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ABSTRACT This paper explores computationalmethods to address the problem of doing inference from data
in multiple modalities, where there exists a large amount of low dimensional data complementary to a much
smaller set of high dimensional data. In this instance the low dimensional time-series data are active acoustics
from a bio-inspired micro-Doppler sonar sensor system that include no or very limited spatial information,
and the high dimensional data are RGB-depth data from a 3-D point cloud sensor. The task is human action
recognition from the active acoustic data. To accomplish this, statistical models, trained simultaneously on
both the micro-Doppler modulations induced by human actions and symbolic representations of skeletal
poses, derived from the 3-D point cloud data, are developed. This simultaneous training enables the
model to learn relations between the rich temporal structure of the micro-Doppler modulations and the
high-dimensional pose sequences of human action. During runtime, the model relies purely on the active
acoustic sonar data to infer the human action. Our approach is applicable to other sensing modalities, such
as the millimeter wave electromagnetic radar devices.

INDEX TERMS Active acoustics, human action recognition, micro-Doppler effect, multimodal action
dataset, multistatic sonar, micro-Doppler modulations.

I. INTRODUCTION
Human actions range from simple motions, such as a hand
wave, to complex sequences composed of many intermediate
actions, such as figure skating. Every day each of us performs
many actions, even creating new actions to accomplish a
novel task. Moreover, we are able to recognize and interact
with other people because we can interpret their actions. Our
brains enable all of this functionality, and they are unparal-
leled in their ability to process the world around us. Actions
occur in three dimensions. As such, their perceived charac-
teristics are affected by an observer’s relative orientation and
scale. Context also matters, as actions are highly variable
based on the properties of the object performing the action
as well as any objects that may be the target of the action.
For example, chopping a soft vegetable like a tomato requires
significantly less force than chopping a carrot.

The engineering of systems for human activity recognition
in the field of computer vision has seen a dramatic growth

over the last decade as evident by the number of publica-
tions and review articles [1]–[3]. Fueled by application needs
in web-video search and retrieval, surveillance, health and
wellness, human computer interfaces, and computer gam-
ing, as well as advances in sensor technology, computing
and algorithm development has resulted in impressive sys-
tem performance in focused application domains. Crucial
to the progress in the field was the development of stan-
dard databases in specific domains such as KTH (staged
human actions in video) [4], UCF101 (human actions from
videos in the wild) [5], HMDB51 (human motion recog-
nition from video) [6], and VIRAT (activity recognition
in surveillance video) [7]. Equally important are the open
research community challenges and competitions such as
LIRIS/ICPR2012 [8] and THUMOS [9].

Human actions occur in three-dimensional space and
evolve over time. Most modern action recognition sys-
tems are based on visual data. Single RGB images capture
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a two-dimensional projection of the spatial arrangement of
the human body in a scene. RGB video sequences capture
the temporal evolution of those two-dimensional projections.
Even more complete information can be gathered using
RGB-Depth (RGB-D) videos that can provide the temporal
evolution of a human body in three dimensions. Many state
of the art systems are based on bag-of-features, local image
descriptors derived from 2D images or 2D video volumes
used in conjunction with a classifier, often a support vector
machine [1]. The latter approaches, which employ low level
features/representations, are simple and yield good results,
but they do not include prior knowledge about the spatial-
temporal structure of the human body. Furthermore, the
visual/action words are not necessarily discriminative in the
human action space. These limitations have moved current
research in the field towards more structured approaches
using mid-level representations that are capable of capturing
the complexity of real world applications. It is worth noting
that the now popular deep network structures [10] can be
viewed as creating discriminantmid-level representations [1].

In this paper we present a multimodal bio-inspired
approach to action recognition inspired by the sonar systems
of bats. Bats, which are the only mammals that can fly, have
developed a sophisticated active sonar system that, coupled
with their visual system [11], enable them to form structured
representations of the complex environments that they reside
in [12]. The horseshoe bat, unlike most bat species, has a
constant frequency (CF) vocalization that allows it to detect
and classify insects in cluttered environments [13]. More
recently, perceptual experiments on the horseshoe bat suggest
that the animals form a structured representation of their
prey that relates to the physics of the prey’s wing fluttering.
By discerning the size of the prey, the bats are able to make
intelligent decisions concerning prey selection by trading off
the energy cost of flying to catch the prey with the benefits
from the metabolic content of the prey [14]. By incorporating
information from diverse sensory systems, biological systems
are able to reliably identify the objects and actions they
encounter.

FIGURE 1. Schematic of the proposed data flow in the action recognizer.

Our approach to action recognition depicted in Figure 1
builds on a hidden Markov model (HMM) framework.
Statistical models, trained simultaneously on both the micro-
Doppler modulations induced by human actions and sym-
bolic representations of skeletal poses, are developed. This
enables the model to learn relations between the low dimen-
sional, but rich, temporal structure of the micro-Doppler

modulations and the high-dimensional pose sequences of
human action that are derived from 3Dvideo. During runtime,
themodel then relies purely on the active acoustic data to infer
the human action. This approach utilizes a simple graphical
model to capture the temporal sequences of skeletal poses
and acoustic modulations and allows for the use of efficient
inference algorithms. In Section II we describe the Doppler
and micro-Doppler effects, followed by Section III where
we outline our approach and experimental setup. Section IV
describes the statistical action recognitionmodel, followed by
the results in Section V and discussion in Section VI.

II. THE DOPPLER AND MICRO-DOPPLER EFFECTS
In 1842, Christian Doppler postulated that the frequency of
waves emanating from amoving object relative to a stationary
or moving observer would appear to be frequency shifted, a
principle later named the Doppler effect [15]. While Doppler
originally envisioned this principle being applied to electro-
magnetic waves (light), the first experimental observation of
this phenomenon was done with acoustic waves by Buys
Ballot [16] three years later. If the object itself contains
moving parts, each part contributes its own Doppler shift
proportional to the object’s radial velocity component with
respect to the receiver. All of the scattered waves are additive,
and the resulting modulation is a superposition of the individ-
ual components known as themicro-Doppler effect [17]. The
acoustic micro-Doppler effect was independently reported in
2007 by Zhang et al. [18] and Kalgaonkar et. al. [19].

