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ABSTRACT Internet of Things (IoT) technology has attracted much attention in recent years for its potential
to alleviate the strain on healthcare systems caused by an aging population and a rise in chronic illness.
Standardization is a key issue limiting progress in this area, and thus this paper proposes a standard model
for application in future IoT healthcare systems. This survey paper then presents the state-of-the-art research
relating to each area of the model, evaluating their strengths, weaknesses, and overall suitability for a
wearable IoT healthcare system. Challenges that healthcare IoT faces including security, privacy, wearability,
and low-power operation are presented, and recommendations are made for future research directions.

INDEX TERMS Biomedical engineering, body sensor networks, intelligent systems, Internet of
Things (IoT), communications standards, security, wearable sensors.

I. INTRODUCTION
Healthcare is an essential part of life. Unfortunately, the
steadily aging population and the related rise in chronic
illness is placing significant strain on modern healthcare
systems [1], and the demand for resources from hospital
beds to doctors and nurses is extremely high [2]. Evidently,
a solution is required to reduce the pressure on healthcare
systems whilst continuing to provide high-quality care to
at-risk patients.

The Internet of Things (IoT) has been widely identified
as a potential solution to alleviate the pressures on health-
care systems, and has thus been the focus of much recent
research [3]–[7]. A considerable amount of this research
looks at monitoring patients with specific conditions, such
as diabetes [5] or Parkinson’s disease [6]. Further research
looks to serve specific purposes, such as aiding rehabilitation
through constantmonitoring of a patient’s progress [7]. Emer-
gency healthcare has also been identified as a possibility by
related works [8], [9], but has not yet been widely researched.

Several related works have previously surveyed specific
areas and technologies related to IoT healthcare. An extensive
survey is presented in [10], with focus placed on commer-
cially available solutions, possible applications, and remain-
ing problems. Each topic is considered separately, rather
than as part of an overarching system. In [11], data mining,
storage, and analysis are considered, with little mention of
integration of these into a system. Sensor types are compared

in [12], with some focus placed on communications.
However, it is hard to draw an image of a complete system
from this paper. Finally, in [9], sensing and big data manage-
ment is considered, with little regard for the network that will
support communications.

This paper therefore makes a unique contribution in that
it identifies all key components of an end-to-end Internet of
Things healthcare system, and proposes a generic model that
could be applied to all IoT-based healthcare systems. This is
vital as there are still no known end-to-end systems for remote
monitoring of health in the literature.

This paper further provides a comprehensive survey of
the state-of-the-art technologies that fall within the proposed
model. Focus is placed on sensors for monitoring various
health parameters, short- and long-range communications
standards, and cloud technologies. This paper distinguishes
itself from the previous major survey contributions by consid-
ering every essential component of an IoT-based healthcare
system both separately and as a system.

Further original contribution is made by placing focus
on LPWANs, highlighting their unique suitability for use in
IoT systems. The upcoming licensed-band standards, such as
NB-IoT, are compared with the competing unlicensed-band
standards, with particular interest in suitability for healthcare
applications.

The remainder of this paper is structured as follows.
Section II investigates the field of Internet of Things, placing
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focus on the provision of healthcare using IoT technologies.
Section III examines common sensors that could be used in
an IoT healthcare systems, presenting several state-of-the-art
sensors that have been developed in recent research. Section
IV reviews communications standards for both short- and
long-term communications, including a thorough analysis
of the new NB-IoT standard for long-range machine-to-
machine (M2M) communications. Section V discusses cloud
technologies and the ways in which they can be used in
IoT healthcare systems. Section VI highlights areas requir-
ing further research and provides recommendations for this
research. Section IX concludes the paper, summarizing the
key findings and reiterating the areaswhere further research is
required.

II. HEALTHCARE AND THE INTERNET OF THINGS
The Internet of Things remains a relatively new field of
research, and its potential use for healthcare is an area still in
its infancy. In this section, the Internet of Things is explored
and its suitability for healthcare is highlighted. Several pio-
neering works towards developing healthcare IoT systems
are discussed. Building on the recurring themes from these
works, a generic and standardized model for future end-to-
end IoT healthcare systems is proposed, with the aim of
guiding the future development of such systems.

A. THE INTERNET OF THINGS
Many definitions of the Internet of Things exist, but at
the most fundamental level it can be described as a net-
work of devices interacting with each other via machine to
machine (M2M) communications, enabling collection and
exchange of data [7], [10], [11]. This technology enables
automation within a large range of industries, as well as
allowing for the collection of big data.

Hailed as the driver of the Fourth Industrial Revolu-
tion [13], Internet of Things technology has already found
commercial use in areas such as smart parking [14], precision
agriculture [15], and water usage management [16]. Exten-
sive research has also been conducted into the use of IoT for
developing intelligent systems in areas including traffic con-
gestion minimization [17], structural health monitoring [18],
crash-avoiding cars [19], and smart grids [20].

While the aforementioned fields appear vastly different
to healthcare, the research conducted within them verifies
the plausibility of an IoT-based healthcare system. Existing
systems in other fields have proven that remote monitoring
of objects, with data collection and reporting, are achievable.
This can therefore be expanded and adapted for monitoring
the health of people and reporting it to relevant parties such
as caretakers, doctors, emergency services, and healthcare
centers.

B. INTERNET OF THINGS HEALTHCARE
Research in related fields has shown that remote health
monitoring is plausible, but perhaps more important are the
benefits it could provide in different contexts. Remote health

monitoring could be used to monitor non-critical patients
at home rather than in hospital, reducing strain on hospital
resources such as doctors and beds. It could be used to provide
better access to healthcare for those living in rural areas,
or to enable elderly people to live independently at home
for longer. Essentially, it can improve access to healthcare
resources whilst reducing strain on healthcare systems, and
can give people better control over their own health at all
times.

In fact, there are relatively few disadvantages of remote
health monitoring. The most significant disadvantages
include the security risk that comes with having large
amounts of sensitive data stored in a single database, the
potential need to regularly have an individual’s sensors recali-
brated to ensure that they’re monitoring accurately, and possi-
ble disconnections from healthcare services if the patient was
out of cellular range or their devices ran out of battery. Fortu-
nately, these issues are all largely solvable, and are already
being addressed in the literature, as will be highlighted
throughout the remainder of this paper. As progress continues
to be made to reduce the disadvantages, IoT-based systems
for remote health monitoring are becoming an increasingly
viable solution for the provision of healthcare in the near
future.

As a result of the many benefits of remote health mon-
itoring, many recent researchers have identified the poten-
tial of the Internet of Things as a solution for healthcare.
In several works, IoT healthcare systems have been developed
for specific purposes, including rehabilitation, diabetes man-
agement, assisted ambient living (AAL) for elderly persons,
and more. While these systems have been designed for many
different purposes, they are each strongly related through
their use of similar enabling technologies.

Rehabilitation after physical injury has been a topic of
particular interest for several researchers. In [7], a system has
been developed that generates a rehabilitation plan tailored to
an individual based on their symptoms. The patient’s condi-
tion is compared with a database of previous patients’ symp-
toms, ailments, and treatments to achieve this. The system
requires a doctor to manually enter symptoms, and approve
the recommended treatment; in 87.9% of cases, the doctor
agreed completely with the system, and no modifications
were made to the treatment plan it proposed.

Meanwhile, in [21], mathematical models for the measure-
ment of joint angles in physical hydrotherapy systems are
proposed, enabling the improvement of joint movement to be
tracked through therapy.

In [6], existing IoT technologies are evaluated for their
usefulness in a system for monitoring patients suffering from
Parkinson’s Disease. Their work concludes that wearable sen-
sors for observing gait patterns, tremors, and general activity
levels could be used in combination with vision-based tech-
nologies (i.e. cameras) around the home to monitor progres-
sion of Parkinson’s Disease. Furthermore, the authors suggest
that machine learning could lead to enhanced treatment plans
in the future.
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A practical system for the monitoring of blood-glucose
levels in diabetic patients was proposed in [5]. This system
requires patients to manually take blood-glucose readings
at set intervals. It thereafter considers two kinds of blood-
glucose abnormalities. The first is abnormal blood-glucose
levels and the second is a missed blood-glucose reading.
The system then analyses the severity of the abnormality,
and decides who to notify; the patient themselves, caregivers
and family members, or emergency healthcare providers such
as doctors. This system is practical and has been proven
realizable, though could be further improved by automating
blood-glucose measurements.

A system aimed at detecting heart attacks was built using
ready-made components and a custom antenna in [22].
An ECG sensor is used to measure heart activity, which
is processed by a microcontroller. This information is for-
warded via Bluetooth to the user’s smartphone, where the
ECG data is further processed and is presented in a user
application. The authors identify that developing heart attack
prediction software would improve the system. Further
improvements could be made by measuring respiratory
rate, which is known to aid in the prediction of heart
attack [23].

SPHERE [4] is a system under continuing develop-
ment that utilizes wearable, environmental, and vision-based
(i.e. camera) sensors for general activity and health mon-
itoring purposes. The aim of this project it to allow older
and chronically ill patients to live in the comfort of their
own homes, while their health continues to be monitored.
This allows for intervention by caretakers and doctors if any
issues arise. Researchers working on the project have iden-
tified that machine learning would be beneficial for learning
about conditions and for making decisions about the patient’s
healthcare.

C. A MODEL FOR FUTURE INTERNET OF THINGS
HEALTHCARE SYSTEMS
After reviewing this wide range of existing IoT-based health-
care system, several requirements for the design of such
systems become apparent. Each of these papers emphasize
the use of sensors for monitoring patient health. All regard
wearable sensors, namely wireless and externally-wearable
sensors, as essential to their respective systems. Several
works [4], [6] also suggest the use of environmental or vision-
based sensors around the home. However, this restricts the
usefulness of the system to one physical location. It would
be preferable to implement all essential sensors as small,
portable, and externally wearable nodes. This would provide
patients with a non-intrusive and comfortable solution that
is capable of monitoring their health wherever they go. This
would make patients more receptive to using health monitor-
ing technology than they would be if implantable sensors or
cameras were required. Additionally, repairing or replacing
externally wearable nodes would be simple when compared
to implanted sensors or vision-based sensors installed in the
home.

Existing systems highlight that communications are also
essential for an Internet of Things healthcare system. In sev-
eral existing system models [5], [6], [22], short-range com-
munications, such as Bluetooth, are suggested for transferring
sensor data to a smartphone to be processed. Long-range
communications such as LTE can then be used to transfer
the processed information from the patient to the healthcare
provider, typically a doctor, through SMS or the Internet. The
key limitation of this is that smartphones typically have lim-
ited battery life, requiring frequent recharging; a patient with
a flat battery would be a patient disconnected from health-
care providers. A low-powered node designed specifically for
managing healthcare information would be preferable.

Cloud storage capable of storing high volumes of varying
data was also shown to be essential to a big data healthcare
system by several previous works [9], [11], [24]. If even a
thousand people wore a single pulse sensor that communi-
cated hourly with a cloud storage database via an LPWAN,
there would be 168,000 new data points per week. This
number increases drastically as more people wear sensors
connected to the cloud storage framework, and as more kinds
of sensors are introduced. Using the big data that will rapidly
form and continue to grow in cloud storage, machine learning
algorithms can be implemented in the high-computing envi-
ronment of the cloud. These algorithms could be designed to
mine through the large amount of data, identify previously
unknown disease trends, and provide diagnostics, treatment
plans, and much more.

