
Received September 27, 2017, accepted November 19, 2017, date of publication November 29, 2017,
date of current version December 22, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2778338

A Canonical-Based NPN Boolean Matching
Algorithm Utilizing Boolean Difference
and Cofactor Signature
JULING ZHANG 1, GUOWU YANG1, (Member, IEEE),
WILLIAM N. N. HUNG2, (Member, IEEE), AND JINZHAO WU 3
1Big Data Research Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
2Synopsys Inc., Mountain View, CA 94043 USA
3Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis, Guangxi University for Nationalities, Nanning 530006, China

Jinzhao Wu (gxmdwjzh@aliyun.com).

This work was supported by the National Natural Science Foundation of China under Grant 61572109 and Grant 11371003 and in part by
the Special Fund for Bagui Scholars of Guangxi under Grant 113000200230010.

ABSTRACT This paper presents a new compact canonical-based algorithm to solve the problem of
single-output completely specified input negation and/or input permutation and/or output negation Boolean
matching. We propose a new signature vector Boolean difference and cofactor signature vector. Our
algorithm utilizes the Boolean difference, cofactor signature, and symmetry properties to search for canonical
transformations. The use of symmetry and Boolean difference notably reduces the search space and speeds
up the Booleanmatching process comparedwith the algorithm proposed byAdbollahi and Pedram.We tested
our algorithm on a large number of circuits. The experimental results showed that the average runtime of
our algorithm 37% higher and its average search space 67% smaller compared with Adbollahi and Pedram,
when tested on general circuits.

INDEX TERMS Boolean difference, boolean matching, NPN equivalent, symmetry.

I. INTRODUCTION
Judging whether two Boolean functions are equivalent under
input negation and/or input permutation and/or output nega-
tion (NPN) is an important problem applied in integrated
circuit design, logic synthesis, logic verification, and so
on. In cryptography, affine equivalence is used to resolve
S-box problem [2]. Technology mapping is the process of
selecting logic gates from a library to implement a Boolean
circuit [3]–[5]. However, every Boolean function has many
NPN-equivalent Boolean functions. Technology mapping
searches for an optimal combination of logic gates in terms of
area, performance and power dissipation. In the cell-library
binding process, some of the cells of a library are found
to realize some part of a multiple-level representation of a
Boolean function [6]. TwoBoolean functions f and g areNPN
equivalent if a transformation T exists that can transform f
to g. In technologymapping and cell-library binding, Boolean
matching is a key step.

In recent years, numerous methods have emerged to solve
the NPN Boolean matching problem. The main approaches
focus on the canonical-based, pairwise and SAT-based

algorithms. In the canonical-based algorithms, two Boolean
functions are NPN-equivalent when they have the same
canonical form. An NPN-equivalent class has a canon-
ical representative, and all the Boolean functions in an
NPN-equivalent class can be transformed to this canoni-
cal representative. The canonical representative may have a
maximal truth table or a minimal truth table or a maximal
signature vector [1], [6]–[12].

A pairwise Boolean matching algorithm searches the cor-
respondence relation of the variables of two Boolean func-
tions by their signatures. In the pairwise Boolean matching
process, the search operation terminated when it finds a trans-
formation T that can transform one Boolean function into the
other. The authors of [13]–[16] presented a pairwise Boolean
matching algorithm.

The NPN Boolean matching problem is converted to one
that involves solving Boolean satisfiability (SAT) problem.
To check whether a Boolean function f is equivalent to a
Boolean function g, the SAT-based algorithm first constructs
a circuit with the functionality f ⊕ g and then generates a
SAT instance (circuit CNF). Finally, it judges the Boolean

VOLUME 5, 2017
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

27777

https://orcid.org/0000-0003-4968-3896
https://orcid.org/0000-0002-0272-7487


J. Zhang et al.: Canonical-Based NPN Boolean Matching Algorithm Utilizing Boolean Difference and Cofactor Signature

satisfiability of this circuit CNF [17]. When the circuit CNF
is satisfied, f is not NPN-equivalent to g. In contrast, f is
NPN-equivalent to g when the circuit CNF is not satisfied.