Assuming that there are N moving point masses in a scene
where a pure tone with frequency fc is transmitted, then the
scattered signal seen by the receiver is

sreceiver(t) =
N∑
i=1

Ai(t) · sin(2π fct + 2π fit + φi(t)). (1)

Each point mass scatters the pure tone and modulates the
frequency by fi = 2 vics fc, where vi is the radial component
of the velocity and cs is the speed of sound. The amplitude of
each component,Ai, depends on the scattering surface and the
range of the point scatterer. There is also a phase shift φi(t)
that depends on the range of the point mass. For ultrasound
systems, the scattered wavelengths are typically on the order
of 10mm, which allows relatively fine grained objects on
the order of a couple millimeters to scatter the sound and
produce modulations. Unfortunately, the short wavelength
also means that the phase shift is not useful for extracting
range information because it aliases after traveling a single
wavelength. In comparison, micro-wave systems transmit
wavelengths that are in the range of several centimeters. This
means that acoustic systems are capable of resolving motion
from smaller objects.

The frequency spectrum of acoustic or electromagnetic
waves scattered from a walking person, shown in Figure 2,
is a complex time-frequency representation of human gait.
In the case of a walking person, the torso, each arm section,
and each leg section are all moving, and these individual
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FIGURE 2. Annotated spectrogram representation of Doppler
modulations for a human walking toward an ultrasound sensor, pivoting,
and walking back away from it.

movements each span a continuous range of velocities rang-
ing from the slowest part (typically the proximal end) to the
fastest (usually the distal end). The Doppler signature for
such a complex object has infinite time-dependent frequency
shifted components corresponding to the velocity ranges of
the torso and individual limbs as a function of time. The time-
domain micro-Doppler signal exhibits a complex structure
that evolves in time. Therefore, a time-frequency spectro-
gram representation, consisting of a sequence of windowed
spectral representations, namely the short-time Fourier trans-
form (STFT), is more convenient for analyzing the changing
spectrum of micro-Doppler signatures over time.

The electromagnetic micro-Doppler effect is exploited
in radar applications [20] and in gait recognition experi-
ments [21]. The analysis of electromagnetic signatures from
humans in forest environments was recently reported [22].
The simplicity and cost-effectiveness of the sonar system in
conjunction with its advantage in spatial resolution, which
is millimeter for sound waves compared to centimeter for
electromagnetic waves, has lead to the exploration of its use
in different applications ranging from human identification
and gender recognition [23]–[27], speaker identification [28],
gesture recognition [29], transport mode [30], activity and
behavior classification [31], [32]. At this point, most of
the efforts using sonar micro-Doppler are essentially pilot
studies. This is partly because there have been no datasets
comparable to the standard datasets in the vision community,
which facilitate algorithm exploration in a systematic way.

III. ACTION RECOGNITION USING THE
MICRO-DOPPLER EFFECT
While the Doppler effect is very specific to sensing motion,
there are still many challenges associated with exploiting it
to sense and identify actions. At a fundamental level, real

actions are sequences of motion that evolve in time and
three-dimensional space. However, the micro-Doppler mod-
ulations recorded by a single active sonar sensor are one-
dimensional time-series. The modulations of a pure tone used
to sense a complex moving scene do not capture much in
the way of range or spatial information. Over a given time
window, the frequency modulations provide a histogram of
the velocities present in the scene. Fortunately, due to the
physical limitations of most multi-component objects, such
as the human body, the realizable set of actions is heavily
constrained. In the case of a human, the scattering compo-
nents are linked rigid bodies, which constrain the space of
human action and induce distinctive temporal structure in the
modulations across a sequence of consecutive windows. This
is a much more structured situation than the arbitrary sum of
point masses expressed in Equation 1. Figure 3 demonstrates
the structured acoustic modulations induced by hand raises,
recorded by ultrasound units placed around the person.

Another challenge is that many moving objects have sym-
metry in their motion. For example, a pendulum may swing
from side to side and a human body may move its right or
left arm. Distinguishing between these actions can be very
challenging for a single sonar sensor, located at the line of
symmetry, due to paucity of spatial information in the micro-
Doppler modulations. One way to overcome this limitation
is to use multiple sensor units arranged so that no single line
of symmetry is common to all the sensors. In this section,
we describe a new dataset of active acoustic and RGB-D
recordings of human actions. The data was collected with a
data acquisition system designed to integrate multiple acous-
tic sensors with very accurate temporal resolution. Leverag-
ing this system allows for synchronized data collection with
multiple sonar units that will help alleviate ambiguities due
to spatial symmetry.

Although the space of possible human motions is quite
large, there are a lot of constraints placed on actions by the
physical limitations and structure of the human body. In the-
ory, a model that captures the precise physical constraints of
human joints and dimensions could be used to bias the deci-
sions of an action recognizer that operates on impoverished
acoustic signals. This approach leverages prior knowledge
about the task and models the physics of the environment.

Additionally, the physics behind the Doppler effect are
well understood. By incorporating prior knowledge about the
interactions between the sensor and the environment, models
can be developed that account for the interaction between the
environment and the acoustics to extract as much information
as possible from the data recorded by a given sensor. Models
can also take advantage of the geometry of the sensor array
in the environment to combine information from multiple
sensors.

The Johns Hopkins University multimodal
action (JHUMMA) dataset [33] is used in this study. Three
ultrasound sensors [34] and aKinect RGB-D sensor [35], [36]
were used to record joint multimodal data of ten unique actors
performing a set of actions. The dataset was created in an
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FIGURE 3. Time evolution of action ‘‘Left-hand raise side’’ and its representation in the continuous modulation spectra of the three micro-Doppler
units. The absence of significant modulations in the 25kHz sensor (left spectrogram) is due to occlusion from the body.

auditorium because it is a large open space and there are
curtains on the stage where the data was collected. These
features both reduce the number and strength of uninteresting
reflections of the ultrasound carriers off static objects.

FIGURE 4. Experimental setup for the JHUMMA data collection.