Based on these recurring trends in the literature to date, we
propose and recommend a four-part model as highlighted in
Figure 1 that will aid in the development of future Internet of
Things healthcare systems, discussed below. In the following
sections, each of the components of the proposed model are
discussed in further detail. Existing works are presented and
evaluated in the relevant sections. Strengths and weaknesses
of the current technologies are presented, and recommenda-
tions for future directions of research are provided.

1) WEARABLE SENSOR & CENTRAL NODES
Wearable sensor nodes are those that measure physiological
conditions. Recommended sensors are those that measure the
vital signs - pulse, respiratory rate, and body temperature -
as these are the essential signs for determination of critical
health. Further sensors that could be implemented are blood
pressure and blood oxygen sensors, as these parameters are
often taken alongside the three vital signs. Special-purpose
sensors such as blood-glucose, fall detection, and joint angle
sensors could also be implemented for systems targeting a
specific condition.

The central node receives data from the sensor nodes.
It processes this information, may implement some decision
making, and then forwards the information to an external
location. A dedicated central node would be preferred to a
smartphone as battery life could be improved by having only
functionality relevant to a healthcare IoT system.
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FIGURE 1. Overview of the proposed model.

2) SHORT-RANGE COMMUNICATIONS
For sensors to communicate with the central node, a short-
range communications method is required. There are sev-
eral important requirements to consider when choosing a
short-range communications standard, including effects on
the human body, security, and latency.

The chosen method should have no negative effects on the
human body, as any such effects could cause additional health
concerns for patients. It should also provide strong security
mechanisms to ensure that sensitive patient data cannot be
accessed by an attacker. Finally, low-latency is essential for
time-critical systems, such as a system that monitors critical
health and calls for an ambulance if the need arises. In such
systems, time delays could be the difference between life
and death. In applications that are not time-critical, low-
latency would not need to be prioritized as highly, but is still
preferable.

3) LONG-RANGE COMMUNICATIONS
Data obtained by the central node is not useful unless some-
thing can be done with it. This data should be forwarded to a
databasewhere relevant parties (such as caretakers or doctors)
can securely access it. There are again several considera-
tions when selecting a suitable long-range communications
standard for use in a healthcare system, including security,
error correcting capabilities, robustness against interference,
low-latency, and high availability.

As with short-range communications, strong security is
important to ensure that sensitive patient data remains pri-
vate and cannot be altered or imitated. Low-latency is again
important in time-critical applications, such as emergency
healthcare, where delays in communication could have detri-
mental effects on patients. High-quality error correcting capa-
bilities and significant robustness against interference are

essential, as these ensure that the message sent is the same
as the message received. This is important in all healthcare
applications, but particularly in emergency situations. Lastly,
high availability is essential to ensure that messages will
be delivered at all times, regardless of where the patient is
physically located. Again, this is of particular importance to
time-critical applications, but is preferable for all systems.

4) SECURE CLOUD STORAGE ARCHITECTURE &
MACHINE LEARNING
Medical information obtained from patients must be stored
securely for continued use. Doctors benefit from knowing a
patient’s medical history, and machine learning is not effec-
tive unless large databases of information are available to
it. Based on the literature, cloud storage is the most viable
method for storing data. However, providing accessibility
for healthcare professionals without compromising security
is a key concern [25], [26] that should be addressed by
researchers developing healthcare IoT systems.

Additionally, machine learning has repeatedly been iden-
tified in the literature as a means for improving health-
care systems [4], [6], [7], though it has not been widely
explored. Machine learning offers the potential to iden-
tify trends in medical data that were previously unknown,
provide treatment plans and diagnostics, and give recommen-
dations to healthcare professionals that are specific to individ-
ual patients. As such, cloud storage architectures should be
designed to support the implementation of machine learning
on big data sets.

D. POTENTIAL USE CASES FOR THE PROPOSED MODEL
The generic model we have proposed for guiding develop-
ment of future Internet of Things healthcare systems has
a number of use cases. To provide context, this subsection
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discusses several of these use cases, which include aiding
rehabilitation, assisting management of chronic conditions,
monitoring changes in people with degenerative conditions,
and monitoring critical health for the provision of emergency
healthcare.

Following our proposed model, a rehabilitation system
for knee injuries could be developed by using wearable
accelerometer sensors on either side of the knee, to allow for
the position and angle of the knee to be calculated. These
measurements could be recorded during several activities,
such as normal walking and rehabilitation exercises. They
could be communicated via short-range communications to a
comfortable, wrist-wearable central node, which could then
forward information to the cloud via long-range communi-
cations. In the cloud, a record of the patient’s progress will
continue to expand with each received message. Machine
learning algorithms could be implemented to identify the
patient’s progress, predict when they will be fully rehabili-
tated, and determine whether any exercises are working better
than others. This system could easily be adapted for other or
additional injuries by modifying which wearable sensors are
used.

Our model could also be used to develop a system capable
of assisting with the management of chronic conditions such
as hypertension. Blood pressure could bemonitored at several
locations on the body at set intervals throughout the day and
communicated to the cloud via a wrist-worn central node.
Again, a comprehensive record of the patient’s blood pressure
could be built and machine learning could be used to identify
trends such as when the patient’s blood pressure is highest.
This information could also be used to determine optimal
times for the patient to take any medication that they may
require to manage their condition, and remind the patient of
that using a buzzer or alarm on the central node.

Changes in people with progressive conditions such as
Parkinson’s Disease could also be monitored using a sys-
tem designed in accordance with our model. Symptoms of
Parkinson’s Disease include slowed movement, tremors, gait
problems, and balance problems [27]. Using a series of wear-
able accelerometers, sensors could be developed to measure
each of these parameters. Readings could be taken at set
intervals every day and forwarded to the wrist-worn central
node, which in turn forwards the data onto the cloud. As the
data from the patient begins to grow, machine learning can
be used to identify the rate at which symptoms are worsening
for the patient. A doctor could also add records of which
treatments are being used, and machine learning could be
used to identify which treatments the patient’s condition has
responded the best to.

Finally, critical health could be monitored using a system
comprised of wearable sensors that monitor vital and other
important signs, including pulse, respiratory rate, body tem-
perature, and blood pressure. Measurements can be taken
regularly, and if any of these parameters fall below the
known healthy thresholds then the central node can forward
the information to the cloud, which can be used to notify

emergency services. Readings at the time of the emergency
can be recorded in the patient’s health record in the cloud, and
the doctor can append information regarding their diagnosis.
As more and more people suffer from emergency health
conditions and have diagnoses added to their files, machine
learning could begin to be used to make connections between
symptoms and possible diagnoses. This information could
then be provided to responding paramedics, ensuring that
patients receive the most appropriate care for their condition,
and rapidly. The authors intend to work on this system in their
future works.

These are only a few of the possible use cases for sys-
tems that could be developed based on the proposed model.
Nonetheless, these use cases highlight the versatility of the
model, and the number of different situations it could be used
to managed.

III. WEARABLE HEALTHCARE SYSTEMS
WBANs have been identified as a key component of a
healthcare system founded on Internet of Things technology,
and as such the development of accurate sensors with low
form factor are essential for the successful development of
such a system. In this article, we focus on sensors that are
non-obtrusive and non-invasive; we exclude sensors such as
implantables. Considered are five fundamental sensors - three
for monitoring the vital signs of pulse, respiratory rate, and
body temperature, and a further two for monitoring blood
pressure and blood oxygen, both commonly recorded in a
hospital environment.

A. PULSE SENSORS
Perhaps the most commonly read vital sign, pulse can be
used to detect a wide range of emergency conditions, such as
cardiac arrest, pulmonary embolisms, and vasovagal syncope.
Pulse sensors have been widely researched, both for medical
purposes and for fitness tracking.

Pulse can be read from the chest, wrist, earlobe, finger-
tip, and more. Earlobe and fingertip readings provide high
accuracy, but are not highly wearable. A chest-worn system
is wearable, but wrist sensors are generally considered most
comfortable for a long-term wearable system [28].

Commercially, several fitness tracking chest straps and
wrist watches are available with pulse measurement func-
tionality. These include HRM-Tri by Garmin [29], H7 by
Polar [30], FitBit PurePulse [31], and TomTom Spark
Cardio [32]. However, these companies all disclose that their
devices are not for medical use and should not be relied upon
for detecting health conditions. As such, the sensing systems
employed by these devices cannot be directly implemented
into a critical health monitoring system.

Much research has been conducted into suitable methods
for sensing pulse. Sensor types developed, used, and analyzed
in recent works include pressure, photoplethysmographic
(PPG), ultrasonic, and radio frequency (RF) sensors.

PPG sensors operate by an LED transmitting light into the
artery, with a photodiode receiving the amount not absorbed
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FIGURE 2. Photoplethysmographic pulse sensor.

by the blood, as shown in Figure 2. Changes in the amount of
light can be recorded and a pulse rate can thus be determined.

In [28], PPG sensors are used to measure pulse, pulse
rate variability, and blood oxygen in one small wrist-wearable
sensor. As motion affects the accuracy of pulse readings from
PPG sensors, an accelerometer is used to check for move-
ment. When motion is high, the device goes into a low power
state and does not record pulse. This is not entirely suitable
as pulse may be relevant when motion is high, such as when a
person is seizing or suffering cardiac issues during exercise.
Improving the accuracy of pulse sensors duringmotionwould
be preferred to disregarding readings when movement levels
are high.

In [33], the effects of motion on PPG sensors are reduced
by using two different LED light intensities and comparing
the amount of light received at the photodiode. Significant
improvement in signal quality is seen as motion artefacts are
greatly reduced through this technique.

Pressure sensors aim to mimic a healthcare professional
manually reading the radial pulse by pressing down with their
fingers. As shown in Figure 3, the sensor is placed firmly
against the wrist, and pressure is continuously measured to
acquire a pulse waveform.

FIGURE 3. Pressure-based pulse sensor.

In [34], a flexible and highly-sensitive pressure sensor for
pulse detection is developed and tested, showing promising
results. However, increasing the sensitivity to better detect
pulse also increases the amount of noise that is detected
due to movement of the wearer. This sensor was tested in
at-rest conditions, and further research would be required to
determine that it performed well during motion.

Pressure sensors and PPG sensors are combined
in [35] and [36], where pulse sensor modules are developed
with arrays of nine PPG sensors and one pressure sensor.
Pulse is taken from multiple points on the wrist, providing
clear pulse readings and the potential to use these readings
for diagnostics of certain diseases such as diabetes.

Diagnostics through pulse sensing is also investigated
in [37], where pressure, PPG, and ultrasonic sensors are
compared. Reasonable accuracy was achieved with all three,
but the authors concluded that specific diseases required
diagnosis using different sensor types; pressure was found to
be best for arteriosclerosis, while ultrasonic was superior for
diabetes.

An et al., designed a non-conventional pulse sensor using
an RF arraymodule in [38], with the aim of measuring several
locations on the wrist in case the received pulse signal at
one point becomes noisy due to movement. Reasonable pulse
readings were achieved when compared to a reference signal,
but still do not appear as clear as those obtained with the tradi-
tional sensor types. This type of pulse sensor shows promise,
but further work is clearly required to make it reliable in a
critical healthcare scenario.

Based on theseworks, it is strongly recommended that PPG
sensors are used for pulse sensing. These have repeatedly
been proven to be effective for measuring pulse rate, and
techniques have already been developed to algorithmically
reduce the impacts of noise on the signal quality.

B. RESPIRATORY RATE SENSORS
Another of the vital signs is respiratory rate, or the number
of breaths a patient takes per minute. Monitoring respiration
could aid in the identification of conditions such as asthma
attacks, hyperventilation due to panic attacks, apnea episodes,
lung cancer, obstructions of the airway, tuberculosis, and
more.

