is on the
corresponding dividing line yj, that is to say, these data points
in the region is most suitable for polyline to express. Then, we
obtain the index R by the equation

Rj =
Ej
E
×

F
Fj
, (12)

The larger the value of Rj, the more ideal the subdivision
of the corresponding sub-regional division. E and F are the
normalized factors: E = max(Ej) and F = min(Fj).

VI. VERIFICATION AND OPTIMIZATION OF
CANDIDATE LANE
To improve the reliability of the algorithm and obtain more
robust extraction results, wemust verify and optimize its lane-
mark detection result.

A. SELECTION BY DYNAMIC VANISHING POINT
The vanishing point reflects the direction information of
parallel lines in a three-dimensional scene. It is an important
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clue to understand the three-dimensional scene from a two-
dimensional image space. Therefore, using the vanishing
point as a constraint condition can to some extent, select lane
marks and filter out the part that is not. It can also obtain more
accurate extraction results. Figure 18 shows the schematic of
vanishing point selection.

FIGURE 18. Schematic of vanishing point selection.

As shown in Figure 18, we can establish the relationship
between the line-marks of a road image and the vanishing
point in the coordinate system OXY , where the point O is
the midpoint of the width of the road image. The vanishing
point coordinates of the current frame are V (vx , vy). The line
L is the candidate lane-mark. Draw a line perpendicular to
line L through the origin o. The coordinate of the foot of the
perpendicular isP(px , py), the length of the perpendicular line
is ρ, and the inclination angle is θ . According to the basic
geometric properties of circle, the foot of perpendicular P
must be on the circle whose diameter is the line determined
by the origin o and vanishing point V. Thus, the following
equations can be obtained:{

x2 + y2 − (xpx + ypy) = 0
px cos θ + py sin θ − ρ = 0,

(13)

Obviously, the vanishing point V is one of the solutions of
this equation group. The objective function is constructed as
follows

1ρ =
∣∣vx cos θi + vy sin θi − ρi∣∣ , (14)

where the parameters θi and ρi of the line Li must be deter-
mined. We can solve for 1ρ though the objective function.
When 1ρ is in a small range, the corresponding candidate
lane-mark is effective. We apply the property of the vanishing
point for a constraint condition. It filters remarkably well,
especially for scattered interference lines.

B. LANE STABILITY OPTIMIZATION
1) IMAGE INTER-FRAME CORRELATION
In the actual acquisition system of autonomous driving,
an onboard camera directly obtains the video-stream infor-
mation. Therefore, it has significant redundancy between

FIGURE 19. Function of filtering by vanishing point.

two adjacent frames in the video stream [37]. The motion
of a vehicle has continuity in time and space. Because
the sampling frequency of the onboard camera is large
(about 100 fps), the vehicle only moves a short distance
during a sampling period, and the change of road scene is tiny
between adjacent frames. Thus, the previous frame provides
strong location information on lane-marks for the next frame.
Thus, the correlation between adjacent frames called inter-
frame correlation is introduced in this paper.

The number of lane marks detected in the current frame is
m, and they are expressed in a set L = {L1,L2, · · · ,Lm}. The
number of lane marks saved in the historical frame is n, and
they are expressed in a set E = {E1,E2, · · · ,En}. We first
establish a matrix C = m × n, where element cij of matrix
C represents the distance 1dij between the ith line Li in the
current frame and the jth line Ej in the historical frame. 1dij
is calculated as follows:

1dij = [|xLA
i
− xEA

j
|, |xLB

i
− xEBj |]

T
∈ R2, (15)

where A and B represent the ends of lines Li and Ej,
respectively.