Figure 4 illustrates the configuration of the various sen-
sors used for the data collection. The bounding box, which
corresponds to the area where the Kinect sensor reliably

tracks a human, was marked on the auditorium stage to
guide the actors. All actions were confined to this space and
the orientation of the actions and sensors is referenced to a
virtual ‘‘North’’, which was defined as the orientation of an
actor facing the Kinect sensor. The Kinect sensor was placed
directly on top of the 40kHz ultrasound sensor (US40). The
25kHz ultrasound sensor (US25) was placed to the east and
the 33kHz ultrasound sensor (US33) was placed to the west.

Figure 5 shows snapshots of the data recorded in the
JHUMMA dataset during a single trial of each action. The
first image associated with each action was captured by
the Kinect sensor’s color imager and the two-dimensional
skeleton track has been superimposed on top of the image.
The skeletal poses used in this work are based off of 3D
skeletons extracted from the RGB-D video on a frame by
frame basis. The other three images associated with each
action show time-frequency spectrogram representations of
the acoustic data. The FFT window is set to 214 samples,
which corresponds to just over 0.1638 seconds. However,
there is an 80% overlap between successive FFT windows, so
the time window advances by approximately 0.0328 seconds
between consecutive spectrogram slices. The spectrogram
slices have also been limited to a bandwidth of 2kHz centered
on the carrier frequency of the respective ultrasound sensor.

For human action recognition applications, it is desirable to
develop algorithms capable of recognizing a particular action
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FIGURE 5. Examples of the twenty-one actions contained in the JHUMMA dataset. An RGB color image, along with the 2D skeleton tracked by the Kinect
sensor, as well as the acoustic modulations from each of the three ultrasound sensors, is shown for each action. The spectrogram in the second image
was generated from ultrasound data recorded by the 40kHz sensor, the spectrogram in the third image was generated from ultrasound data recorded by
the 33kHz sensor and the spectrogram in the fourth image was generated from ultrasound data recorded by the 25kHz sensor. The time window used to
select the ultrasound data for each actions is the same for each sensor and the Kinect frames are all from within these windows. The window duration is
fixed at just under nine seconds for each action. The displayed frequency content has a bandwidth of 2kHz centered on the respective carrier frequency
of each ultrasound unit. The time and frequency markings are omitted for clarity.

regardless of where it occurs in the global coordinate system.
When training these algorithms it is advantageous to consider
the hip-center as the origin for the skeleton at each frame.
By referencing all of the other joints in a given frame to
the position of the hip-center, the skeletal pose can be cap-
tured independently from the skeleton’s global position. This
skeletal pose representation provides translation invariance
in the global coordinate system, which can greatly simplify
the problem of recognizing a particular pose regardless of
where a human is relative to the Kinect sensor. Storing the
global position of the hip-center maintains all the necessary
information to reconstruct the recorded scene exactly.

Furthermore, it is desirable if a human action recognition
algorithm can be trained on skeletal poses collected from
multiple subjects. One problemwith the cartesian coordinates
produced by the Kinect is their dependence on the height and
limb lengths of the individual person. A very tall person and
a very short person can perform the same action and gener-
ate very different cartesian joint coordinates even once the
pose is adjusted to account for translation of the hip-center.

However, the angle of the limbs as two people perform the
same action is often much more consistent, even when their
limbs are different lengths.

To leverage this invariance, the skeleton can be represented
using the rotation of individual limbs instead of the cartesian
coordinates of their constituent joints. The rotation represen-
tation is composed of two objects; an axis of rotation and an
angle of rotation, θ . Figure 6 illustrates these components
for a single limb. Each limb (blue line) is defined by two
points, referred to as joint A and joint B. By convention, joint
A is closer to the hip-center on the skeletal connection tree.
The positive z-axis is used as a reference vector (red vector).
The axis of rotation is the vector around which the limb
must be rotated to match the reference. Due to the choice of
reference, this axis is always constrained to the x-y plane.

IV. ACTION RECOGNITION MODEL
Assuming that an appropriate dictionary of skeletal poses,H,
exists, the sequence of skeletal motion that results in
human action can be approximated by H = h0, . . . , hT ,
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FIGURE 6. Components of the rotation representation for a single limb.

where ht ∈ H. If we are also given an appropriate acoustic
alphabet, V of acoustic spectrogram slices, then a spectro-
gram can then be described as V = v1, . . . , vT , where
vt ∈ V . The methodology for generating the dictionary of
skeletal poses and alphabet of acoustic modulations is devel-
oped later in Sections IV-E and IV-F. A set of action class
labels, C, enumerates the twenty-one actions in the JHUMMA
dataset. Each sequence H is generated by an action, a ∈ C,
that modifies the parameters of the probability distributions
accordingly.

The goal of the action recognizer is to estimate the most
likely action that produced the visible sequenceV of spectro-
gram slices. This can be expressed as

â = argmax
a

(
max
H

Pa(V,H)
)

= argmax
a

(
max
H

Pa(V|H)Pa(H)
)
, (2)

where the joint distribution of a skeletal pose sequence and a
spectrogram, Pa(V,H), is decomposed into a product of the
skeletal pose sequence model, Pa(H), and the active acoustic
model, Pa(V|H), for a particular action class a.

A hidden Markov model (HMM) can be used to model
a single pair of visible and hidden sequences. In order to
leverage this model for recognizing actions, a set of HMM
parameters are each trained separately on the portions of the
training data that contain examples of a single action, a.When
a new test sequence of acoustic spectrogram slices, V, is
observed, each of the individual action HMMs are used to
predict the most likely sequence, H, of unobserved skeletal
poses. Computing the likelihoods of the sequences produced
using each set of action parameters allows the models to
predict the most likely action a by choosing the model that
produces the most likely sequence. An HMM is an extension
of a Markov chain where the random variables in the Markov
sequence are considered hidden, or latent, and not observed.
Instead, an additional visible random variable is observed
at each step in the sequence [37]. The visible random vari-
able is conditionally independent of all the other hidden and

FIGURE 7. Structure of the HMM used to capture sequences of Doppler
modulations given a hidden sequence of skeletal poses.

visible random variables given the hidden variable at that
step. Figure 7 depicts the basic structure of the HMM used to
represent the active acoustic action model. HMMs have been
extensively used in speech recognition [38], but their ability
to capture the dynamics of the actions have also made them
attractive for action recognition [39]. There are actually three
independent sets of ultrasound observations in the JHUMMA
dataset. In order to investigate the effects of using active
acoustics from different orientations, three separate sets of
HMMs are developed, one for each ultrasound sensor. While
they can all share the same skeletal pose state space built upon
the Kinect sensor data, their observation state spaces are all
unique, requiring independent sets of parameters.