Due to the importance of respiration, many previous
works have developed sensors for measuring respiratory rate.
In inspecting the previous works, several types of respiratory
rate sensor emerge. The first is a nasal sensor based on a
thermistor, as is used in [39]. The principle that these sensors
are based on is that air exhaled is warmer than the ambient
temperature. As such, the sensor uses the rise and fall of tem-
perature to count the number of breaths taken. This is shown
to work reasonably well, but accuracy may be compromised
by other sources of temperature fluctuations - for example
if worn by a chef working in a kitchen. It is also not highly
wearable, as it is obstructive and easily noticeable.

Echocardiogram (ECG) signals can also be used to
obtain respiration rate. This is called ECG Derived Respi-
ration (EDR), and is used in [40] to determine respiration
patterns and detect apnea events. This method reads respira-
tory rate reasonably well, but is again limited by the wear-
ability. ECG contacts are uncomfortable and would likely
cause irritation to the skin if used continuously. Additionally,
ECG contacts are not reusable and would need to be regularly
replaced.
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Respiratory rate can also be calculated using a microphone
to detect respiration, as was done in [41]. In this study,
focus was placed on detecting wheezing - a symptom com-
mon in asthmatics. The limitation of using a microphone
is that it would be extremely susceptible to any external
noise, and would therefore not be suitable as a long-term
wearable.

One study [42] developed a fiber optic sensor in an elastic
substrate, that was sensitive enough to measure vibrations
caused by respiration. This was shown to work in a single
test, but it is not known whether it would work well under
all conditions. It is likely that this sensitive material would be
susceptible to noise from other sources of vibration, including
walking. Further testing should be conducted.

A pressure-type sensor was developed in [43]. Two capac-
itive plates are placed in parallel, with one resting on the
abdomen. During breathing, the plates move further apart
and then closer together during inhalation and exhalation
respectively, allowing for calculation of respiratory rate. This
study showed a 95% confidence in respiratory rate calcula-
tions when compared to a nasal sensor. This is fairly accurate,
and far more wearable than the nasal sensor it was compared
to. However, the nature of a pressure sensor may mean it is
susceptible to noise if it is affected by external pressures, such
as while walking into wind.

A common method of measuring respiratory rate is to use
a stretch sensor, as was done in [44]–[46]. Stretch sensors are
those where properties change in response to the application
of tensile force, such as being stretched during inhalation.

In [44], the designed sensor was made from a ferroelectric
polymer transducer, which generated a charge when a tensile
force was applied.Measuring the changes in this charge allow
for calculation of respiratory rate. This sensor appeared to
obtain a clear signal, but accuracy was not verified through
comparison with respiratory rate calculated by other means.
In [45] and [46], the respiratory rate sensors were based on
changes in resistance. When a tensile force is applied to the
sensor, resistance increases. The changes in voltage caused
by varying resistances can be used to calculate the breathing
rate.

Each of the stretch sensor types was shown to be effective
in calculating respiratory rate, but Atalay et al. [45] admit
that motion artifacts were present during walking and other
movements. Additionally, in [46] it was found that breathing
was accurate within 3.3 breaths per minute when sitting at
a desk; the margin of error increased when movement was
introduced. Therefore, a limitation of these sensors is that
other movements can cause tensile force to be applied to the
sensor in such a way that the sensor mistakes the movement
for breathing.

Evidently, many different sensor types exist for measuring
respiratory rate. The main factor in choosing a sensor type
for a WBAN thus becomes the wearability. Therefore, stretch
sensors are strongly recommended for implementation into
future systems. Future work should focus on developing algo-
rithms and techniques to improve robustness against motion

using these sensors, rather than on developing new sensors
entirely.

C. BODY TEMPERATURE SENSORS
The third vital sign is body temperature, which can be used
to detect hypothermia, heat stroke, fevers, and more. As such,
body temperature is a useful diagnostics tool that should be
included in a wearable healthcare system.

Recent works surrounding the measurement of body tem-
perature all use thermistor-type sensors. In [46] and [47],
the common negative-temperature-coefficient (NTC) type
temperature sensors were used, while positive-temperature-
coefficient (PTC) sensors were considered in [48] and [49].
In all studies, the thermistors were shown to measure a
suitable range of temperatures for monitoring the human
body, with acceptable levels of error. Therefore, it is strongly
recommended that these sensor types continue to be used by
future system designers.

The accuracy of temperature sensing is limited by how
closely the sensor can be placed to the human body. As such,
several works [48], [49] focused on developing sensors
printed onto thin, flexible polymers with adhesive backing
that could be attached directly to human skin. Whilst this
is an interesting advancement, the work in [46] shows that
temperature can also be measured with relative accuracy
using a temperature sensor embedded in textiles. Thus, it is
recommended that system designers should use textiles to
hold temperature sensors until electronics printed on flexible
polymer can be more easily manufactured.

D. BLOOD PRESSURE
Whilst not a vital sign itself, blood pressure (BP) is fre-
quently measured alongside the three vital signs. Hyperten-
sion (high BP) is a known risk factor for cardiovascular
disease, including heart attack. It is also one of the most com-
mon chronic illnesses, affecting 32% of adult Australians.
Of those affected, 68% had uncontrolled or unmanaged
hypertension [50]. As such, incorporating BP into a WBAN
for healthcare would provide vital information for many
patients.

Nonetheless, designing a wearable sensor for continuously
and non-invasivelymonitoring blood pressure remains a chal-
lenge in the field of healthcare IoT. A significant number of
works [51]–[54] have attempted to obtain an accurate esti-
mate of BP through calculation of pulse transit time (PTT) -
the time taken between pulse at the heart and pulse at another
location, such as the earlobe or radial artery. Another work
endeavored to measure this property between the ear and
wrist [55], while another looked to calculate it between the
palm and the fingertip of a hand [56]. PTT is known to be
inversely proportional to systolic blood pressure (SBP), and is
typically determined using an electrocardiogram on the chest
and a PPG sensor on the ear, wrist, or alternate location.

The outcomes of each of these works indicate that the use
of PTT to calculate BP is not yet suitable. PTT is depen-
dent on several other factors, including arterial stiffness and
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blood density [54]. In ideal conditions, where devices had
been calibrated to the individual and the individual remained
relatively still during testing, reasonable results were acquired
by the aforementioned studies that utilized one measurement
at the chest and another at the wrist. Measurements taken
between the ear andwrist were shown to be inaccurate in [55].
Additionally, PTT was measured with reasonable accuracy
between the palm and fingertip in [56], but the study did
not manage to convert this to blood pressure. This should
be investigated further, given some promise was shown in
measuring PTT and given that the design is the most wearable
option for monitoring blood pressure presented in this survey.
For systemsmeasuring between the heart and wrist, one study
identified that regular recalibration of devices would likely be
required as the human body changes over time [51].

Another issue with these types of systems is that, while
non-invasive, they are still obstructive. Usually a chest-
wearable ECG is required in addition to some other device,
and the connection between them may be wired. One
study [55] identified this issue and opted to use two eas-
ily wearable PPG sensors - one on the earlobe, and one
on the wrist - to estimate pulse arrival time (or time taken
to travel) between these locations and thus estimate blood
pressure. The results were promising, showing reasonable
measurements for healthy subjects in different positions (such
as sitting and standing). However, the measurements taken
were not compared to measurements from a traditional cuff-
based sphygmomanometer. Such comparison would aid in
analyzing the accuracy of the PPG-based system.

While no system has yet been developed for accurately
measuring blood pressure continuously using a comfortably
wearable device, this is a field worthy of further research. It is
suggested that this could be achieved by developing a device
that utilizes two or more PPG sensors placed along the arm to
calculate PTT. Blood pressure is certainly a valuable param-
eter in healthcare, and the ability to monitor it continuously
would greatly improve the quality of healthcare that could be
provided through a WBAN-based system.

E. PULSE OXIMETRY SENSORS
Pulse oximetry measures the level of oxygen in the blood.
Like blood pressure, blood oxygen level is not a vital sign,
but does serve as an indicator of respiratory function and
can aid in diagnostics of conditions such as hypoxia (low
oxygen reaching the body’s tissues). As such, pulse oxime-
try is a valuable addition to a general health monitoring
system.

Pulse oximeters measure blood oxygen by obtaining PPG
signals. Usually, two LEDs - one red, one infrared - are
directed through the skin. Much of this light is absorbed by
the hemoglobin in the blood, but not all. The amount of light
not absorbed is measured by receiving photodiodes, and the
difference between the received lights is used to calculate
blood oxygen. As highlighted in Figure 4, LED lights can
either be passed through an appendage (normally a finger)
to a photodiode on the opposite side, or can be directed at an

FIGURE 4. Absorbance-mode vs. reflective-mode PPG sensors for pulse
oximetry.

angle so that some light reflects to a photodiode on the same
side of the appendage. These are called absorbance-mode and
reflectance-mode PPG sensors respectively.

Classically, pulse oximeters are worn as a finger clip wired
to a medical monitor. Several recent works have attempted
to make more portable devices. In [57], a low-power pulse
oximeter is designed with the aim of improving wearabil-
ity. Two techniques are used to reduce power consumption.
The first - named ‘‘minimum SNR tracking’’ - continuously
calculates the current signal-to-noise-ratio (SNR) and adjusts
the length of time that the LED is in the ‘‘on’’ state for
accordingly - the higher the SNR is, the longer that the LED
needs to be on to gain accurate readings. The second, named
‘‘PLL tracking’’, estimates when the peaks and troughs of
the PPG signal are likely to occur, and samples only at these
times to acquire this important information. Up to 6x less
power was consumed through implementing both techniques,
and the worst error recorded was a 2% difference between
actual andmeasured blood oxygen levels. This is a significant
contribution towards making pulse oximeters more wearable,
but reductions in the level of error are desirable.

An in-ear reflective pulse oximeter was designed in [58].
This was designed to detect blood oxygen levels even when
the patient is suffering from shock, hypothermia, or other con-
ditions that may cause blood centralization and lead to pulse
being undetectable at the fingertips. The oximeter sits inside
the ear canal without sealing it, ensuring there is no disruption
to hearing. Reasonable accuracy in measuring blood oxygen
levels was achieved in clinical testing on surgical patients,
but the authors concluded that their sensor should be used
in addition to finger pulse oximeters, not as an alternative.
This is a sensible idea for wearable healthcare systems that
are providing remote care, as it would be preferable to detect
when centralization is occurring.

The most wearable option would be a wrist-worn sensor, as
many people are accustomed to wearing bracelets or watches
and would not find this uncomfortable. In [59], a reflective
pulse oximeter was designed to be worn on the wrist. The
design is concave in shape, blocking out much external light
and improving robustness against noise. The trade-off is that
it makes the device larger, but size reductions are then made
by performing data processing off-node. Overall, it is more
wearable than other designs, but would still benefit from
being miniaturized and made more wearable. Additionally,
it could be used to detect pulse and skin temperature as well -
combining three essential sensors into a single, comfortably
wearable node.
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Overall, the works in improving pulse oximetry do not
focus on finding new means to measure blood oxygen sat-
uration, but instead focus on making wearable devices that
utilize the well-known existing techniques. Research should
continue in this direction, focusing on wrist-wearable pulse
oximetry.