Then we count the number ei in the ith row that satisfy
1dij < T in the matrix C. If ei is less than 1, then the
current lane-mark does not associate with the lane-marks of
the previous frame. Therefore, the current lane-mark is used
as a new lane-mark to update the information of the historical
frame of the next frame. If ei is equal to 1, then Li of the
current image is correlated with lane-mark Ej of the previous
frame. If ei is greater than 1, then the vector Vi is used to
record the position of the lane-mark satisfying the conditions
in the ith line of the current frame, namely:

Vi = {vi1, · · · , vij}, vij =

{
0, 1dij > T
1dij, other,

(16)

In vector Vi, we count the Vj in the jth column with nonzero
elements, and determine the smallest element of Vi:

(1dij)min = min{Vj} (Vj 6= 0), (17)

When ∃(1dij)min > 0, we consider that lane-mark Li of the
current image matches lane-mark Ej of the historical frame.
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FIGURE 20. Kalman filter module diagram.

When the lane-mark detected by the current frame is in
accord with the inter-frame correlation constraint, we con-
sider that the current and the previous lane-marks are the
same, and the position of the current lane-mark is displayed.
Otherwise, the lane-mark detected by the current frame will
be abandoned. If the cumulative abandonment instance of
the inter-frame correlation constraint exceed T (T = 3), the
parameter of the lane-mark of the corresponding historical
frames will be updated.

2) KALMAN TRACKING
In the process of real-time acquisition of road images,
the motion of the lane-mark between adjacent frames is
slow, and we regard it as approximatively uniform linear
motion.

We rebuild the state of the system through the value
of observation and have recursion in order of ‘‘forecast-
observation-correction’’ to eliminate random interference
from systematic observations. Then we recover the natural
characteristics of the original signal from the disturbed signal
through observation to obtain a reasonable prediction of the
location of the lane-mark in the next frame. We express the
state vector of Kalman filter as

xk = [x(k), y(k), vx(k), vy(k)]T , (18)

where x(k) and y(k) represent the center coordinates of the
objective lane-mark, and vx(k) and vy (k) represent the mov-
ing speed of the point in the horizontal and vertical direction
respectively. Kalman filter consists of two basic modules
shown in Figure 20.

The prior prediction module establishes an priori estimate
of the current system state using a time-renewal equation.
The values of the current state variables and the error covari-
ance estimates are calculated forward in time so as to con-
struct a priori estimates for the state at the next moment.
The posterior correction module is primarily responsible for
feedback. We use the state estimation equation to make an

optimal posteriori estimate of the current system with the a
priori estimates obtained in the priori prediction module and
the observed values of the current system. We update the
parameters of the current system state and return to the next
time.

VII. EXPERIMENT
A. PLATFORM INTRODUCTION
To verify the robustness and effectiveness of our proposed
algorithm, the detection effects in the complex real-road
environment are validated based on the platform of an
autonomous vehicle. Figure 21 shows the autonomous vehi-
cle Jing-Long I of Beijing Union University.

FIGURE 21. Experiment platform of autonomous vehicle.

In this platform, the Pike F100C industrial digital onboard
camera is 1 meter from the ground and mounted in the central
position just below the windshield of the autonomous vehicle.
The optical axis of the camera is parallel to the plane of the
vehicle chassis and is straight ahead of the moving vehicle.
The size of the collected image is 1, 000 × 290 pixels. The
collection period is 10ms. We use an industrial computer of
the GEMOTECH series with an i7 processor, 2.67GHz CPU
and 8G memory. It resists high temperature and humidity,
seismic, activity, and effects of dust, and has electromagnetic
compatibility.
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TABLE 2. Classification of main factors of influence in a real driving environment.

FIGURE 22. Data collection scene.

The collected images of different road scenes in a real driv-
ing environment are divided into four categories, as shown
in Table 2:

The data sets are mainly from four scenes: (1) The avenue
of Zhengkai, which links Zhengzhou and Kaifeng in Henan
province in China, a total length of 39.2km. These images
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TABLE 3. Statistics of the data sets collected at different categories of different scenes.

are 1, 000 × 1, 000pixel. (2) The test area of Garden Expo
Park in Fengtai district of Beijing, a total length of 3km. The
size of these images is 1, 000×290pixel. (3) The competition
site of the 7th China Autonomous Driving Future Challenge
(2015), in Changshu, Jiangsu Province. These images are
1, 000× 290pixel. (4) The TSD-MAX traffic-scene database
provided by Institute of Artificial Intelligence and Robotics,
Xi’an Jiaotong University. TSD-MAX provides a training
data set for the offline test of the cognitive basic ability in a
visual information environment in the 8th China Autonomous
Driving Future Challenge (2016). These images are
1, 280 × 1, 024pixel. The data collection scenes are shown
in Figure 22.