In addition to the hidden sequence encoded by the variables
H = h0, . . . , hT and the visible sequence encoded by the
variables V = v1, . . . , vT , the HMM also has a start state H0
that is used to encode a set of prior probabilities indicating
the likelihood that a chain starts in each state.

This HMM encodes the structure of the sub-motion and
spectrogram slice sequences for a specific action a in the
action recognition model if the sub-motions are assumed to
adhere to the Markov property. Under this condition, the joint
probability of the HMM can be decomposed as

Pa(Ha,V) = Pa(V|H) · Pa(H)

=

∏T

t=1
Pa(Vt |Ht ) · Pa(H0)

∏T

t=1
Pa(Ht |Ht−1).

(3)

The factorization of the joint distribution is also captured
by the conditional independence assumptions encoded in the
graphical structure of the HMM. The HMM is a generative
probabilistic model of the active acoustic modulations and
models the full joint probability distribution instead of just
the discriminative class conditional distribution Pa(H|V).
The HMM parameters for action a are θa = (πa,Aa,Ba),

where πa is the vector of hidden state priors, Aa is the
matrix of transition probabilities between the hidden skeletal
pose states and Ba is the matrix of emission probabilities of
spectrogram slices from each of the hidden states. There are
|H| hidden skeletal pose states and |V| visible spectrogram
slice states. If i ∈ {1, . . . , |H|} indexes into the set of possible
hidden states, then the elements of the state prior vector are

πa(i) = Pa(H0 = i). (4)

If i, j ∈ {1, . . . , |H|} both index into the set of possible hidden
states, then the elements of the transition matrix are

Aa(i, j) = Pa(Ht = j|Ht−1 = i). (5)
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If i ∈ {1, . . . , |H|} indexes into the the set of possible hidden
states and k ∈ {1, . . . , |V|}, then the elements of the emission
matrix are

Ba(i, k) = Pa(Vt = k|Ht = i). (6)

A. TRAINING THE HMM PARAMETERS
The JHUMMA dataset contains joint examples of both the
hidden skeletal pose sequences and the visible spectrogram
slices that can be used train the parameters for each class of
actions. Under this fully supervised setting, the parameters
for the HMM can be learned via closed-form maximum
likelihood estimates (MLE) [38], [40]–[42]. To derive the
MLE estimates, consider the joint probability of a training
example, (V = v,H = h), where both the hidden and visible
variables are known. Using Equation 3 gives the probability
of the training example

Pa(H = h,V = v) =
T∏
t=1

Ba(Ht ,Vt )

×

T∏
t=1

Aa(Ht−1,Ht )× πa(H0) (7)

=

T∏
t=1

|H|∏
i=1

|V |∏
k=1

Ba(i, k)I(Ht=i,Vt=k)

×

T∏
t=1

|H|∏
i=1

|H|∏
j=1

Aa(i, j)I(Ht−1=i,Ht=j)

×

|H|∏
i=1

πa(i)I(H0=i). (8)

The parameters θa have been substituted for the appropriate
probability distributions and the indicator function I is used
to specify the number of times each probability term occurs.
The probability of L independent training sequences is simply∏L

l=1 Pa(H = hl,V = vl). Taking the log of this distribution
yields,

L∑
l=1

logPa(H = hl,V = vl) =
|H|∑
i=1

|V |∑
k=1

Nik logBa(i, k)

+

|H|∑
i=1

|H|∑
j=1

Nij logAa(i, j)

+

|H|∑
i=1

Ni logπa(i). (9)

Here the emission counts across the training set are defined as

Nik =
L∑
l=1

T∑
t=1

I(Hl,t = i,Vl,t = k). (10)

The transition counts across the training data are defined as

Nij =
L∑
l=1

T∑
t=1

I(Hl,t = j,Hl,t−1 = i). (11)

The prior counts across the training data are defined as

Ni =
L∑
l=1

I(Hl,0 = i). (12)

It is necessary to add additional constraints via Lagrange’s
multiplier. Essentially, the fact that the parameters are also
proper probability distributions, and therefore sum to unity,
must be enforced. That is,

∑|H|
i=1 πa(i) = 1,

∑|H|
j=1 A(i, j) = 1

and
∑|V |

k=1 B(i, k) = 1. To find the MLE estimates for the
various parameters, first add the appropriate constraint to
the log-likelihood in Equation 9. Let λ be the Lagrange
multiplier coefficient. Then take the partial derivatives of the
constrained log-likelihood with respect to both the parameter
of interest and λ. This results in two equations and two
unknowns. For more details on using the Lagrangian to find
the MLEs of the parameters, see Chapter 3 in Murphy [43].
Solving the system of equations for the state prior probabili-
ties yields,

π̂a(i) =
Ni∑|H|
i′=1 Ni′

. (13)

Solving for the transition probabilities yields,

Âa(i, j) =
Nij∑|H|
j′=1 Nij′

. (14)

Solving for the emission probabilities yields,

B̂a(i, k) =
Nik∑|V |

k ′=1 Nik ′
. (15)

Under the supervised training paradigm, finding the MLE
estimates for the HMM parameters essentially boils down
to counting the number of times the relevant event occurred
in the training data and normalizing the results into proper
distributions. In order to train one set of HMM parameters
for each action a ∈ C, the training data is split according to
the action that generated it and the parameters for each action
are trained solely on the associated training data.