F. OTHER WEARABLE SENSORS FOR HEALTHCARE
Aside from the sensors that measure critical health parame-
ters, there are several special-purpose wearable sensors that
may be useful in systems focused on monitoring a specific
condition. Echocardiograms (ECGs) can be used to evaluate
heart health, and several wearable sensors have been devel-
oped to acquire these signals. In [60], an armband-based
ECG sensor was developed and measures with reasonable
accuracy. ECG sensors have also successfully been devel-
oped for integration in helmets [61] and more traditional
chest-straps [62].

The helmet in [61] also features an electroencephalogram
(EEG) sensor. EEGs measure brain activity, and could gener-
ally be used to monitor seizures, sleep disorders, and progress
after a head injury. Other EEG systems have been developed
for specific purposes, such as for detecting driver drowsi-
ness [63] or stress management [64]. Both systems measure
EEG through a relatively wearable headband.

Fall detection can be useful for monitoring elderly people,
as they are particularly prone to falls and resulting injuries.
In [65], a tri-axial accelerometer inside a smartphone is used
by machine learning algorithms to classify the user’s posture,
which the best algorithms showing classification accuracy
of 99.01%. A related study found that the classification algo-
rithms used for posture detection were much less accurate
when performing fall detection [66], suggesting that further
training or alternate algorithms may be required for this
purpose. In a more recent work on fall detection, a wearable
camera was used in [67], with rapid changes in scenery used
to detect falls. This showed an accuracy of 93.78% and 89.8%
in indoor and outdoor environments respectively. In their
earlier work [68], accelerometer data was combined with an
earlier version of their wearable camera system, showing 91%
accuracy in detecting falls. An accelerometer, a gyroscope,
and a magnetometer were used to accurately detect falls
in [69], with the authors then adding a barometer to evenmore
accurately detect changes in height in [70]. The latter work
showed that fall detection was performed with no lower than
99.38% accuracy and up to 100% accuracy across a series
of tests. This is an exceptional result, and suggests that this
fall detection system could be implemented into healthcare
applications immediately.

Gait detection can also be useful in monitoring the elderly,
as well as those with specific conditions such as Parkinson’s
Disease (PD). Gait detection for those recovering from stroke
or suffering from PD was considered in [71], with foot-
worn sensors designed tomeasuremany parameters including
step size and walking speed. A sensor for gait detection in
lower limb amputees was developed in [72], with the aim of

future use in controlling lower limb prosthetics. Detection of
gait events, rather than general gait patterns, has also been
considered in several works. In [73], three accelerometers are
placed on the hip, knee, and ankle of advanced Parkinson’s
Disease sufferers. Features are extracted from the data, and
an anomaly detection scheme is used successfully detect
freezing of gait, a common Parkinson’s symptom that causes
a temporary loss of motor function and regularly leads to
falls. Detection of any gait anomaly is investigated in [74],
where a waist-worn device comprised of a microcontroller
and tri-axial accelerometer is used to monitor gait. Through
the implementation of feature extraction and an advanced
anomaly detection algorithm, a system is created that can
detect approximately 84% of gait anomaly periods that last
for 5 seconds. Accuracy was higher when detecting severe
anomalies.

People living with diabetes are considered in several works
aiming to develop a non-invasive blood glucosemonitor, none
of which currently exist on the market. In [75], an optical
sensor measures blood glucose levels through the fingertip,
while in [76] an ultrawide band microwave technique is
used for blood glucose level detection in an earlobe-attached
sensor.

These sensors are not the only special-purpose sensors that
have been researched or could be researched, but they are
some of the key types. They are applicable to many common
diseases or conditions, and should be considered for inclusion
by designers of systems that will focus on monitoring of
specific ailments.

IV. COMMUNICATIONS STANDARDS
Communications related to Internet of Things for healthcare
can be classified into two main categories: short-range com-
munications, and long-range communications. The former is
used to communicate between devices within the WBAN,
whilst the latter provides connection between the central
node of the WBAN and a base station (such as a healthcare
provider). In this paper, both types of communications are
considered with equal importance.

A. SHORT-RANGE COMMUNICATIONS
In the context of wearable healthcare systems, short-range
communications are often used between nodes, particularly
between sensor nodes and the central node where data pro-
cessing occurs. Although short-range communications stan-
dards can be used for other purposes (i.e. developing mesh
networks for smart lighting), this survey focuses on the pur-
pose of developing a small WBAN that is comprised of only
a few sensors and a single central node.

Many short-range communications standards exist, but
perhaps the most commonly used ones in IoT are Bluetooth
LowEnergy (BLE) and ZigBee. The key features of these two
standards are highlighted in Table 1, and this section further
analyzes these standards and considers their suitability for
implementation into an IoT healthcare system.
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TABLE 1. Comparison of short-range communication standards.

1) BLUETOOTH LOW ENERGY
BLE was developed by the Bluetooth Special Interest
Group (SIG) to provide an energy-efficient standard that
could be used by coin-cell battery operated devices, including
wearables. It also aimed to enable IoT, connecting small
peripheral devices to processing devices such as smart-
phones [77].

BLE is used in a star topology, which is suitable for health-
care applications. The central node would act as the center of
the star topology, with sensors linked to it. The sensors will
have no need to communicate with each other directly.

The range for BLE is 150m in an open field [77]; it would
be much less in non-ideal conditions. It also has a low latency
of 3ms, and a high data rate of 1Mbps [78]. The range is
clearly sufficient for use in a healthcare WBAN where nodes
are physically proximal, and the extremely low latency is
ideal for applications such as emergency health.

BLE operates in the 2.4GHz band, a band also used by
classic WiFi and ZigBee. This may subject it to some noise,
but robustness to interference is implemented through fre-
quency hopping across carefully selected channels and a
24-bit cyclic redundancy check (CRC) [79]. This method
makes BLE robust enough to noise for use in a healthcare
system.

Power consumption in BLE is extremely low. In [77], it is
shown that a 180 mAH coin cell battery could run a BLE chip
for 18 continuous hours, making 21.6 million transactions.
However, if the chip was powered off when not needed,
battery would last much longer. If a health sensor transmitted
its data every 30 seconds (or 2,880 times per day), then
the battery could theoretically run the BLE chip for around
20.5 years if not for the fact that it would die from self-
depletion well before then. With careful hardware design and
low-energy programming, BLE would clearly be suitable for
healthcare applications.

Security has been implemented in a variety of ways for
BLE. Firstly, there are four possible pairing models. The
newest and most secure of these, LE Secure Connections,
implements a numeric comparison method and an Elliptical

Curve Hellman-Diffie (ECHD) algorithm, which uses a pub-
lic key and private keys unique to each device, to secure
key exchange. Two keys are exchanged between master and
slave - a Connection Signature Resolving Key (CSRK) and
an Identifying Resolving Key (IRK). The former is used to
provide authentication for unencrypted data, whilst the latter
provides privacy and the device’s identity [80]

Encryption is also available in BLE, using Advanced
Encryption Standard (AES). Specifically, a 128-bit AES
cypher is used to protect the data from potential
attackers [80].

Man-in-the-middle, eavesdropping, and identity attacks
are effectively protected against by the security features of
BLE. This is crucial in a healthcare environment where sen-
sitive patient data is being exchanged.

Classic Bluetooth has previously been used in IoT for
healthcare works including a blood pressure monitoring sys-
tem [81] and a system for early detection of Alzheimer’s
disease [82], as it has been optimized for IoT; unlike Classic
Bluetooth.

Overall, BLE is extremely well suited to healthcare appli-
cations. It is secure and features good range, low latency,
low power consumption, and robustness to interference. This
standard is highly recommended to designers, as it is cur-
rently the most suitable standard for implementation into
wearable healthcare systems.

2) ZIGBEE
The ZigBee standard was designed by the ZigBee Alliance,
specifically for providing low-cost, low-power networks for
M2M communications. It builds on the IEEE 802.15.4 phys-
ical standard [83]. It is commonly known as the standard for
mesh networks, but it can also be used in the star topology
required of aWBANwith one central node and many sensing
nodes.

Different ZigBee modules provide different characteristics
in terms of range, data rate, and power consumption. The
simplest XBee has a range of up to 30m in an urban environ-
ment, and outputs only 1mW of power for transmission [84].
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The XBee Pro has a higher range of 90m in the same condi-
tions, but the transmit power output is significantly higher at
63mW [84], the XBee Pro 900 XSC can reach up to 610m in
an urban environment, but with 250mW of power being used
to transmit [85]. There are ZigBee-based solutions for a wide
variety of applications, but for the use case of a healthcare
WBAN the XBee 1mW would be suitable. Only a small
range is needed for on-body communications, so choosing the
lowest-power solution is preferable.

Data rates are also variable. XBee and XBee Pro have a
data rate of up to 250kbps [84], while the XBee Pro 900 XSC
has a maximum data rate of only 10kbps [85]. Clearly, the
latter module has sacrificed data rate in addition to power effi-
ciency to achieve its long range. In a healthcare environment,
it would be preferable to opt for a higher data rate, as this will
reduce the latency in the system and ensure critical health data
is delivered timely.

ZigBee can operate at a range of frequencies, includ-
ing 868MHz, 900MHz, and 2.4GHz bands, depending on
the module chosen. Each of these bands faces interference.
The 2.4GHz band is shared by Bluetooth and WiFi, while
many long-range communications systems utilize the unli-
censed 868MHz and 900MHz bands in Europe and America
respectively. ZigBee uses CSMA-CA to reduce collisions,
and implements re-transmission if messages sent are not
acknowledged [86].

Several security features are provided by ZigBee, though
most are optional and must be enabled by the network devel-
oper. ZigBee’s security model is largely based on 128-AES
encryption, and offers types of security keys - a link key,
a network key, and a master key. The network key is manda-
tory. It is shared by all devices on the network, and is a
network-layer security mechanism that cyphers all transmis-
sions within the network. The link key is optional, and is used
to secure communications at the application layer. Master
keys are also optional, and are used to secure the creation and
sharing of link keys [87].

Despite these security measures, a recent study [88] found
that it was relatively easy to exploit a ZigBee network during
a device join, by sniffing the link key being exchanged. This
compromises the network key and thus the entire network.
The researchers in this study did identify that the security
flaws were not to do with ZigBee itself, but rather with
the way that manufacturers implemented key exchange and
initialization. If ZigBee is to be implemented in healthcare
systems, only ZigBee modules with all optional security
mechanisms and robust key management should be used.

ZigBee has already been used in several works relat-
ing to healthcare. In [89], a system that detects wandering
Alzheimer’s patients and alerts their caregivers was devel-
oped using a ZigBee mesh network. In [62], a wearable
ECG sensor was developed using ZigBee to communicate
with a central monitoring device. Improving ZigBee for use
in biomedical application was considered in [90], where
a low-power transceiver was developed with robustness to
interference.

Overall, ZigBee is reasonably well-suited to healthcare
applications. It provides robustness to interference and sev-
eral security mechanisms. Several implementations are pos-
sible to optimize range, data rate and power consumption
for specific applications. XBee modules were examined
as a case study, and it was found that low-power, high
data rate modules existed with suitable range for healthcare
applications.

The main drawback of using ZigBee is that key exchange
can be compromised unless implemented extremely well by
the manufacturer. This could pose a risk to healthcare sys-
tems where sensitive patient data is being exchanged regu-
larly. Additionally, ZigBee is not commonly implemented in
devices such as smartphones, while BLE typically is. This
makes it less compatible with existing devices, and there-
fore it is suggested that it would be better suited to fixed-
location, standalone purposes such as home automation than
it is to wearable healthcare systems. It is therefore recom-
mended that system designers prefer BLE for wearable sen-
sors over ZigBee, particularly in applications where privacy is
critical.

