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ABSTRACT We compare three non-data-aided synchronization techniques for full-response continuous
phase modulation (CPM) signals, which have feedforward structures and are suitable for burst-mode
transmissions. All the schemes are based on the statistical characteristics of the full-response CPM signals
with modulation index h = 1, for which the algorithms are investigated to estimate the carrier frequency
offset, carrier phase, and symbol timing. For the CPM signal with an arbitrary modulation index, the phase
unwrapping technique is used to convert themodulation index into 1, and then, the proposed algorithms could
work. The performances of the synchronization algorithms are investigated by simulations and compared
with the modified Cramer–Rao bounds. It turns out that the estimation performances of the frequency offset
and timing offset are close to the theoretical limits in high signal-to-noise ratio.

INDEX TERMS Synchronization, frequency estimation, timing recovery, continuous phase modulation.

I. INTRODUCTION
Continuous phase modulation (CPM) is a bandwidth efficient
digital modulation scheme used for data transmission over
band-limited channels [1]. The transmitted symbol informa-
tion is contained in the signal phase, so the CPM signal has
the constant envelope, which allows simple transmitters and
high efficiency in converting limited mobile power into radi-
ated power [2]. In order to demodulate the CPM signal, the
synchronization process is necessary. The synchronization
procedure includes carrier recovery and timing recovery, and
there are many research works on the issues [3].

The synchronization schemes can be divided into data-
aided and non-data-aided schemes. In [4] and [5], the data-
aided schemes are investigated and the recovery performance
is close to the modified Cramer-Rao bound (MCRB) [6], but
the training sequence must be inserted into the transmitted
sequence so that the spectral efficiency decreases. Therefore,
more research works focus on the non-data-aided schemes
where the schemes could be divided into decision-feedback
and feedforward structures. The decision-feedback scheme
utilizes the symbol decision results to help the synchroniza-
tion procedure where the synchronization step and demod-
ulation step compose the feedback loop. The feedforward
scheme is the open loop and the synchronization procedure
is implemented independently with demodulation results.

Therefore, the structure of the feedforward scheme is simpler
than that of the feedback scheme. In our paper, we mainly
consider the feedforward scheme.

The carrier recovery and timing recovery are independently
investigated in some works. In [7], the frequency detectors
for MSK-type signals is proposed when the timing recovery
has been implemented for the received signals, where the
MSK-type signal is the CPM signal with modulation index
h = 1/2 since the minimum shift keying (MSK) is the mostly
used CPM signal with h = 1/2. In [8]–[10], the timing
recovery schemes are designed for CPM signals when the
carrier frequency offset has been estimated.

When the CPM signal is received, both of the frequency
offset and the symbol timing are unknown. Therefore, the fre-
quency detector without the timing information or the timing
recovery without frequency information is more attractive.
The research works mainly focus on the CPM signals with
h = 1/2 or MSK-type signals, which have some special char-
acteristics for easy implementation. In [11], the frequency
detectors for CPM signals with modulation index h = 1/2 are
investigated, which can work without the timing information.
The scheme decomposes the CPM signals into the super-
position of pulse amplitude modulated (PAM) signals by
Laurent’s representation of CPM schemes [12], and then
utilizes the maximum likelihood (ML) estimation method
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to obtain the carrier frequency. However, it is difficult to
extend the algorithm to other h values, since the Laurent’s
representation is complex in general cases. In [13], the joint
frequency and timing estimator is proposed for continuous
phase frequency shift keying (CPFSK) signals with h = 1.
The scheme constructs the objective function about the fre-
quency and timing offsets and searches the peak of the func-
tion.When the peak is found, the frequency and timing offsets
have been obtained. In [14] and [15], the joint estimator is
proposed for MSK-type signals, the estimator utilizes the
correlation function of the signal with the symbol period
interval. In [16] and [17], another joint estimator is proposed
for CPFSK signals, which converts the CPFSK signals with
arbitrary h values into those with h = 1 by phase unwrapping
and then estimates the frequency and timing offsets.