It is well known that the search space complexity of NPN
Boolean matching is n!2n+1 using the exhaustive method.
Therefore, the exhaustive method is computationally infeasi-
ble when the number of inputs is large, and thus, it is impor-
tant to reduce the search space regardless of what approach
is used. Many properties of Boolean functions are used to
reduce the search space, including positive unate, negative
unate, cofactor and symmetry, and so on.

This paper studies canonical-based NPN Boolean
matching for single-output completely specified Boolean
functions. We exploit a new compact canonical form using a
DC signature vector. The canonical representative of an NPN
equivalent class has the maximal DC signature vector. The
use of the symmetry class, independent class and Boolean
difference signature dramatically reduce the search space of
the canonical transformation. The experimental results reflect
that using the Boolean difference signature is highly con-
ductive for distinguishing variables. The proposed algorithm
enhances the NPN Boolean matching speed and reduces the
search space significantly.

The remainder of this paper is organized as follows.
In Section II, we survey the state of the Boolean match-
ing problem. Section III introduces related preliminaries
and definitions used in our algorithm. Section IV presents
our canonical-based algorithm in detail. We demonstrate the
effectiveness of our algorithm by presenting experimental
results in Section V, and we summarize our work and outline
future work in Section VI.

II. RELATED WORKS
Numerous scholars have contributed to this problem in
prior Boolean matching studies. The authors of [1], [6]–[12]
studied the canonical-based Boolean matching algorithm
and proposed many practical methods for computing the
canonical representative. The authors of [7] studied the
P-equivalence problem and proposed a formal framework
that unified the spectral and canonical-based approaches.
They found a linear transformation to improve the speed of
P-equivalence matching. Chai and Kuehlmann of [8]
designed a fast Boolean matching that used satisfied counts
to assign the phases of the Boolean function and its variables,
the sums of rows or columns to search permutation, and
symmetry to refine transformations. In [6], a canonical-based
algorithm was presented that used table look-ups and a tree-
based breadth-first search to find the canonical representative
with the smallest value in the binary representation. Ciric
and Sechen [9] proposed the minimum-cost canonical form
for P-equivalence matching. In [10], the authors unified
multiple canonical-based approaches and proposed a new
P-equivalence matching algorithm. Generally, in the
canonical-based Boolean matching algorithms, the canoni-
cal representative has the maximal or minimal truth table.
Abdollahi and Pedram [1] exploited a new canonical form

using signature vector to resolve the NPN Boolean matching
problem. The algorithms proposed in [11] and [12] used
general symmetry and higher-order symmetry to realize fast
NPN Boolean classification. They classified a number of
Boolean functions with 6-16 inputs.

Many Boolean matching approaches have emerged based
on SAT. In a SAT-based Boolean matching algorithm,
Boolean matching is converted to a SAT or UNSAT prob-
lem. The authors of [17]–[22] all studied Boolean match-
ing using the SAT technique. The authors of [18] proposed
PP-equivalence matching based on graphs, simulation and
SAT; their approach can be applied to large-scale circuits.
Matsunaga [19] presented a Boolean matching method for
LUT-based circuits by using one-hot encoding and the
CEGAR technique to speed up Boolean matching [19]. The
authors of [20] exploited architectural symmetry in PLB and
proposed a SAT-based Booleanmatching algorithm to resolve
FPGA technology mapping. Wang et al. [17] integrated the
simulation and SAT technique, and proposed a P-equivalent
Boolean matching approach.

A pairwise Boolean matching algorithm was presented
in [13] for multiple-output Boolean functions with don’t care
sets and applied Boolean matching to technology mapping
to optimize circuits. Abdollahi [14] proposed a signature-
based Boolean matching to resolve NPN-equivalent problem
for single-output incompletely specified Boolean functions.
They tested their Boolean matching approach on 4-10 inputs
Boolean functions. The authors of [15] utilized a level-first
strategy and a set of filters to reduce the search space in
the pairwise Boolean matching process, while [16] unified
the structural signature of Boolean functions and Shannon
expansion to exploit a pairwise Boolean matching algorithm.