B. LONG-RANGE COMMUNICATIONS
Low-Power Wide-Area Networks (LPWANs) are a subset of
long-range communications standards with high suitability
for IoT applications. The range of a LPWAN is generally
several kilometers, even in an urban environment. This is
significantly longer than the range of traditional IoT com-
munications types such as WiFi or Bluetooth, whose ranges
are in the order of meters and thus would require extensive
and costly mesh networking or similar to be plausible for
healthcare.

LPWANs also have significant advantage over cellular
networks such as 3G in that they are designed to support
short bursts of data infrequently. This is suitable for a large
number of healthcare applications, including monitoring gen-
eral health and receiving hourly updates, monitoring criti-
cal health and receiving emergency calls, and rehabilitation
where updates may only be necessary once daily. This design
principle also allows for low-power device design, which in
turn ensures that the designed healthcare devices will operate
for longer before human interaction is required to recharge
or change batteries. This reduces the risk of patients being
offline, and provides more convenience to the wearer. Based
on these advantages, it is suggested that LPWANs are the
best solution for transmitting data from the central node to
the cloud for storage or further processing.

The most prominent standards for LPWANs are Sigfox and
LoRaWAN. While these standards are well-established, they
face competition from emerging standards including NB-IoT.
In this section, existing LPWAN standards are considered in
terms of suitability for an IoT healthcare system, and recom-
mendations are made. A table summarizing the three main
standards discussed is also included in Table 2 to provide a
snapshot of their features, enabling easy comparison between
these standards.
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TABLE 2. Comparison of long-range communication standards.

1) SIGFOX
Perhaps the simplest of the LPWAN standards, Sigfox pro-
vides limited functionality but is widely deployed compared
to other standards listed. It is a protocol developed in the
first four layers of the OSI model, and its base stations bear
similarity to those in cellular - antennas mounted on towers.

Sigfox uses a star topology, and nodes are designed to be
uplink only to improve battery efficiency. It is possible for
a node to receive downlink, but it must explicitly request it.
As acknowledgement of receipt is important for health data,
downlink would have to be requested. Unfortunately, a limi-
tation of Sigfox is that downlink can only be requested 4 times
per day [91].

There is a trade-off in design between latency and range.
If a receiver has higher sensitivity, it can detect weaker sig-
nals; thus, the distance a signal can travel is increased. Sigfox
opted to maximize range to around 9.5km in urban areas [92]
by using slow D-BPSK modulation and a low bit rate of
100 bits per second (bps) [93]. In rural areas, Sigfox can
reach a range of up to 50km [94]. The high latency of Sigfox
is a drawback for its use in healthcare applications, as it is
important for messages to be delivered quickly in this critical
context.

Sigfox operates in the unlicensed bands of 868MHz in
Europe and 915MHz in the US. As with other LPWAN

technologies operating in the sub-GHz spectrum, no globally
available band exists for Sigfox’s use. Operating in an unli-
censed band allows Sigfox to occupy a wider bandwidth, but
comes with the disadvantage of increased interference, which
may be an issue in healthcare.

To increase resistance to interference, Sigfox sends pay-
loads in three consecutive frames, each in different pseudo-
random sub-carriers and over different propagation paths.
This improves the likelihood that themessagewill be received
intact, and thus reduces the disadvantages of increased inter-
ference in the unlicensed bands.

Sigfox has a high network capacity and can support
approximately 50,000 nodes with a single gateway [92]. This
is comparable to NB-IoT’s 52,547 nodes, which has been
shown to be able to support 40 devices per household assum-
ing a household density equivalent to London’s and an inter
site distance of 1732m [95]. In rural areas such as Australia’s
Burdekin Shire, which had a population of 17,784 people in
2011 [96] and is 4880km2 in area [97], one well-positioned
base station would enable every resident of the region to be
connected to healthcare providers via Sigfox. This is signifi-
cant for healthcare applications, especially in regional areas.

Security is implemented in Sigfox by signing eachmessage
with the device’s private key [91]. This reduces the risk of
spoofing attacks or interception, but does not eliminate it.
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A sophisticated attack targeting the node hardware or service
provider could still reveal the unique keys, compromising a
patient’s healthcare system.

The limit of 140 messages per day also minimizes the
impact that a spoofing attack could have. However, in a
healthcare environment, even a small number of fraudulent
messages could have significant impacts on the wellbeing of
patients.

Encryption and scrambling methods are supported by
Sigfox [91], but developers must implement these themselves
within the 12-byte payload. If implemented well, these meth-
ods could reduce the risk of sensitive patient data being
intercepted.

Overall, Sigfox is suitable for non-critical applications
where speed of message delivery and acknowledgements
of receipt are non-essential, such as in smart parking and
automated street lighting. In such an application, a breach
of security would cause annoyance rather than danger.
However, in healthcare, successfully transmitting messages
with relative speed is essential. Any compromise of security
could be detrimental for an individual’s health, or could affect
the integrity of medical databases. For this reason, we recom-
mend that Sigfox not be used for critical healthcare appli-
cations. It is therefore strongly recommended that system
designers instead consider alternative LPWANs for critical
healthcare applications.

2) LoRa & LoRaWAN
Technical information about the LoRa & LoRaWAN stan-
dards is presented in [98], written by the LoRa Alliance. This
subsection overviews the key components of the standard
based on this source, and thus the interested reader is referred
to it for further information about LoRa & LoRaWAN.

LoRa is a physical layer protocol that utilizes chirp spread
spectrum techniques over a wide bandwidth of at least
125kHz. This provides low-power, long-range communica-
tions with high resilience to intentional or environmental
interference.

LoRaWAN is built on top of the LoRa standard, in the
network layer. It utilizes a star topology, and nodes are
asynchronous; they only communicate when they need to,
such as after an event or scheduled measurement. Scheduled
messages from nodes would suit long-term monitoring appli-
cations, while event-driven messages from nodes would suit
emergency monitoring.

LoRaWAN also has a high network capacity, ensur-
ing many messages can be passed over the network at
the same time. Each gateway can support approximately
40,000 nodes [92]. While this is lower than the capacity of
Sigfox, it would still be suitable for use in urban and regional
areas if optimal base station positioning was considered
thoroughly.

Already, LoRaWAN has been successfully deployed in
several areas including parts of Europe, America, and
the Asia-Pacific region. With a maximum link budget
of 155 dBm, messages can travel over a range of around

7.2km in an urban area at a rate of 0.25-5.5 kbps. This is a
significantly faster data rate than Sigfox, with about 2.3km
less range. It is suggested that for healthcare, this trade-off
is worthwhile as low latency is essential. More range can be
obtained by simply installing more base stations.

To allow consumers to choose a solution that suits them
best, LoRaWAN specifies three classes of device that can
be used. Class A is the most battery efficient, providing
downlink for only a small window after uplink. This would be
suitable for healthcare, as downlink would only be required to
receive acknowledgement that the health data was delivered.

Like Sigfox, LoRaWAN operates in the unlicensed bands
of 868MHz in Europe and 915MHz in the US. This carries
the advantage of wider spectrum availability, but also the
disadvantage of increased exposure to potential interference.

Security is provided by the LoRaWAN standard. A unique
key is assigned to each node on the network; this key is known
only to the node and to the network provider. Theoretically,
this would eliminateman-in-the-middle attacks as intercepted
data would be encoded and not decipherable [99].

Unfortunately, a node’s unique key could become a single
point of failure for the whole system should the key be discov-
ered through sophisticated hardware hacking of the node, or
through an attack on the network server. If a key was illicitly
obtained, then the attacker could use it to decipher all future
messages from the node, or could send false messages to the
base station whilst pretending to be the node.

For the most part, LoRaWAN is reasonably well-suited to
healthcare applications due to its range, latency, and network
capacity. Interference could potentially cause issues while
operating in unlicensed bands, but a more significant issue
is that of key management. To be truly secure, proper key
management must be implemented by the developers and ser-
vice providers so that sensitive healthcare data and important
medical databases are protected from malicious attacks, as
LoRaWAN does not provide a complete security solution.

3) NB-IoT
Standardized in the recent 3GPPRelease 13, NB-IoT operates
in the licensed bands of GSM or LTE and provides long-
range, low-power communications. As NB-IoT has been
developed based on LTE, much of the existing LTE hardware
can be used to deploy it rapidly and effectively [95], [100].

There are three different ways in which NB-IoT can be
deployed, allowing easier coexistencewith existing networks.
These deployment modes are in-band, guard-band, and stand-
alone. Using in-band mode involves reserving LTE Physical
Resource Blocks (PRBs) from the existing LTE network, for
use by NB-IoT. In guard-band mode, NB-IoT utilizes the
bandwidth of an existing LTE carrier’s guard-band. Finally,
in stand-alone mode, GSM carriers can be re-farmed and
used for NB-IoT, or NB-IoT can exist in entirely new band-
width [101], [102].

Operating within licensed bands has the significant advan-
tage of reduced risk of interference. One potential disadvan-
tage is that there will likely be a higher cost to use NB-IoT
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than there is for unlicensed standards. Just as mobile phone
users pay a fee to be able to use LTE, NB-IoT device users
will likely have to pay a connection fee for the use of NB-IoT.
The exact magnitude of these costs is not yet known as
NB-IoT is yet to be widely deployed. Nonetheless, a decrease
in interference is likely to be worth the additional cost when
considering healthcare systems, as QoS in these applications
is critical.

Due to a high receiver sensitivity of 164dB, NB-IoT
achieves a range of up to 15km. Despite the long range, speed
remains relatively high, with a maximum uplink data rate of
250kbps [103]. The significant data rate and wide range are
ideal for healthcare applications, as messages can travel a
reasonable distance within an acceptable time frame for even
the most critical health events.

Battery life was a fundamental consideration in the design
of NB-IoT. The power efficiency has some dependence on
which mode NB-IoT operates in. In [95] it was found that
the life of 5Wh batteries were 2.6 and 2.4 years in stand-
alone and in-band modes respectively when a 50 byte mes-
sage was being sent every 2 hours. When a 50-byte message
was only sent once per day, the battery lifetime increased to
18.0 and 16.8 years respectively. Applications such as long-
term monitoring would likely require several transmissions
per day, while emergency health monitoring system would
transmit short ‘‘heartbeat’’ messages occasionally. Longer
messages would only be sent when an emergency condition is
detected. For each of these applications, the energy consump-
tion of NB-IoT is sufficiently low, and allows for minimal
interaction by the system wearer.

NB-IoT can also support a minimum of 52,547 nodes per
base station. As mentioned in Section IV.B.1., this would
be sufficient to support 40 devices per home, assuming a
household density equivalent to that of London [95]. With an
average household population of 2.47 people [104] and ideal
positioning of cell sites, every resident of London could wear
over 15 healthcare sensors, each successfully communicating
directly with the closest base station. The capacity of NB-IoT
is clearly sufficient for providing wide-spread healthcare.

State-of-the-art 3GPP S3 security is used by NB-IoT,
with mechanisms on both the transport and application lay-
ers [105]. There are several mandatory mechanisms includ-
ing entity authentication, device identification, user identity
confidentiality, and data integrity. Optional mechanisms are
also available for ensuring application authentication, data
confidentiality, and more. As eavesdropping is a real threat
to radio communications, it is recommended that the optional
encryption mechanisms are also used to protect sensitive
health data. With all mandatory and optional mechanisms in
place, NB-IoT will likely be suitably secure for healthcare
applications.