Comparing the schemes in [13]–[17], we could find the
common viewpoint that all the algorithms use the character-
istics of the CPM signals with h = 1. In [13], the algorithm
is designed for the CPM signal with h = 1. In [14] and [15],
the square operation is used to convert h = 1/2 into h = 1.
In [16] and [17], the phase unwrapping algorithm is used
to convert the arbitrary h values into h = 1. The basic
principles for the three kinds of schemes are different. The
cyclostationary properties of the CPM signals in [18] reveal
the theoretical foundation for the schemes in [16] and [17],
but the formulas in [18] are too complex to read.

In the paper, we summarize the statistical characteristics of
the CPM signal with h = 1, and generalize these schemes to
the general CPM signal. For simplicity, we restrict ourselves
to full-response CPM [19], i.e., those with pulse length equal
to the symbol period. Extensions to other pulse length are
possible but, for space limitations, are not pursued here.

The paper is organized as follows. In Section II,
we describe the statistical characteristics of CPM with h = 1
and provide the brief proofs. In Section III, we derive the
joint estimators from the characteristics respectively. The
numerical results are provided in Section IV and conclusions
are summarized in Section V.

II. STATISTICAL CHARACTERISTICS OF THE CPM
The complex envelope of the CPM is

s (t) = exp [jφ (t)] (1)

where the modulated phase is [1]

φ (t) = 2πh
n∑

k=0

αkq (t − kT ). (2)

In the phase definition, h is the modulation index, T is the
symbol period, and αk are independent M -ary data symbols,
each taking one of the values

αk = ±1,±3, · · · ,±M − 1 (3)

with equal probability 1/M . Therefore, we have

E {αk} = 0. (4)

Here E {·} denotes expectation operation to αk . The function
q (t) is the phase pulse of the modulator, which is related to
the frequency pulse g (t) by the relationship

q (t) =
∫ t

−∞

g (τ ) dτ . (5)

For full-response CPM signals, g (t) is time-limited to the
interval (0,T ) and satisfies g (t) = g (T − t). Therefore,

q (t) =


0, t ≤ 0;
1/2− q (T − t) , 0 < t < T ;
1/2, t ≥ T .

(6)

Usually we consider two frequency pulses: rectangular
pulse (REC) and raised-cosine (RC) pulse as follows.

g (t) =
1
2T
, with REC, (7)

g (t) =
1
2T

(
1− cos

2π t
T

)
, with RC. (8)

which are both time-limited to the interval (0,T ).
For h = 1 andM = 2, the full-response CPM signals have

following three statistical characteristics:
(i) s (nT ) = (−1)n;
(ii) µ (t) = E {s (t)} is a periodic function of time with

period 2T ;
(iii) rm (t) = E {s (t) s∗ (t − mT )} is a periodic function of

time with period T .
Nowwe provide the brief proof. Extensions to other M val-

ues are possible but are not pursued here.
(i) We calculate the sample point at t = nT as follows

s (nT ) = exp

[
jπ

n−1∑
k=0

αk

]
= (−1)n . (9)

where exp (jπ) = −1 and
n−1∑
k=0

αk is an integer. Since αk is

odd integer and
n−1∑
k=0

αk is the sum of n odd integers, the parity

of
n−1∑
k=0

αk is the same as the parity of n. Therefore, we have

s (nT ) = (−1)n.
The property is about the special samples of the CPM

signals, so we call it as the sample point property.
(ii) We calculate the expectation of s (t) as follows

µ (t) = E

{
exp

[
j2π

n∑
k=0

αkq (t − kT )

]}

=

n∏
k=0

E {exp [j2παkq (t − kT )]}

=

n∏
k=0

cos 2πq (t − kT ) (10)

where the properties

E {cosαk t} = E {cos t} = cos t
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E {sinαk t} = E {αk sin t} = 0

are used for αk = ±1. According to (6), we have

µ (t) = (−1)n cos 2πq (t − nT ) , nT ≤ t < (n+ 1)T .