In the test area of Garden Expo Park, we spent three years,
2015 to 2017, collecting data from different seasons, weather,
and times in the actual test tasks. These data contain almost all
complex real driving conditions. There is also a small amount
of experimental data from the daily travel section, such as the
highway sections from the school to the Garden Expo Park
and from the school to the Beijing International Airport.

We count the data sets collected by different categories
of different scenes, and the statistical results are listed
in Table 3.

FIGURE 23. Conversion to BEV space.

B. EVALUATION STANDARDS
The position of a lane-mark is expressed by ordered points
under the image coordinate system. Adjacent points are
connected to form polylines as the position information of
extracted lane marks. Since lane marks in road images often
have a perspective effect, we perform an inverse perspective
transformation (IPM) on the original image and converse
coordinate system of the original image into the bird view
space (BEV). The conversion process is shown in Figure 23.

To ensure a reasonable evaluation, we ignore the area
where the vehicle position is too close to control the vehicle
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TABLE 4. Evaluation score of partial extraction results.

FIGURE 24. Standard for evaluation of lane-mark location.

FIGURE 25. Interference of Pavement Signs.

and the area where the vehicle position is far enough away
that it can easily lead to greater error. Thus, the stipulated
scope of the evaluation is 10 m to 50 m from the front of the
current vehicle.

According to Chinese National Standard GB5768.3 −
2009, the width of each lane-mark is usually 15∼20cm.

The total width of a double-yellow solid lane-mark is usually
40∼60cm (two yellow solid lines with a width of 15 cm and
10∼30cm interval). One pixel in the original image corre-
sponds to a horizontal extent of about 5 cm in the BEV space.
During the evaluation, the position of the lane-mark is char-
acterized by its mid-axis. At the above threshold, it tolerates
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FIGURE 26. Shelter.

FIGURE 27. Light factor.

1∼3 pixel deviation between the distal end of the detection
position of the lane line and the actual edge in the original
image.

We refer to the scoring rules of the Traffic Scene Cogni-
tive Basis Ability Offline Test and correspondingly formu-
late our evaluation standards of lane-mark detection results.

In our evaluation standards, we remove the judgment on lane-
mark type (yellow solid lane, yellow dotted lane, white solid
lane and white dotted lane). The standard for an evaluation
lane-mark location is defined as follows. First, extracted lane-
marks and corresponding marked real values will be raster-
ized into a set of points. The number of points for which the
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FIGURE 28. Interruption of other traces on the pavement.

distance is less than 20 cm from the marked real value points
set to detected rasterized points is taken as the number of
matching points. If the marked lane-mark is double yellow,
the above distance threshold is set to 37.5 cm. Figure 23 (a)
shows the real values that are marked manually. The results
of lane marks extracted by the algorithm in this paper are
indicated by red lines in Figure 23 (b). The non-lane part is
painted in black. Figure 23 (c) is the image of the BEV space
obtained by the IPM.

The extraction results are compared with the pre-marked
real value. The score S is used to evaluate the effect of lane-
mark extraction and is calculated as follows:

S =
TP

TP+ FP+ FN
, (19)

where the input discrete point is regarded as the positive
checkpoint in the true value area; TP is the total length of
the positive lane-mark; FN is the total length of the missed
check, with value equal to the total marked true value minus
TP; FN is the total length of false checks, with value equal to
all extracted lane-mark points minus TP.