Overall, NB-IoT is suitable for healthcare applications.
It is secure, supports communications over a long range, has
high energy efficiency, and can support many devices. The
most significant drawback is the current lack of deployment,
though this is expected to occur rapidly due to the reusability

of existing LTE infrastructure. This lack of deployment limits
the immediate usefulness of NB-IoT, but the standard will
likely be deployed rapidly on a large scale due to the ability
to reuse existing 3G hardware. When this happens, NB-IoT
is highly recommended for use, as it offers many favourable
characteristics that make it the most suitable standard for use
in healthcare systems.

4) OTHER STANDARDS
Several other LPWAN standards have been developed for
operation within unlicensed, sub-GHz bands, but these
have been minimally deployed compared to SigFox and
LoRaWAN. They also feature unique hardware, making
them harder to deploy on the same wide-scale that NB-IoT
could be deployed on. These standards include Symphony
Link, nWave, Weightless, and NB-Fi. Outside of the sub-
GHz bands but still within ISM bands lies Ingenu Ran-
dom Phase Multiple Access (RMPA). Meanwhile, in the
licensed bands, two additional standards besides NB-IoT
have been developed by 3GPP. These standards are Extended
Coverage GSM for IoT (EC-GSM) and Long-Term Evolu-
tion Machine Type Communications Category M1 (LTE-M
or eMTC). Each of these standards is briefly discussed in this
section.

Symphony Link [106], [107] is a synchronous protocol that
uses LoRa as its physical layer, and serves as an alternative to
LoRaWAN. It is used in a star topology, but allows for the use
of repeaters to provide more hops. All messages sent using
Symphony Link are acknowledged, and message length can
be longer. It is robust and secure standard, but is less energy-
efficient due to the need for nodes to frequently synchronize
with the network. The increased power consumption and
lack of deployment are the main limiting factors in using
Symphony Link for healthcare purposes.

nWave [108] is an ultra-narrow band technology using
a star topology. It boasts high capacity and a range of
up to 10km. nWave has previously been used for smart
farming and smart parking. Little further information is made
available by this company with regards to their technology.

Weightless offers three standards to give end
users more choice - Weightless-N, Weightless-P, and
Weightless-W [109]. Weightless-N was developed through
a partnership with nWave [110], and offers uplink-only sim-
plex communications with low battery consumption and a
range around 4.1km. Weightless-P offers two-way commu-
nications, but with lower range and shortened battery life.
Weightless-W has the lowest battery life, but has similar
range to Weightless-N whilst enabling two-way communica-
tions. Of theWeightless standards,Weightless-P would likely
be best suited to most healthcare applications due to its two-
way communications and longer battery life. However, the
short range of 2km is a limiting factor even in a dense urban
environment.

NB-Fi by WAVIoT [111] is another unlicensed UNB tech-
nology that operates in a star topology. It is full duplex, with a
range of 16.6km in an urban environment. The trade-off made
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is a high latency of 30 seconds on uplink and 60 seconds
on downlink [112]. This may be suitable for non-critical
systems, but would not be suitable when an emergency health
alarm needs to be transmitted.

Ingenu RPMA [113] is the only well-known LPWAN stan-
dard operating in the unlicensed 2.4GHz band. This design
choice allows for higher transmission power and antenna gain
to be used, but this uses extra power. Additionally, the pop-
ularity of the 2.4GHz band means that messages transmitted
using Ingenu RPMA are likely to be subjected to interference.
Ingenu’s range is short compared to its competitors, only
reaching 4.6km in urban areas [92]. High capacity and QoS
are provided by Ingenu, which would be advantageous in
healthcare. However, the low range for high power consump-
tion is not ideal for a battery-powered wearable system. This
standard would likely be better suited to IoT applications
where permanent power supplies are available for sensor
nodes.

EC-GSM is a licensed band standard that was introduced to
improveGSM for IoT usage, as GSMhas already beenwidely
used for M2M communications due to its high deployment
and low cost devices. EC-GSM can be enabled by updating
the software on existing GSM gateways. This allows for
extremely fast roll-out, and allows operators to extend the
useful lifetime of legacy 2G gateways. EC-GSM provides
coverage improvements of up to 20dB, and each gateway
can support up to 50,000 devices [114]. The data rate offered
by EC-GSM is less than 140kbps for both uplink and down-
link [103], slower than NB-IoT. Currently, EC-GSM has sim-
ilar capabilities to that of NB-IoT and thus would be suitable
for use in healthcare. However, EC-GSM operates on legacy
gateways while NB-IoT operates on modern LTE gateways.
It is therefore suggested that NB-IoT will outlast EC-GSM
as a widely utilized standard, and thus it would be preferable
to develop healthcare systems based on NB-IoT rather than
EC-GSM.

LTE-M is another licensed band standard that has been
developed to utilize the full capacity of an LTE carrier using
multiplexing techniques, whilst improving battery life and
coverage. The major difference between LTE-M and classic
LTE is that the former introduces new power-saving meth-
ods not implemented in the latter [114]. With a data rate
of up to 1Mbps [103], LTE-M allows for more advanced
IoT applications, but has limited range and can only support
around 20,000 nodes per gateway [92]. LTE-M is certainly an
ideal solution for a system where high speed, large amounts
of data, and advanced features are required. However, this
is not the case for healthcare. A healthcare system that is
intermittently transmitting small amounts of important data
would benefit from long-range, high-capacity gateways, like
those seen in NB-IoT. In LTE-M, these features crucial to
healthcare are traded off to provide the higher data rate and
enhanced functionality. LTE-M is an excellent standard for
some applications, but is not suitable for healthcare when
compared to other cellular IoT standards.

V. CLOUD-BASED IoT HEALTHCARE SYSTEMS
Cloud technologies have been widely researched due to
their usefulness in big data management, processing and
analytics. Several related works have surveyed the litera-
ture on using cloud technologies for IoT purposes such as
smart grid [115] and mobile cloud computing for smart-
phones [116], [117], where complex computations are
offloaded from low-resource mobile devices to the high-
power environment of the cloud, before the result is returned
to the mobile device. These works consider data storage and
data processing as key advantages of cloud technologies.

Further related works have reviewed the state of cloud-
centric healthcare. The use of cloud technology for health
record storage is considered in [118], which also overviews
cloud technologies as a complete field. Storage is consid-
ered further [11] and [119], with particular focus on how
a large database could be used for data analysis and trend
determination.

While each of these relatedworks provides valuable insight
into the field of cloud technologies, there is no known article
that considers all advantages, disadvantages, challenges, and
opportunities that cloud presents to healthcare systems based
on WBANs and the IoT. In this section, we bridge the gap
in the literature by presenting recent works regarding cloud-
centric healthcare, analyzing key challenges, and providing
recommendations for future research directions.

A. CLOUD FOR HEALTHCARE
Much research has been conducted in recent years regarding
the benefits of cloud for healthcare applications. These bene-
fits stem from the three primary services that can be provided
by cloud technologies in healthcare environments:
• Software as a Service (SaaS) - provides applications to
healthcare providers that will enable them to work with
health data or perform other relevant tasks.

• Platform as a Service (PaaS) - provides tools for virtual-
ization, networking, database management, and more.

• Infrastructure as a Service (IaaS) - provides the physical
infrastructure for storage, servers, and more.

These services can be used to achieve a variety of tasks,
but two key uses are easily identified in the literature; big
data management and data processing. These two different
concepts are presented separately in this section. However, it
is also highlighted that both are essential for a state-of-the-art
IoT healthcare system, and thus should be included together
in future cloud system designs.

1) BIG DATA MANAGEMENT
Big data is regularly characterized by the so-called 5 V’s -
volume, velocity, variety, veracity and value. Volume refers
to the amount of data generated, while velocity refers to the
speed at which it is generated. Variety is the general variance
in data types, while veracity is the uncertainty surrounding
what data types may later be added. Finally, value refers to
what information can be gained from the big data set.
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The challenge in big data management lies in designing a
system that can handle the characteristics of a specific big
data set. In healthcare, each of the characteristic 5 V’s are
important to consider, as a wide variety of data from patient
name, age and gender to vital sign values as taken at regular
intervals would need to be stored formany systems. Regularly
measured data would create significant velocity, and lead to
an increased volume of total data rapidly. Additionally, new
kinds of data may be added regularly as new sensors are
developed to measure previously unmonitored health signs.
Finally, machine learning to perform diagnostics or provide
treatment plans would be extremely valuable in a healthcare
context, so a cloud storage framework for healthcare would
need to enable value. As all of the characteristics of big
data are important to healthcare applications, recent research
in this area has focused on storing a wide variety of data
generated by voluminous IoT systems in an organizedmanner
that may be useful for later data analysis.

In one recent work [24], volume and variety of healthcare
data is considered, and a data storage model suitable for
emergency healthcare is developed. It aims to organize het-
erogeneous physiological data and make it readily accessible
to relevant healthcare providers during an emergency. IaaS
and SaaS are used to reach these goals. One area of improve-
ment in this work is that access control is only considered
on an elementary level. Additionally, high levels of human
interaction are required to enter and maintain patient health
records. For a WBAN-based system, automation techniques
would need to be implemented to store data from sensors in
the appropriate areas of the health record.

In [120], cloud technologies for aWBAN system is consid-
ered. All three services are used to create the cloud module
in this system. SaaS is used to provide applications that allow
authorized parties to work with health data, PaaS provides
tools for virtualization and database management, and IaaS
provides the hardware and required infrastructure. This sys-
tem is primarily used to create and store health records, and to
allow health practitioners to check on their patient’s state as
required. Patients set up a profile, configure who has access
to their data, and decide whether they want monitoring to be
continuous, on-request, or periodic. This system appears very
sophisticated, but further work needs to be done to ensure that
their proposed cloud model would be suitable as the volume
and variety of data increased over time. Additionally, further
security mechanisms would likely need to be incorporated to
ensure that the patient’s data is truly secured and private.

Another sensor-based system is designed in [121], with the
aim of monitoring patients’ emotional states. Big data man-
agement is crucial in this system, as they aim to draw links
between emotional responses and physiological changes.
Large amounts of physiological data are stored in the cloud
module, organized sufficiently to enable data mining tech-
niques for the extraction of important information. To maxi-
mize storage space, algorithms have been applied to remove
redundant or non-useful data from the database. The primary
focus of cloud storage in this system is not to maintain a

health record, but rather to amass a big data set that machine
learning could be applied to. The authors have placed signif-
icant focus on managing all the characteristic Vs of big data,
but there are still some improvements that could be made.
While health data is stored, it appears that patients and doctors
cannot easily access a patient’s complete medical history. It is
suggested that implementing techniques from the systems
focusing on storage of health records could further its overall
usefulness.

Enabling machine learning through appropriate big data
management in the cloud is considered in [122]. The authors
identify that cloud storage is useful for storing high volumes
of data in such away that value can be extracted from it. In this
system, physiological parameters and frequency of medical
visits are both stored in the patient’s health record. This
information can then be used by machine learning algorithms
to determine the patient’s condition. To prove this, machine
learning was successfully applied for the detection of flu.
Accuracy in classifying the flu steadily increased as more
sensors were included in the WBAN, reaching 98% accuracy
when 14 parameters were measured. This suggests that the
authors have implemented data management to a reasonably
high standard. However, it is unclear whether the system is
capable of rapidly expanding as the velocity and veracity
of data increases over time. Further testing would likely be
required to ensure that the designed cloud architecture is still
suitable when the database is non-static and continuously
expanding.