(11)

It is easily seen that

µ (t) = −µ (t + T ) = µ (t + 2T ) (12)

so that µ (t) can be expanded in the Fourier series form with
period 2T as follows

µ (t) =
∞∑

m=−∞

cmejmπ t/T . (13)

Obviously, cm 6= 0 for odd m and |c1| = |c−1| >

|cm| (m 6= ±1).
The property is about the mean function of the CPM sig-

nals, so we call it as the mean function property.
(iii) We calculate the correlation function of s (t) similarly

rm (t) = E
[
s (t) s∗ (t − mT )

]
= E

{
exp

[
j2π

n∑
k=0

αkpm (t − kT )

]}

=

n∏
k=0

cos 2πpm (t − kT ) (14)

where m is an integer and

pm (t) = q (t)− q (t − mT ) . (15)

Considering the pulse pm (t) is time-limited to the interval
(0, (m+ 1)T ), we have

pm (t) =


q (t) , 0 < t < T ;
1/2, T < t < mT ;
1/2− q (t − mT ) , mT < t < (m+ 1)T ;
0, others.

(16)

Therefore, only m+1 items are available in (14). In the inter-
val nT < t < (n+ 1)T ,

rm (t) =
n∏

k=n−m

cos 2πpm (t − kT )

= (−1)m cos2 2πq (t − nT ) . (17)

According to (6),

rm (t) = rm (t + T ) . (18)

Obviously, rm (t) is the even function with period T and
the parameter m is just involved in (−1)m. The item
cos2 2πq (t − nT ) can be expanded in the Fourier series form
as follows

cos2 2πq (t − nT ) = A0 + 2
∞∑
k=1

Ak cos
(
2πkt
T

)
.

According to (17), we have the inference about rm (t) as
follows

|rm (t)| = A0 + 2
∞∑
k=1

Ak cos
(
2πkt
T

)
. (19)

The property is about the correlation function of the CPM
signals, so we call it as the correlation function property.

Above all, the three characteristics are proved. From the
three properties, the information of the transmitted symbol
is eliminated, so they could be used to estimate the fre-
quency offset and timing offset. In fact, the sample point
property is the foundation of the scheme in [13]. The mean
function property is a special case of the cyclic spectral
characteristic in [18], which is the foundation of the scheme
in [16] and [17]. The correlation function property is the
foundation of the scheme in [14] and [15]. In the next section,
we derive three different synchronization schemes from the
three properties respectively.

III. SYNCHRONIZATION SCHEMES FOR CPM SIGNALS
The complex envelope of the CPM signal with the frequency
offset and timing offset is

x (t) = exp [j (2πvt + θ)] s (t − τ) (20)

where v is the frequency offset, θ is the carrier phase and τ
is the timing offset. The three parameters are unknown, so
the synchronization algorithms are designed to estimate the
parameters. Now we provide three schemes from the three
characteristics described in the last section.

A. SYNCHRONIZATION SCHEME FROM THE SAMPLE
POINT PROPERTY
Substituting (9) into (20) yields

x (nT + τ) = (−1)n exp [j (2πvnT + 2πvτ + θ)] . (21)

It is easily seen that (−1)n x (nT + τ) is a single tone. The
frequency and phase of the tone could be estimated by the
ML estimator proposed in [20]. The detailed algorithm is
described as follows.

Letting

y (n, ε) = (−1)n x (nT + ε) , (22)

we calculate the Fourier transform of y (n, ε) as

Y (f , ε) =
N−1∑
n=0

y (n, ε) e−j2π fn (23)

When |Y (f , ε)| reaches the peak, we have v = f and τ = ε,
i.e.,

(v, τ ) = argmax
(f ,ε)

|Y (f , ε)| . (24)

After obtaining the frequency and timing offsets, the carrier
phase is estimated by

θ = argY (v, τ )− 2πvτ. (25)
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The algorithm was firstly proposed in [13], but it is just used
for M-CPFSK signals with h = 1. However, the algorithm
could be used for any full-response CPM signals with h = 1,
since the sample point property is available for this type of
CPM signals. The algorithm is time-consuming, since the
peak search is done in the two-variable function, i.e., both
the time and frequency domains.