Many of the possible hidden state transitions and visible
observation combinations were never observed in the training
sets. To alleviate this, add-one smoothing was applied to
the MLE estimates. This technique amounts to adding one
phantom count to each element prior to normalization.

B. FINDING THE MOST LIKELY HIDDEN SEQUENCE IN
A HIDDEN MARKOV MODEL
Given the trained parameters for an HMMand a test sequence
of observations, the Viterbi algorithm [38], [41], [44] can
be used to find the most likely sequence of hidden states.
The Viterbi algorithm is a dynamic programming technique
to efficiently compute the maximum a posteriori (MAP)
probability estimate of the most likely sequence in a chain-
structured graphical model, such as the HMM.

The Viterbi algorithm is composed of a forward pass
through all possible sequences of states where the likelihood
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of ending up in state j ∈ {1, . . . , |H|} at time t ∈ {1, . . . ,T }
is computed for each state. Given an observed sequence V1 =
k1, . . . ,VT = kT , the likelihood δt (j) of a state j, at each time
step t , can be computed based on the likelihoods of the states
at the previous time step t − 1, the transition probabilities
between the states and the probability that each state emits
the current observed symbol kt ,

δt (j) = max
i=2,...,|H|

δt−1(i)A(i, j)B(j, kt ). (16)

The forward pass can be initialized using the prior probability
of each state such that

δ1(j) = max π (i)A(i, j)B(j, k1). (17)

In addition to tracking the likelihood of each state, the previ-
ous state that gave rise to the likelihood is also tracked.

αt (j) = argmax
i=1,...,|H|

δt−1(i)A(i, j)B(j, kt ). (18)

The Viterbi algorithm for an HMM terminates once the final
time step T is reached. At this point the sequence of most
likely states can be traced backwards through time. Beginning
at time step T , the most likely state is

h∗T = argmax
i=1,...,|H|

δT (i), (19)

and the sequence is unrolled using the previous states that
were tracked. Thus,

h∗t = αt+1(h
∗

t+1), (20)

where t < T .

C. SPLITTING THE JHUMMA DATASET INTO EXAMPLES
AND BATCHES
The JHUMMA dataset provides a perfect foundation for
building HMMs that jointly model sequences of skeletal
poses and sequences of Doppler-modulations and evaluat-
ing their ability to classify actions sequences. There are
21 distinct types of actions captured in the JHUMMA dataset
and the performance of the HMM model is evaluated on the
task of classifying these action categories.

The JHUMMAdataset contains a sequence of spectrogram
slices for each of the three ultrasound sensors and a sequence
of skeletal frames for each of the actions performed dur-
ing each of the thirteen trials. Unfortunately, each of these
coarsely labeled sequences contains multiple repetitions of
the same action. Nominally each sequence contains ten rep-
etitions, although there are several instances where the actor
lost track of the count. In order to generate test sequences suit-
able for training and testing HMMs, each sequence was split
into ten examples of equal numbers of consecutive frames.
Any remaining frames were appended to the last example so
that temporal cohesion is maintained.

Five batches of training and testing data were set up for
cross-validation. For each action/trial pair, two of the ten
data sequences were randomly selected as test examples,
while the remaining eight were selected as training examples.

The random permutations were constructed such that each of
the ten examples serves as a test sequence in exactly one of
the five batches. One of the actors accidentally skipped three
actions, so there are precisely 2, 160 training examples and
540 test examples in each batch.

D. LEARNING CLUSTER PROTOTYPES
The K-means algorithm is a common method for performing
vector quantization [43], [45], a technique for modeling prob-
ability densities based on the location of prototype vectors.
The idea behind K-means was first proposed by Steinhaus as
least squares quantization in pulse-code modulation (PCM)
and the standard algorithm used to implement the technique
was first published by Lloyd [46], [47] with efficient large
scale applications of the algorithm advanced by Coates [48]
and Kanungo [49]. In Sections IV-E and IV-F the details
of using K-means to learn prototype clusters for both the
skeletal poses and spectrogram slices are described. Here the
basic algorithm is developed for performing unsupervised
clustering.

Let X = x1, . . . , xN be a set of unlabeled training data,
where each xi ∈ RD. Define a set of j = {1, . . . ,K }
cluster prototypesµj ∈ RD. The cluster prototypes are initial-
ized using the K-means++ algorithm [50], which randomly
selects one of the data points from X to be the first cluster
prototype and selects subsequent points, one at a time, fromX
to be initial cluster prototypes with probability inversely pro-
portional to their distance from the nearest existing selected
prototype [49].

Once allK of the clusters have been initialized, the training
data points are all assigned to the nearest cluster. In this work,
the distance between any data point in the training set and any
cluster mean is given by

d(xi,µj) =

√√√√ D∑
d=1

(xd − µd )2, (21)

the Euclidean distance in D-dimensional space. Once the
cluster assignment is complete, the cluster prototypes are
updated by computing the mean value of all the data points
in the cluster assignment. Then, using these new cluster pro-
totypes, the procedure is repeated. The stopping criterion is
generally when no data points change clusters in successive
iterations.

In this work, the K-means algorithm was performed
four times with different random data points used for the
K-means++ cluster initialization. The decision to use four
starting points was based on the number of available inde-
pendent CPU cores. The number of iterations was also capped
at 750, although the cluster prototypes converged before that
in all cases.

E. SKELETAL POSE STATE SPACE MODEL
One limitation of the HMM is that it is built on a
finite state space. Unfortunately, the skeletal poses derived
from the Kinect data are more accurately represented in
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continuous space. In order to generate a finite latent space of
skeletal poses suitable for training the HMMs, we employ the
K -means algorithm to discover unsupervised clusters suitable
for quantizing the vector space of skeletal poses.

Ideally, the model for the hidden state variables would
capture the skeletal pose precisely at a given instant in time.
However, one limitation of the HMM is that the state space
is finite, so there must be a finite number of hidden states.
The approach taken in this work is to find a set of skele-
tal poses that suitably approximate the space of skeletons
recorded by the Kinect sensor in the JHUMMA dataset. This
was accomplished through unsupervised clustering, using the
K -means algorithm described in Section IV-D, to find cluster
prototypes given all of the skeletal frames in the training data
of a given batch. The process was then repeated separately for
the training data in each of the cross-validation datasets. The
principle parameter involved with this method is the degree
to which the training skeletons are quantized, which is the
number of skeletal clusters, K . The hidden state variables Ht
take on values ht ∈ {1, . . . ,K }, which index the set of skeletal
pose clusters.