An extremely thorough work on cloud for healthcare is
presented in [123]. In this work, all services of cloud tech-
nologies are utilized to create a robust system. Patients are
monitored by their WBANs, with their data stored in the
cloud securely. A signature-based access control mechanism
prevents unauthorized users from accessing data in the cloud.
PaaS is used to provide virtualization techniques that support
resource management and scheduling. Finally, SaaS in the
form of a user-friendly application that allows healthcare
professionals to access patient data that they are authorized
to view. An alert system is also present in the software,
triggering alarms when abnormal physiological parameters
are detected. To prove that value can be obtained from their
big data management scheme, machine learning was applied
to ECG signals and was shown to successfully classify con-
gestive heart failure in up to 98.9% of cases. Overall, this is an
excellent example of how cloud technologies can be utilized
in healthcare. To get more value out of the datasets, further
machine learning could be implemented. Additionally, it may
be worth considering methods for reducing latency as the
velocity and volume of data inflow increases, as currently
delay is shown to rise quite rapidly as the dataset expands.

Big data management for healthcare is not just a theoretical
concept. It is already being implemented in certain parts of
the world. In Australia, the Government has recently intro-
duced the My Health Record scheme [124] , which utilizes
cloud storage methods. A patient’s My Health Record can
contain information about any allergies, conditions, current
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medications and treatments, pathology test results, and diag-
nostic images. The patient can decide who has access to
these records under normal circumstances. In an emergency
where the patient is unable to provide the information them-
selves (i.e. they are unconscious following an accident), then
limited-time emergency access can be granted to the respond-
ing healthcare providers so that the patient can receive the
best possible treatment rapidly [125].

The benefits of cloud technologies for big data manage-
ment are clear. It allows for virtually unlimited storage space,
the provision of many useful services, and enables acces-
sibility for patients and doctors. This gives patients more
control over their own healthcare, and simultaneously enables
doctors to provide more suitable treatments without having to
even meet with their patient in person. Additionally, big data
management schemes that are designed to meet all 5 charac-
teristics of big data will enable data mining, machine learn-
ing, and other forms of detailed analysis. This could lead to
new medical discoveries by identifying previously unknown
trends in patient progression through an illness, finding new
links between symptoms and conditions, determining new
treatments that may be suitable for various conditions, and
much more. Big data management is essential for the IoT
healthcare system of the future.

2) DATA PROCESSING AND ANALYTICS
There are several types of data processing that can be per-
formed using cloud technologies, but the most relevant are
computational offloading and machine learning. Computa-
tional offloading involves using the cloud to perform complex
data processing beyond the capabilities of low-resource wear-
able devices. By sending raw or partially processed sensor
data to the cloud, the computing resources of many machines
can be utilized for processing. Using this high-powered com-
puting environment over processing on the standalone mobile
device offers many advantages; more complex algorithms can
be executed, results can be obtained significantly faster, and
battery life will be extended in mobile devices due to less
processing occurring internally.

Complicated sensor nodes such as those measuring ECG
data, blood pressure, or accelerometers for fall detection
would benefit greatly from computational offloading. For
example, ECGs have a standard shape, and different devi-
ations from this shape can indicate several different heart
problems including arrhythmia, heart inflammation, and even
cardiac arrest. A small, low-powered sensor node could not
analyze ECG readings rapidly using machine learning algo-
rithms to determine the patient’s state of health. However, if
the raw data was offloaded to cloud, high-power processing
could be performed to determine the shape of the ECG before
machine learning algorithms compare it to the characteristic
shape, identify any serious differences between the shapes,
and determine what condition is causing them.

Machine learning can also be applied to large datasets
so as to obtain meaningful information from them, includ-
ing identifying previously unknown links between symptoms

and diseases, determining possible diagnoses based on those
given to previous patients, developing suitable treatment
plans for individual patients based on what has worked for
similar patients in the past, and much more. Each of these
applications reduces human uncertainty and thus would help
patients receive the most suitable care, as soon as possible.
Cloud storage enables machine learning to perform rapidly
and effectively by providing large databases and high com-
putational power. Standalone mobile devices would not have
the storage capacity or computational resources to analyze
data through machine learning, and thus it is essential that
data is sent to the cloud. Information that could be obtained
through machine learning includes disease trends, connec-
tions between symptoms, and the development of suitable
treatment plans for individual patients.

Several researchers have identified the usefulness of com-
putational offloading in healthcare environments. In [120],
readings from WBAN sensors are transmitted to a mobile
phone, where some basic processing occurs. The information
is then transmitted forward from smartphone to cloud, where
advanced processing occurs using feature selection and clas-
sification techniques. The meaningful information generated
can then be stored or forwarded to healthcare practitioners.
The primary weakness of this is that it is reliant on a smart-
phone, which would run out of battery within days at best.
It would be preferable for raw data to be transmitted straight
to the cloud for complete processing, using a low-power
communications standard such as the previously discussed
NB-IoT. Additionally, the information obtained through pro-
cessing is not analyzed further; instead, it is passed directly
to a doctor who manually observes the result. In many cases,
it would be possible to implement classification algorithms
that alert the doctor when an abnormal reading is detected in
a patient’s physiological signs.

In [121], cloud computing is used to process the complex
raw data and send the meaningful results back to the patient
through their sensing system. This is a strong concept, as it
allows for the processing power of cloud to be utilized by
complex sensors, whilst also enabling the patient to rapidly
access their results and share them with a doctor as needed.

Computational offloading for data processing is used
in [123] to determine shapes of ECGs and evaluate whether
the shape is consistent with congestive heart failure. This
evaluationwould be far too complicated to perform on awear-
able device, and thus is a perfect example of the usefulness
of cloud technologies in data processing. The obtained ECG
information is stored after processing in the patient’s health
record, enabling them to view their results and share them
with their doctor. Additionally, an alert can be triggered to
emergency services workers if the ECG shows heart rhythm
consistent with congestive heart failure.

Some research comparingmachine learning algorithms has
also been conducted. In [126], deep neural networks (DNNs)
are compared with gradient boosting decision tree (GBDT),
logistic regression (LR), and support vector machine (SVM)
algorithms for predicting stroke. In this context, DNNs
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performed the best with 87.3% accuracy, while the GBDT
and LR algorithms were similar in performance at 86.8%
and 86.6% accuracy respectively. SVMs performed the worst,
with only 83.9% accuracy. This suggests that DNNs are
well suited to prediction tasks, but due to the complexity
of the algorithm they would need to run on cloud storage
frameworks.

Meanwhile, in [127], multi-layer perceptron (MLP), SVMs
for regression (SVR), generalized regression neural net-
works (GRNN), and k-nearest neighbour (kNN) regression
approaches were compared for determining a person’s psy-
chological wellness index based on five key parameters of
psychological health. In contrast to the previous work, in this
case the SVM-based algorithm performed the best, while the
neural network approach performed second-worst. These two
comparison articles highlight the fact that the best machine
learning algorithm for healthcare does not exist; rather, there
are algorithms that may be suitable for one context but
completely unsuitable for another. As such, future system
designers should compare machine learning algorithms that
may work for their purpose and determine which algorithm
has the most desirable characteristics for the system they are
designing.

Evidently, there are limited works that investigate compu-
tational offloading for IoT healthcare specifically. However,
it has been studied extensively for mobile devices such as
smartphones. The aforementioned surveys in [116] and [117]
present comprehensive overviews of the works in this field,
and demonstrate that energy efficiency and higher processing
capabilities can be readily achieved when utilized computa-
tional offloading to the cloud. The interested reader is referred
to these surveys for an overview of the related field of mobile
cloud computing.

Overall, using computational offloading for data process-
ing is invaluable in healthcare systems, particularly when ana-
lyzing complicated physiological parameters and conditions.
Data processing techniques may also aid in the organized
storage of health data, as it can generate meaningful infor-
mation such as a standard ECG from many different types of
ECG sensors. This is extremely useful in standardizing health
records, and would enable machine learning techniques to
be applied to a big data set with more ease. Due to these
benefits, computational offloading is vital for IoT healthcare
systems to ensure that even the most complicated physio-
logical parameters can be monitored, enabling the highest
possible standard of healthcare for the patient.

B. SECURITY AND PRIVACY IN THE CLOUD
Security remains a key issue in cloud-based systems. In a
healthcare environment, it is essential that a patient’s health
information is readily accessible to authorized parties includ-
ing doctors, nurses, specialists, and emergency services. It is
also essential that the patient’s sensitive health data is kept
private. If malicious attacks revealed the patient’s health data,
it could have many negative ramifications for the patient,
including exposing them to identity theft or making it difficult

for them to obtain insurance. Worse still, if the malicious
attacker altered a patient’s health record, it could have detri-
mental effects on the patient’s health.

Access control policies and data encryption are two means
of securing cloud-centric healthcare systems. An access con-
trol policy specifies who is authorized access to the patient’s
health data, and how much access they are allowed. It would
also implement an authentication mechanism (e.g. password,
facial recognition, etc.) that verifies the identity of the party
attempting to access the data. Meanwhile, data encryption
provides security for the data whilst in data storage. Strong
data encryption would prevent an attacker from reading sen-
sitive health information, even if they did gain access to the
database.

Some research has been conducted into developing secu-
rity mechanisms robust enough for healthcare applications.
In [128], a sophisticated access control scheme named
‘‘SafeProtect’’ is proposed, focusing on giving patients con-
trol over their information. The patient creates a policy that
allows specific healthcare providers to access their health
record, and can enforce limitations. The patients data is
encrypted and stored in cloud storage. If a healthcare provider
wants to access the patient’s health record, they must enter
their credentials. Credentials are checked for validity before
data is decrypted for the authorized healthcare provider. If the
healthcare provider has been assigned limited access by the
patient, then the policy control application will monitor their
behavior. If illegal actions are performed, such as the user
pressing the Ctrl + C shortcut for a party that is not allowed
to copy, then the action will be blocked and the patient will
be notified that the healthcare provider tried to perform an
illegal action. This is an intelligent mechanism to and could
easily be expanded to look for attempts to print or other
copy-based actions such as taking a screenshot using the
‘‘Prt Scr’’ button. A significant advantage of the SafeProtect
scheme is that if the policy changes, keys do not need to be
regenerated; healthcare providers’ credentials can simply be
added to or removed from the policy. The authors identify
that they have not protected against all possible means of
copying and distributing healthcare information, making this
the main area in which future improvement can be made.
Additional monitoring of keyboard shortcuts and ports for
illegal actions would help increase security. Another potential
improvement is immediately revoking access to the patient’s
data if the healthcare provider performs an illegal action.
However, these improvements are minor and relatively easy
to make. Overall, SafeProtect is a sophisticated scheme that
adequately protects patients data from being accessed or used
in an unauthorizedmanner, and themechanisms implemented
could easily be expanded to protect against more actions.

In [129], a secure cloud scheme is proposed for ‘‘enhanced
living environments’’, which are generally comprised of both
wearable devicesworn by the patient and smart home devices,
with the aim of supporting independent living for elderly
or disabled persons. Access control is policy-based, where
access is given to authorized people. To ensure that only
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authorized people can access health records, biometrics are
used to ensure that the person is who they claim to be. Users
are asked to provide a fingerprint, and facial recognition
software calculates certain distances and angles on the face.
The user is also asked to blink a random number of times,
so that a photograph cannot be used to ‘‘trick’’ the system.
Security of the data stored in the cloud is implemented by
attempting to conceal possible weaknesses of the accessing
applications. This is achieved by creating several applications
with the same functionality but varying implementations,
and dynamically swapping them in and out of execution.
While this system appears to be a strong solution, it would
likely benefit from encryption of patient data in the cloud.
Additionally, the identity management server adds another
vulnerability to the system, as information about many users’
identities could be revealed if an attacker gained access to
this server. Ensuring that this server is secure is almost as
important as securing patient’s healthcare data, as it is still
sensitive information pertaining to the users of the system.