B. SYNCHRONIZATION SCHEME FROM THE MEAN
FUNCTION PROPERTY
Considering

E {x (t)} = ej(2πvt+θ)µ (t − τ) (26)

we substitute (13) into (26) and obtain

E {x (t)} = ej(2πvt+θ)
∞∑

m=−∞

cmejmπ(t−τ)/T . (27)

Considering the Fourier transform of x (t) as follows:

S (f ) =
∫ NT

0
x (t) e−j2π ftdt (28)

we calculate the expectation

E {S (f )} =
∫ NT

0
E {x (t)} e−j2π ftdt. (29)

For f = v+ k/2T , we substitute (26) into (29) and obtain

E {S (v+ k/2T )} = ckNTej(θ−kπτ/T ) (30)

Since |c±1| > |ck | (k 6= ±1), we search the maximal two
peaks of |E {S (f )}|, which respond to f = v ± 1/2T ,
and then we could obtain the frequency offset v. However,
the calculation of E {S (v+ k/2T )} utilizes E {x (t)}, which
is the statistical mean and difficult to obtain. Supposing

Sn =
∫ (n+1)T

nT
x (t) e−j2π(v+k/2T )tdt (31)

we have

E {Sn} =
∫ (n+1)T

nT
E {x (t)} e−j2π(v+k/2T )tdt

= ckTej(θ−kπτ/T ). (32)

Then we calculate

E {Sn} ≈
1
N

N−1∑
n=0

Sn =
1
N

∫ NT

0
x (t) e−j2π(v+k/2T )tdt. (33)

The left item of (33) is equal to 1
N E {S (v+ k/2T )} and the

right of (33) is equal to 1
N S (v+ k/2T ). Therefore, we have

E {S (v+ k/2T )} ≈ S (v+ k/2T ) . (34)

Obviously, the approximation becomes an equation when N
tends to infinity. Therefore, we have

S (v+ 1/2T ) = c1NTej(θ−πτ/T ),

S (v− 1/2T ) = c−1NTej(θ+πτ/T ).

Finally, the estimators are written as

v = argmax
f

(|S (f + 1/2T )| + |S (f − 1/2T )|) ,

τ = −
T
2π

arg S (v+ 1/2T ) S∗ (v− 1/2T ) ,

θ =
1
2
arg S (v+ 1/2T ) S (v− 1/2T ) . (35)

The algorithm was proposed in [16] and [17]. The algorithm
is just searching the frequency domain, so it is more efficient
than the last scheme.

C. SYNCHRONIZATION SCHEME FROM THE
CORRELATION FUNCTION PROPERTY
Considering

Rm (t) = E
[
x (t) x∗ (t − mT )

]
= ej2πmvT rm (t − τ) (36)

we substitute (19) into (36) and obtain

|Rm (t)| = A0 + 2
∞∑
k=1

Ak cos
2πk (t − τ)

T
. (37)

According to∫ T

0
cos

2πk (t − τ)
T

e−j
2π t
T dt =


T
2
e−j

2πτ
T , k = 1;

0, others,

the timing offset can be directly extracted fromRm (t)without
the frequency offset information as follows:

τ = −
T
2π

arg
∫ T

0
|Rm (t)| e−j

2π t
T dt. (38)

When the timing offset is obtained, we have

Rm (τ ) = (−1)m ej2πmvT
(
A0 + 2

∞∑
k=1

Ak

)
. (39)

Therefore, the frequency estimator is

v =
1

2πT
arg

[
−Rm (τ )R∗m−1 (τ )