The skeletal poses from the Kinect were adapted in three
ways to simplify the problem and facilitate clusterings that
capture the most important information. The first adaptation
was to remove the translation of the hip joint from the features
included in the skeletal clusters. As discussed in Section III,
this provides translation invariance, which is critical so that
the pose clusters that are learned are applicable to any location
in the dataset. It would be prohibitively expensive to produce
and label a dataset extensive enough to support learning
individual clusterings for different spatial areas.

The second adaptation was to remove the hand and feet
joints from the skeletal poses. Studying the Kinect data in
the JHUMMA dataset reveals that the hands and feet tend
to be the noisiest joint estimates. The feet in particular tend
to exhibit a significant amount of jitter from frame to frame.
Removing these joints prevents the learned skeletal clusters
from spending any modeling power accounting for the jitter
in these noisy joints. It also has the added benefit of reducing
the dimensionality of the skeletal pose features, which is also
the dimension of the cluster space. Removing the hands and
feet left only 16 joints in the abbreviated skeleton structure.

The third adaptation was to use the rotation representation
of the skeletal pose, described in Section III. This allows all
of the training data, regardless of the actor, to be merged
together. The skeletal poses are clustered in limb rotation
space, which is more amenable to cross-training between
actors than cartesian joint coordinates. The limb rotations
are referenced to the vertical and only take on values in the
range of 0 radians, which corresponds to straight up, to π
radians, which corresponds to straight down. In this represen-
tation, the discontinuity between 0 radians and 2π radians is
avoided, so the Euclidean distance remains a natural choice
of metric. Applying all three of these adaptations resulted
in each skeletal pose being represented by a 45-dimensional
feature vector.

FIGURE 8. Comparison of the error between each skeletal frame in the
training data and the associated skeletal cluster for various numbers of
clusters.

In order to explore the effect of different quantization levels
in the pose space, the K -means clustering procedure was
performed for various numbers of clusters on the first batch
of data. Figure 8 shows the average joint error for each set of
skeletal pose clusters. The error was calculated by computing
the distance between each joint in each skeletal frame of the
training data and the corresponding joint in the cluster mean
that the training frame was associated with. For the purposes
of computing the error, the rotation representation of the clus-
ter mean was transformed back into cartesian coordinates.
The error was summarized by averaging across each of the
16 joints in each of the 225, 483 training frames, which were
pooled across all thirteen trials and 21 actions in the first batch
of data.

The curve in Figure 8 illustrates a tradeoff between model
complexity and accuracy. As the number of skeletal clusters
increases, the clusters do a better job of approximating the
training data, so the error decreases. However, more clusters
require more model parameters to be estimated. Unless other-
wise specified, the data shown in the following sections was
generated using 200 skeletal clusters, which errs on the side of
accurately modeling the skeletal poses with a more complex
model.

In order to confirm that the training data in each cross-
validation batch produces similar quantization results, the
error of each joint was investigated. The error was computed
as the Euclidean distance from each joint in the training data
relative to the corresponding joint in the associated skeletal
cluster. Figure 9 shows the error for each of the 16 joints,
averaged across all of the training examples in each of the
five batches. The error bars in Figure 9 correspond to one
standard deviation of the joint errors.

Asmentioned earlier, the hip translation was removed from
the representation, so all of the hip joints were fixed to the
origin when the other joint errors were computed, which is
why they appear to have zero error. It is also interesting to note
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FIGURE 9. Comparison of the error between each skeletal joint in the
training data and the closest skeletal cluster for each data batch. The
number of skeletal clusters was fixed at 200.

that the wrist and ankle joints have significantly higher error
and variance than the others. This makes sense because they
tend to move more during actions. They are also more likely
to be tracked erroneously by the Kinect. This result supports
the decision to omit the hand and foot joints, which were even
more unreliable.

FIGURE 10. A random sampling of 25 of the 200 skeletal clusters learned
from the first batch of training data.

Figure 10 shows a random sampling of the skeletal pose
clusters learned from the first batch of cross-validation data.
These poses appear to be relatively diverse and interesting,
indicating that the unsupervised clustering approach is at least
reasonable.

Figure 11 shows the histogram of each skeletal pose clus-
ter in the training data for the first cross-validation batch.
The cluster indices are sorted according to their frequency.
Although the frequency is not uniform, the balance between
cluster frequencies appears reasonable. Some actions have
relatively unique skeletal poses that are not exhibited often,
while many actions share similar skeletal poses that are
clustered together and occur more frequently.

FIGURE 11. Histogram illustrating the number of occurrences of each
skeletal cluster. The cluster indices have been sorted by their frequency.

F. DOPPLER MODULATION OBSERVATION MODEL
While the hidden variables for each of the three HMMmodels
can all utilize the same set of skeletal pose clusters, it is
necessary to develop sets of spectrogram slice clusters that
are tuned to each of the three ultrasound sensors individually
because they each utilize a different carrier frequency.

FIGURE 12. Comparison of the average error between each 40kHz
spectrogram slice in the first batch of training data and the nearest
spectrogram cluster for increasing numbers of cluster prototypes, K . The
clustering K -means clustering procedure was run using both the
L1 and L2 distance metrics.

An approach similar to the skeletal clustering was taken
to quantize the spectrogram slices associated with each ultra-
sound sensor. The spectrogram slices from all of the training
sequences were pooled together and the K -means algorithm
was again used to choose a set of average clusters that were
representative of the entire set. Figure 12 shows the average
error for a spectrogram slice in the first batch of 40kHz
ultrasound data over several values of K . The average cluster
error was computed using clusterings derived using both
the Euclidean, or L2, and L1 distance metrics. Although the
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L2 distancemetric is not an obvious choice for comparing two
spectrogram slices, empirical testing demonstrated very little
difference between the character or performance of spectro-
gram clusters created using the L2 distance metric versus the
L1 distance metric.