Signal scrambling is considered as a means for encryption
in [130]. In this application-layer scheme, a small portion of
the data - termed ‘‘tiny data’’ - is used as the scrambling key,
and is shared between authorized parties. To reduce the risk
that a brute force attack could be used to determine what the
tiny data used is, algorithms are in place to prevent the tiny
data from containing statistically significant characteristics,
thus lowering the probability that such an attack would be
successful. This schemewould be suitable in addition to other
security mechanisms, especially considering its position in
the application layer allows for it to be built on top of exist-
ing communications standards. Further work could be done
regarding securing the exchange of tiny data, as this process
could currently be susceptible to man-in-the-middle attacks if
the communications standard used is not secure. Additionally,
it may be useful to occasionally generate new tiny data to use
for scrambling and unscrambling. This would likely decrease
the likelihood of a brute force attack succeeding.

A steganography-based approach to access control is pre-
sented in [131]. In addition to protecting electronic health
recordswith encryption techniques, this scheme also conceals
the data within an ECG signal. This means that if the data
was intercepted by an attacker, they would likely assume that
it was simply a standard ECG signal, and would not even
discover the hidden, encrypted message that is the health
record. After encrypting and concealing the health record, the
health authority stores several parameters that are required
to reconstruct the data at their local servers. If the data is
requested, authorization is performed using facial recognition
and the location of person making the request. If the user is
authorized, then the health authorization recovers the data and
provides it to them. While this appears to be a very secure
system, it is limiting. Firstly, the use of location as a means
for authentication limits flexibility. For example, a paramedic
would likely not be able to access a patient’s health data
whilst travelling to their location. Additionally, the fact that
the health authority stores the decryption parameters on their

local server means that the health data cannot be easily shared
with another health authority. This could be problematic if a
patient was travelling overseas and was hospitalized, as the
healthcare providers would not be able to readily access the
required health data. It would be valuable to make this system
more accessible to authorized users, without compromising
the high level of security that it clearly provides.

In [132], fully homomorphic encryption (FHE) is consid-
ered as a scheme for protecting the security of the data. FHE
allows for public-key encryption to be implemented before
being sent to the cloud. It also allows mathematic functions
to be performed over on the data whilst it is encrypted,
enabling basic machine learning without decrypting data in
the cloud. If data is requested by an authorized user, the
key authority system can use a secure channel to provide
them with the secret key required to decrypt the data. This
is a promising approach to combining security with machine
learning, but it is not yet ready to be implemented into
IoT-based healthcare systems. In this work, it is shown that
significant computational resources are required for FHE to
be successful. Additionally, only limited arithmetic can be
performed on the encrypted data. Whilst this work shows
improvement on previous FHE schemes, improving the speed
and computational capabilities of FHE schemes remains an
active field of research.

FHE was also compared to traditional Advanced Encryp-
tion Standard (AES) and emerging Attribute-Based Encryp-
tion (ABE) in [133]. AES is a 128-bit block cypher, and the
scheme has already been optimized to run on small, lower-
power devices. It is an accepted industry standard. ABE
focuses on allowing access to multiple authorized parties,
much like the other schemes discussed in this section. The
three types of encryption were compared in depth, and it was
found that there is no perfect solution for encryption. AES
is the only scheme that is simple and low-latency enough for
wearable devices, but ABE is the best scheme for enabling
multiple parties to access private data. FHE is the only one
that can provide computation and thus enable machine learn-
ing, but it is the slowest and requires the highest amount of
storage.

Kocabas et al. [133] suggest that a scheme that uses
AES during acquisition, and then converts to FHE using an
AES-to-FHE conversion schemewould be a suitable solution.
One advancedAES-to-FHE conversion schemewas proposed
in [134], whereby the conversion can be performed iteratively
without decrypting the data at any stage. This conversion
process requires significant computational power and time,
but would be achievable within a cloud storage framework.

We agree that this type of AES-to-FHE scheme is a rea-
sonable means for securing patient data. However, with the
clear advantages of ABE for cloud security in healthcare, we
believe that it would be beneficial to use it for acquisition
and provision of health data. It is therefore suggested that
an optimized ABE-to-FHE conversion scheme that at no
point decrypts and re-encrypts the data would be extremely
valuable for securing patient data.
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Overall, there is still significant research opportunity in
developing a completely suitable encryption scheme for
healthcare systems that rely on both low-powerwearables and
big data cloud storage. Increasing speed, decreasing compu-
tational requirements, and enabling high-level machine learn-
ing are all areas for improvement that should be investigated
further.

VI. FINDINGS AND RECOMMENDATIONS
Upon completion of this thorough survey of existing tech-
nologies, several lessons have been learned. In this section,
we will present a summary of these lessons, followed by
providing recommendations for future work with the aim
of directing researchers to areas that would fill the most
significant gaps in the literature.

A. LESSONS LEARNED
In terms of the key sensor types, it was found that there are
several options for suitable pulse sensors, while researchers
agree that thermistor-type temperature sensors are already
suitable for use in measuring human body temperature. The
photoplethysmographic method for implementing blood oxy-
gen level monitoring is also widely agreed upon. The issues
that remain with these devices are primarily making them
robust against motion and ensuring energy efficiency without
compromising accuracy. Meanwhile, there is little consen-
sus regarding the most suitable respiratory rate sensor for
general-purpose use, and there remains muchwork to be done
on blood pressure sensors in order to achieve an accurate and
truly wearable sensor that could be deployed on a wide scale.

The progress made towards suitable solutions largely
reflects the frequency with which each topic has been con-
sidered in the literature. There are many papers that exist
on pulse, body temperature, and blood oxygen monitoring,
both current and classical. On the other hand, respiratory rate
monitoring with wearable sensors is a newer concept in the
literature, and is further divided into subsections for varying
sensor types (nasal, stretch, pressure, and so on). Meanwhile,
research on blood pressure sensors within the literature is
minimal, and is very much still in its infancy when compared
to research on other sensor types.

In terms of short-range communications standards, it was
learned that Bluetooth Low Energy has the highest suitability
for healthcare, and can be immediately implemented into
healthcare systems being designed now and in the future.
As discussed in Section IV.A., BLE has already been imple-
mented by systems discussed in a reasonable number of
papers. Meanwhile, it was found that NB-IoT has the high-
est suitability for low-power, long-range communications in
healthcare, and will likely be deployed rapidly once the stan-
dard is finalized, due to the ability to re-use existing cellular
station hardware for this purpose.

From our research, it is found that the problem of cloud
storage has largely been solved. Additionally, extensive
research has been conducted into improving security mech-
anisms within the cloud. Several works have focused more

specifically on the need for privacy and security in health-
care applications. All of these works have made significant
improvements on previous methods, but there is still no per-
fect solution for security within the cloud.

Finally, several works have identified that machine
learning is extremely important in healthcare applications.
Machine learning as a whole is a topic that has been widely
considered by previous researchers. However, minimal works
exist on implementingmachine learning specifically for diag-
nostics or other health-related purposes.

B. RECOMMENDATIONS FOR FUTURE WORKS
The lessons learned through conducting this survey highlight
several areas for further research. In terms of sensors, much
progress has been made but there are still no available devices
that match the accuracy of hospital-grade devices without
compromising energy efficiency or wearability. This is espe-
cially true of complex devices such as blood pressure and
respiratory rate sensors, both of which would be invaluable to
the field of medicine. As such, further research efforts should
be made towards improving the quality of these sensors until
they are highly accurate, reliable, and comfortably wearable.
In our own future works, we will be placing particular focus
on developing a blood pressure monitor that is more wearable
than the works presented in this paper, without compromis-
ing accuracy. We will also look at reducing the impact of
motion on sensors, particularly for respiratory rate and pulse
sensors.

In terms of communications standards, it would be worth-
while to develop wearable healthcare systems that are reliant
on the emerging NB-IoT standard. As this is an extremely
new standard, no known work has implemented it into a
healthcare environment despite its obvious advantages for
this field. In our own future works, we will be implementing
NB-IoT into healthcare devices to confirm its suitability,
before using it as the foundation communications standard
for a healthcare system that is being developed in accordance
with the model proposed by this paper.

Data storage using cloud technologies has been extensively
considered, but data processing is an area in which further
research should be conducted. The development of cloud-
based algorithms that are capable of processing raw data from
complex sensors and extract meaningful information about a
person’s health should be continued.

Machine learning is another branch of data processing
that would be extremely valuable in healthcare scenarios.
If applied in the high-power computing environment of
the cloud, machine learning could provide diagnostics for
patients, make new discoveries about disease trends, and
aid in the development of treatment plans. Despite these
clear advantages, machine learning has not yet been widely
explored for healthcare applications, providing a significant
research opportunity. This opportunity should be seized by
researchers aiming to make notable improvements to the field
of IoT-based healthcare. In our own future work, we will be
investigating clustering and logistic regression algorithms as
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a means for providing diagnostics based on vital and other
sign information.

There is still much room for improvement in security and
privacy for cloud-based healthcare. No known encryption
scheme is ideal for protecting data whilst providing acces-
sibility for authorized parties and enabling machine learning.
ABE and FHE are schemes that provide appealing character-
istics, but are not lightweight enough for implementation into
wearable devices. Improving these schemes is the first active
area of research. Upon improving the schemes individually,
a lightweight ABE-FHE hybrid scheme should be considered,
as it could potentially provide all the desirable characteristics
for cloud-based healthcare security.

Overall, there is no known end-to-end system for general
or specific purposes that contains all components in our
proposed model; wearable sensors, short- and long-range
communications, cloud-based storage, and machine learning.
Developing such a systemwould be a significant achievement
in the field of IoT-based healthcare, and should be considered
as the ultimate goal for researchers in this area. In our own
future works, we will be striving to reach this goal through
the development of a wearable, IoT-based system for the
provision of emergency healthcare that incorporates health
sign monitoring, machine learning for diagnostics, and long-
range communications via LPWANs to notify emergency
service providers when a patient needs urgent help.

VII. CONCLUSION
In this work, we have proposed a unique model for future
IoT-based healthcare systems, which can be applied to both
general systems and systems that monitor specific condi-
tions. We then presented a thorough and systematic overview
of the state-of-the-art works relating to each component of
the proposed model. Several wearable, non-intrusive sensors
were presented and analyzed, with particular focus on those
monitoring vital signs, blood pressure, and blood oxygen lev-
els. Short-range and long-range communications standards
were then compared in terms of suitability for healthcare
applications. BLE and NB-IoT emerged as the most suitable
standards for short-range and long-range communications in
healthcare respectively.

Recent works utilizing cloud technologies for data storage
were presented, and showed that cloud is the best means for
storing and organizing big data in healthcare. It is also shown
by several works that significantly better data processing can
be performed in the cloud than can be performed by wearable
devices with their limited resources. The most significant
drawback of using cloud is that it introduces security risks,
and as suchwe presented several works focused on improving
security in the cloud. It was found that access control policies
and encryption can significantly enhance security, but that no
known standard is suitable for immediate application into a
wearable, IoT-based healthcare system.

Based on our analysis of state-of-the-art technologies in the
fields of wearable sensors, communications standards, and
cloud technology, we identified several significant areas for

future research. Machine learning and the development of a
secure yet lightweight encryption scheme for cloud storage
were the two areas that provide the most opportunity for
researchers seeking to make significant improvements in the
field of IoT-based healthcare.
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