C. PERFORMANCE ANALYSIS
In the actual driving process of an autonomous vehicle, the
phenomenon of false extraction and missed extraction often
appears due to the complexity and variety of the driving
environment. Our proposed lane-mark extraction algorithm
can better shield these effects of uncertain factors on lane-
mark extraction results in a complex and variable driving
environment. Figure 25 ∼ Figure 28 show the experiment
results for four different scenarios driving scenarios. The first
column of each figure shows the original images collected
by the onboard camera. The second column shows results
after preprocessing. The third column shows the features of
lane marks filtered by lane feature filtering based on multi-
constraints. The fourth column shows clustering results by
the clustering algorithm proposed in the fifth part. The fifth
column shows the final result.

The first subfigure of Figure 25 contains lane-marks, zebra
crossings and indicator arrows, and the illumination condi-
tions are not ideal. There are speed limit marks in the second
subfigure, and road speed limit messages in the third subfig-
ure. Specifically, the lane-marks are submerged in the yellow
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TABLE 5. Lane-mark detection test scores.

deceleration zone, but our algorithm can still determine the
position of lane-marks clearly.

Pedestrians block the right lane-mark by nearly 50% in the
first subfigure of Figure 26. In the second subfigure, parking
on the right side of the road obscures most of the lane-mark.
A moving vehicle blocks part of the lane-mark in the third
subfigure. In the fourth subfigure, when we do not operate the
wipers on rainy days, raindrops slide down thewindshield and
block the target lane-mark. However, our algorithm can still
extract the lane-mark robustly. The residual shadows formed
by the movement of the wipers partially shields the partial
lane-mark in fifth the subfigure, while the cones placed on
the road hide the lane-mark in the sixth subfigure.

The first subfigure of Figure 27 is captured at 5∼6 p.m. The
second is captured when the vehicle is driving at night. In the
third subfigure, the light is strong and the target lane-mark is
shiny. There are light spots on the windshield when driving
in reverse light in the fourth and fifth subfigures. In the sixth
subfigure, exposure conditions are not ideal when the vehicle
drives out of the bridge hole. The opposing vehicle turns on
its headlights due to foggy weather in the seventh subfigure.
Our algorithm has strong robustness to driving scenes under
abnormal light.

The lane-marks are blurred due to the interference of lime
and mud in the first subfigure of Figure 28. There are repairs
and cracks on the pavement in the second subfigure, and mud
ruts in the third subfigure. There are shadows caused by trees
on the roadside in the fourth subfigure, and lane marks are
submerged in water in the fifth subfigure. Furthermore, there
is water in the low-lying area of the roadside in the sixth
subfigure, and ruts in snow in the seventh subfigure. However,
our method can still extract the lane-marks accurately.

The results of the proposed algorithm are evaluated using
the partial data sets from TSD-MAX. The results of evalua-
tion are shown in Table 4.

The Traffic Scene Cognitive Basis Ability Offline Test of
Intelligent Vehicle Future Challenge 2016was held in China’s
Changshu City, Jiangsu Province, in November 2016. This
offline test is funded by the Major Research Plan of the
National Natural Science Foundation of China ‘‘Cognitive
Computing of Visual and Auditory Information.’’ It consists
of three parts including traffic signal detection, front vehicle
detection and lane-mark detection. There were five teams
participating in the test of lane-mark detection. The test scores
are shown in the table below.

VIII. CONCLUSIONS
In this paper, a lane-mark extraction algorithm based on
autonomous driving with onboard vision is proposed to deal
with complex real conditions. The four major parts of the
proposed method are setting the preprocessing, lane-feature
filtering based on multi-constraints, lane-feature clustering
and fitting and verification and optimization of candidate
lane. The proposed algorithm is evaluated for complex real
conditions captured in an autonomous vehicle test, such as
variable illumination conditions in different weather, occlu-
sions such as pedestrians or other vehicles on the road, and
other interference grown on the road caused by human factors
intentionally or not.

The method is not fully applicable in extreme conditions,
such as when the lane-mark is completely submerged by
water, covered by snow, or obscured by a vehicle. Our pro-
posed algorithm can be improved with information from
multiple vehicular sensors, which we can combine accord-
ing to some optimization criteria, enabling us to produce
a consistent interpretation and description of the observed
environment. Furthermore, the proposed algorithm could
be improved by parallel implementation because several
designed functions are independent.
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