For clustering the ultrasound spectrogram slices, a value
of K = 100 was used. As the clusterings do not appear to
be particularly sensitive to the choice of distance metric, the
spectrogram clusters used to generate the results presented
here were created using the L2 distance metric, which is
consistent with the metric used to cluster the skeletal poses.
This spectrogram clustering process was repeated separately
for the data from each of the three ultrasound sensors and for
each of the cross-validation datasets.

FIGURE 13. Histogram illustrating the number of occurrences of each
40kHz ultrasound cluster. The cluster indices have been sorted by their
frequency.

Figure 13 shows the histogram of each 40kHz ultrasound
cluster extracted from the first batch of cross-validation data.
The cluster counts appear reasonable. Some clusters are cer-
tainly more frequent than others, but no cluster dominates.

One nice feature of the spectrogram slices is that they are
relatively easy to display and interpret in two-dimensions.
Figure 14 shows all of the cluster means for the 40kHz train-
ing data. These representative spectrogram slices are sorted
according to their frequency in the training data. Actions
are still more often composed of periods of little movement,
with large motions being relatively rare, which parallels the
general trend of clusters with larger Doppler modulations
being less frequent.

Figure 15 shows the histogram of each 33kHz ultrasound
cluster extracted from the first batch of cross-validation data.
The distribution is slightly more skewed than the one for the
40kHz data.

Figure 16 shows all of the cluster means for the 33kHz
training data. The clusters are very similar in character to
those culled from the 40kHz data. The modulations are
smaller overall, but this is due to the lower carrier frequency
and the fact that the sensor was positioned to the side of the

FIGURE 14. The collection of 40kHz ultrasound representative
spectrogram slice cluster means, ordered by their frequency
in the training data.

FIGURE 15. Histogram illustrating the number of occurrences of each
33kHz ultrasound cluster. The cluster indices have been sorted by their
frequency.

FIGURE 16. The collection of 33kHz ultrasound representative
spectrogram slice cluster means, ordered by their frequency
in the training data.

majority of the actions in the JHUMMA dataset. The side
sensors tended to observe smaller velocity components for the
majority of actions. This is also supported by the histogram
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of the clusters, which indicates that the higher modulation
clusters, indicative of more motion towards the side sensors,
are less frequent compared to the histogram of the 40kHz
sensor, which was positioned directly in front of most of the
actions.

FIGURE 17. Histogram illustrating the number of occurrences of each
25kHz ultrasound cluster. The cluster indices have been sorted by their
frequency.

Figure 17 shows the histogram of each 25kHz ultrasound
cluster extracted from the first batch of cross-validation data.
Similarly to the 33kHz spectrogram slice clusters, the 25kHz
spectrogram slice clusters also appear to have a more skewed
distribution than the 40kHz spectrogram slice clusters. This
is in line with the less variable nature of both the positioning
of the sensor off to the side and the lower magnitude of the
25kHz modulations. Figure 18 shows all of the cluster means
for the 25kHz training data.

V. HUMAN ACTION RECOGNITION RESULTS
Once an appropriate vocabulary of skeletal pose prototypes
was constructed from the training data and the alphabets of
spectrogram slice prototypes were learned separately for each
of the ultrasound frequencies, the parameters for each of the
actions classes and ultrasound sensors were computed using
Equations 13, 14 and 15. To classify a novel test sequence
from one of the ultrasound sensors, it was first translated
into a sequence of spectrogram slice prototypes. This was
done by choosing the prototype with the smallest Euclidean
distance from each spectrogram slice in the test sequence.
Once the test data was translated into spectrogram proto-
types v, the most likely sequence of hidden skeletal pose
prototypes h∗a was computed using the Viterbi algorithm,
described in Section IV-B. This procedure was repeated for
each set of parameters θa. Note that only the parameters
trained for that particular ultrasound frequency were consid-
ered, and the subscript on the most likely hidden sequence
was used to indicate the action the set of HMM parameters
used to produce it was trained on.

The log-likelihood of a hidden sequence h and an observed
sequence v, normalized for the number of time steps in the

FIGURE 18. The collection of 25kHz ultrasound spectrogram slice cluster
means, ordered by their frequency in the training data.

FIGURE 19. Confusion matrix enumerating the action classification
decisions resulting from the 40kHz ultrasound model.

sequences, is

La(h, v) = logπa(h0)

+

∑T

t=1
logA(ht−1, ht )

+

∑T

t=1
logB(vt , ht )− logT . (22)

After computing the log-likelihood of the hidden sequence
produced by each action model, the sequence was classified
as the action that best modeled the sequence. That is,

â = argmax
a

La(h, v). (23)

Figure 19 shows the confusion matrix for the action clas-
sification task that results from HMMs trained on the 40kHz
ultrasound data. Overall, the HMMmodel correctly classified
63.63% of the 2700 test examples in the JHUMMA dataset.
There were twenty-one actions, so classifying the actions by
chance would yield a classification rate of under 5%. These
results were compiled using all five of the cross-validation
batches.
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The confusion matrix indicates that the model tends to
make very specific types of errors. It has significant difficulty
distinguishing left versus right orientation among the action
classes that have a similar action but different orientation.
This is evident by the blocks of misclassification errors that
are formed around many of the actions that have multiple
orientations. One such example is the classification of the
left leg steps and the right leg steps. The classifier places
almost all of the probability mass on one of those two actions,
but there is significant ambiguity between them. Recall that
the 40kHz ultrasound sensor was positioned to the north of
the actor, which is roughly the line of symmetry for left
versus right actions. With limited spatial information in the
modulations, distinguishing between arm raises to one side
or the other is difficult and results in significant classification
errors. On the other hand, the 40kHz ultrasound HMM does
a good job of predicting actions with unique orientations
such as punching and jumping jacks. This indicates that the
modulations themselves are reasonably informative patterns
to use for classifying coarse-grained action sequences.

FIGURE 20. Confusion matrix enumerating the action classification
decisions resulting from the 33kHz ultrasound model.