]
. (40)

In order to eliminate the noise interference, we combine the
information of Rm (t) with all the m values as follows:

τ = −
T
2π

arg
∫ T

0

[
M∑
m=1

|Rm (t)|

]
ej

2π t
T dt,

v =
1

2πMT

M∑
m=1

arg
[
−Rm (τ )R∗m−1 (τ )

]
. (41)

where correlation function Rm (t) is computed on the CPM
signal samples as follows:

Rm (t) =
1
N

∫ NT

0
x (t) x∗ (t − mT ) dτ (42)

The algorithm was firstly proposed in [14], but it just consid-
ered the case of R1 (t). Then, in [15] all the m values were
used and the estimator (41) was provided. In the following

VOLUME 5, 2017 27379



X. Xie, Z. Xu: Comparison of Feedforward Synchronization Schemes for Full-Response CPM Signals

simulation, we use M = 10 which is the highest order used
in [15]. However, the scheme is proposed for MSK-type sig-
nals, and the algorithm converts h = 1/2 to h = 1 by square
operation. Therefore, the algorithm is suitable for the CPM
signals with h = 1. The algorithm estimates the parameters
by the calculation process not the searching process, so it is
most efficient among the three schemes.

D. SYNCHRONIZATION SCHEME EXTENDED TO
ARBITRARY h VALUES
The three schemes above are designed for the CPM signals
with h = 1. For arbitrary h values, the phase unwrapping
technique can be used to convert the arbitrary h to 1. For
the CPM signal in (1), the phase unwrapping is to obtain the
estimated phase

φ̂ (t) = Arg [s (t)]+ 2kπ (43)

where k is the proper integer. The standard phase unwrapping
algorithm in the discrete form can be implemented by Matlab
function ‘unwrap’ [21]. Under noise-free condition, we have

φ̂ (t) = φ (t) . (44)

Thenwe construct the newCPM signal with h = 1 as follows:

ŝ (t) = exp
[
jφ̂ (t) /h

]
. (45)

After the phase transform, the three schemes could be used
for ŝ (t) to estimate the synchronization parameters ν̂, θ̂
and τ̂ . Considering that the real frequency and phase have
been enlarged by 1/h times in the transform (45), the real
frequency and phase are v = hν̂ and θ = hθ̂ . The timing
offset is not changed in the transform, so the real timing offset
is τ = τ̂ .

Above all, the three schemes have been described. In the
sample-point (SP) scheme, we search the frequency and time
domains, and obtain the frequency and timing offsets simul-
taneously. In the mean-function (MF) scheme, we search the
frequency domain to find the frequency offset, and then cal-
culate the timing offset and carrier phase. In the correlation-
function (CF) scheme, we calculate the timing offset directly,
and then calculate the frequency offset. Since the searching
process is more time-consuming than the calculation process,
the CF scheme is most effective in computation complexity.
In the next section, we will compare the estimation perfor-
mances of the three schemes by numerical simulations.

IV. NUMERICAL SIMULATIONS
In this section, we show the simulation results for CPM
signals with rectangular (REC) and raised-cosine (RC) fre-
quency pulses. Though the schemes can be used to deal with
theM -ary CPM signals, we provide the numerical simulation
results for binary CPM.

For the discrete-time implementation, the sampling rate
fs = 4/T is used. The estimation interval corresponds toN =
50 symbols. The incoming waveform is first fed to a lowpass
filter to eliminate out-of-band noise, which is produced by

FIGURE 1. Performance comparison for REC pulse and h = 1. (a) Timing
MSE. (b) Frequency MSE. (c) Phase MSE.

the Matlab filter design function ‘fir1’. The order of the filter
is 20 and its bandwidth is h/T . There are 2000 Monte Carlo
simulations in each figure.
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FIGURE 2. Performance comparison for RC pulse and h = 1. (a) Timing
MSE. (b) Frequency MSE. (c) Phase MSE.