Figure 20 shows the confusion matrix for the action clas-
sification task that results from HMMs trained on the 33kHz
ultrasound data. Overall, the HMMmodel correctly classified
73.70% of the 2700 test examples in the JHUMMA dataset.
Almost all of the actions with multiple orientations were
symmetric with respect to the North to South axis of the
JHUMMA setup. Therefore, it makes sense that the HMM
trained on the micro-Doppler modulations recorded by the
33kHz ultrasound sensor, which was off to the West, made
fewer errors than the 40kHz ultrasound sensor. In fact, the
one set of actions that did have some orientations facing the
33kHz sensor, walking back and forth, exhibited the same
block error patterns in the confusion matrix as are evident in
the 40kHz ultrasound classifications.

Figure 21 shows the confusion matrix for the action clas-
sification task that results from HMMs trained on the 25kHz

FIGURE 21. Confusion matrix enumerating the action classification
decisions resulting from the 25kHz ultrasound model.

ultrasound data. Overall, the HMMmodel correctly classified
75.30% of the 2700 test examples in the JHUMMA dataset.
The errors made by the HMM model trained on data from
the 25kHz ultrasound sensor, which was positioned to the
East, is qualitatively similar to the errors made by the 33kHz
ultrasound sensor. This is reasonable as both sensors were
on the same cardinal axis and, therefore, encountered the
same ambiguities due to the orientation of the actions in the
JHUMMA dataset.

Given that the position of the ultrasound sensor has a
significant effect on the classification accuracy of the model
trained on data recorded by it, a fourth model that is a fusion
of all three individual ultrasoundHMMswas created to inves-
tigate the benefits of combining multiple ultrasound sensors
to disambiguate the orientations of the actions. The combined
model was constructed as a product of the individual models
by summing the log-likelihoods for each action that were pro-
duced by the individual ultrasound models prior to choosing
the most likely action. A test sequence v is now classified as

â = argmax
a

(
L40
a (h, v)+ L33

a (h, v)+ L25
a (h, v)

)
. (24)

Figure 22 shows the confusion matrix for the action
classification task that results from combining each of the
individual ultrasound HMMas a ‘‘product of experts’’ model.
Overall, the HMM model correctly classified 88.56% of the
2700 test examples in the JHUMMA dataset. Combining the
output of the individual HMM models gives a significant
boost in classification performance and appears to be a rea-
sonable approach to leveraging multiple ultrasound sensor
units.

VI. DISCUSSION
Table 1 gives a more detailed breakdown of the exact clas-
sification rates for each of the three individual ultrasound
models as well as the product of experts model combining
them all. Table 2 presents a comparison of classification
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FIGURE 22. Confusion matrix enumerating the action classification decisions resulting from combining the
output of the three ultrasound models as a product of experts.

TABLE 1. Action classification performance on the JHUMMA dataset.

performance for several different numbers of skeleton pose
cluster prototypes. On the left side, the overall classification
results for the action sequences are shown. On the right side,
the pose classification rate for the hidden sequence of cluster
prototypes predicted from the data of each ultrasound band

are shown. The pose classification rate is computed by com-
paring the closest skeletal pose prototype, at each time step
in a test sequence, to the skeletal pose prototype predicted by
the HMM given the test sequence of ultrasound modulations.

TABLE 2. Action and pose classification performance on the JHUMMA
dataset.

In general, more skeletal pose prototypes result in a more
expressive state space that is able tomodel the actual recorded
skeletal poses more closely. However, this precision comes at
the price of a significantly larger model that now has many
more parameters to estimate from the same fixed pool of
training data. This is a classic model selection tradeoff and
the results in Table 2 illustrate this. The action classification
rates generally increase with the number of skeletal pose pro-
totypes. However, the pose classification rates increase with
fewer skeletal pose prototypes. This is reasonable because
fewer prototypes make estimating the closest one signifi-
cantly easier. Overall, using 200 skeletal pose prototypes, the
conclusion drawn from the tradeoff in Figure 8, seems to be
a reasonable compromise between these two trends.
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The work presented in this paper employs fundamental
mathematical models and tools that are also employed in
the vision community aimed at capturing the dynamics and
kinematics of human body. Statistical models such as HMM
andCRFs [51]–[54] aswell as thework that employs dynamic
probabilistic networks [55]–[57] incorporates more structure
and prior knowledge in the recognition process through tem-
poral, contextual and ordering constraints in the models. Also
relevant is the work on linear [58] and non-linear dynamical
systems approaches [59] for tracking features and optical
flows, which are alternative methods aimed at recognizing
activities that are concatenations of simpler actions. Themore
advanced models in the latter body of work in the computer
vision community could be applied to the problem and sensor
data in this paper to further improve the performance of the
action recognition system.

VII. CONCLUSION
Using amultimodal dataset that incorporates both visual data,
which facilitates the accurate tracking of human movement,
and active acoustic data, which captures the micro-Doppler
modulations induced by the motion, we have developed
algorithms for action recognition. The dataset consists of
twenty-one actions and focuses on examples of orientational
symmetry that a single active ultrasound sensor should have
themost difficulty discriminating. The combined results from
three independent ultrasound sensors are encouraging and
provide a foundation to explore the use of data from multiple
viewpoints to resolve the orientational ambiguity in action
recognition.

Future lines of research are intended to explore the
applicability of the sensor to real-life scenarios. In this sense,
experiments will be developed to evaluate aspects such as
the distance limits of the system, especially in outdoor con-
ditions, and the effects on accuracy of the angle of inci-
dence between the ultrasonic module and the target object.
One key aspect here is the potential active control of the
micro-Doppler sonar for interrogating the scene, as, unlike
audio, which comes from all directions and without control,
the sonar device can be activated intermittently and directed
towards the desired objects. The ability to disentangle the
acoustic modulations of multiple people moving simultane-
ously and interacting with each other is another obstacle that
will require future work to address. A critical component
for solving this problem will probably include extending the
development of symbolic human poses to include multiple
actors and using these to provide physically plausible con-
straints to algorithms interpreting the acoustic modulations.
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