The normalized timing, frequency and phase mean square
errors (MSEs) as a function of Es/N0 are shown in the sim-
ulation. Pulse functions and h values are varied from one

FIGURE 3. Performance comparison for REC pulse and h = 0.5. (a) Timing
MSE. (b) Frequency MSE. (c) Phase MSE.

simulation to another. The tight bounds of the presented three
schemes are difficult to obtain, so we just compare the per-
formances with the modified Cramer–Rao bounds (MCRBs),
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which are usually used as benchmark in all the available
literatures. They are expressed by [3]

MCRB (τ ) =


T

2π2h2N (Es/N0)
, with REC

T
3π2h2N (Es/N0)

, with RC
(46)

MCRB (v) =
3

2π2T 2N 3 (Es/N0)
(47)

MCRB (θ) =
1

2N (Es/N0)
(48)

The estimation performances for CPM signals with REC
frequency pulse and h = 1 are shown in Fig. 1. The three
subfigures show the timing, frequency and phase estimation
performance. In Fig. 1a, the three schemes have the simi-
lar timing performances when the SNR is larger than 0dB,
and the timing MSEs are far from the MCRB about 3dB.
In Fig. 1b, the performances of the SP scheme and the MF
scheme are close to the MCRB in high SNR, but the perfor-
mance of the RF scheme is far from the MCRB. Since the RF
scheme calculates the frequency offset using the estimated
timing information, the error of the timing increases the error
of the frequency estimation. Fig. 1c shows the phaseMSEs of
the SP and MF schemes, and the RF scheme cannot estimate
the carrier phase, since the correlation function does not
include the carrier phase information. The performance of the
MF scheme is better than that of the SP scheme in low SNR.

The estimation performances for CPM signals with RC fre-
quency pulse and h = 1 are shown in Fig. 2. The conclusions
are similar to the case with REC pulse. It is because the
algorithms are designed for all the full-response CPM signals
with h = 1 regardless of the pulse type. Since the fre-
quency pulse makes no effect on the estimation performance,
we just consider the REC pulse in the following simula-
tion. Now we check the effect of h values on the estimation
performance.

Fig. 3 shows the performance for CPM signals with REC
pulse and h = 1/2. In this case, the phase unwrapping
technique is equivalent to the square operation. The SNR
threshold of the frequency estimation increases from 1dB
(h = 1) to 6dB (h = 1/2) due to the square operation.
However, the timing performance with h = 1/2 is closer
to the MCRB than that with h = 1. It is because the
MCRB increases with the decrease of h value. Moreover,
the decrease of the bandwidth of the pre-filter also reduces the
noise.

Fig. 4 shows the performances for CPM signals with REC
pulse and h = 0.6. Obviously, the SNR threshold increases
from 6dB to 11dB. Only when the SNR is larger than 11dB,
the estimation performances are close to the MCRB. It is
because phase unwrapping for general cases may encounter
the phase ambiguity of 2π in low SNR [21].
In Figs. 1-4, the simulation results indicate that all the three

schemes can provide the synchronization parameters for full-
response CPM signals with arbitrary h values. However, the
MF scheme is better than RF scheme in frequency estimation,

FIGURE 4. Performance comparison for REC pulse and h = 0.6. (a) Timing
MSE. (b) Frequency MSE. (c) Phase MSE.

and better than SP scheme in phase estimation. Therefore,
the MF scheme has the best performance among the three
schemes.
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V. CONCLUSION
In the paper, we summarize the joint frequency and timing
recovery schemes in the available literatures and conclude
three statistical characteristics for binary full-response CPM
signals with h = 1 and arbitrary frequency pulses.

Based on the three properties, the three synchronization
schemes are provided in the unified framework and extended
to full-response CPM signals with arbitrary h values by
phase unwrapping technique. The performances of the three
schemes are compared in the numerical simulations and the
mean-function scheme shows the best performance.
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