A few other methods exist for solving the Boolean match-
ing problem. In [23], the authors studied NPN Boolean
matching using a Walsh Spectral Decision Diagram, and
achieved an efficiency higher than that of Luks’ hypergraph
method. Lai et al. [24] utilized a conflict-driven learning
method to solve the multiple-output Boolean function match-
ing problem.

III. PRELIMINARIES AND PROBLEM STATEMENT
Let f (x1, x2, · · · , xn) be a single-output completely specified
Boolean function and X = (x1, · · · , xn) be a vector of f . |f |
denotes the number of minterms in f , which is also called the
0th-order signature.
Xπ (x1, · · · , xn) = (xπ (1), · · · , xπ (n)) is an input permu-

tation and Xϕ(x1, · · · , xn) = (xϕ(1)1 , · · · , xϕ(n)n ) is an input
negation. xϕ(i)i = xi when ϕ(i) = 1, and xϕ(i)i = x i when
ϕ(i) = 0. NPN equivalence is introduced by f ≡ g ⇔ f =
(g ◦ Xπ ◦ Xϕ)φ , where ϕ ∈ Bn(φ ∈ B) [25].
Definition 1 (NP Transformation): An NP transforma-

tion, T , is an onto mapping where T = {x1, · · · , xn} 7→
{xφ(1)
π (1)

, · · · , xφ(n)
π (n)
}.

For each Boolean function f in an NPN-equivalent class
with a canonical representative F, there must be an NP

27778 VOLUME 5, 2017



J. Zhang et al.: Canonical-Based NPN Boolean Matching Algorithm Utilizing Boolean Difference and Cofactor Signature

transformation T that can transform f to F, (i.e., f (T X ) =
F or f (T X ) = F). The T is called a canonical transformation.
Boolean function f1 is NPN-equivalent to f2 if and only if they
have the same canonical representative (i.e., F1 = F2).
A cofactor is a generalized signature of a Boolean function

that has been used in many Boolean matching algorithms.
Definition 2: (Cofactor Signature): The cofactor signature

of f with respect to xi(x i), |fxi |(|fxi |), is the onset size of fxi (fxi ),
where fxi = f [xi← 1] and fxi = f [xi← 0].
The cofactor signature of f with respect to a cube b, |fb|,

is the onset size of fb, where fb = f [b← 1]. If the cube b has
k variables, |fb| is denoted as the kth-order signature [1].
A Boolean function may have some independent variables;

however, the value of a Boolean function is irrelevant to these
independent variables. The negative cofactor and positive
cofactor of a variable are used to check its independence.
Definition 3: (Boolean Difference Signature):The Boolean

difference signature of f with respect to xi,|f
′

xi |, is the onset
size of f

′

xi , where f
′

xi = fxi ⊕ fxi [26].
A variable xi is said to be an independent variable when it

satisfies |f ′xi | = 0. The independence property of an indepen-
dent variable does not changed under NP transformation.
Definition 4: (Variable Symmetry): The variables xi and

xj(x j) of a Boolean function f are symmetric if f is invariant
after swapping xi and xj(x j) [26].
Two NP transformations are equal when two or more sym-

metric variables are permuted. Therefore, symmetry is always
used to reduce the search space for Boolean matching.

IV. CANONICAL-BASED BOOLEAN MATCHING
The goal of our algorithm is to find the canonical transforma-
tion T of a Boolean function f , which can transform f to F
that has the maximal DC signature vector. During the search
process, we searchmany candidate canonical transformations
by sorting and grouping variables. Then, we compare the DC
signature vectors of these candidate canonical transforma-
tions to find the target canonical transformation T .

A. THE PROPOSED CANONICAL FORM
The canonical form presented in [1] has the maximal sig-
nature vector. For some Boolean functions, many variables
have the same cofactor signature and are not symmetric
variables. In this case, the algorithm proposed in [1] will
generate multiple splitting ways, which increases the search
space of canonical transformation. Therefore, to reduce the
search space, further methods to distinguish these variables
are required.

Although the variables of many Boolean functions have the
same cofactor signature, their Boolean difference signatures
are the different. Therefore, we proposes DC signature vector
that can resolve the shortcoming in [1] described above.
Definition 5: (≺): Let ‘‘≺’’ denote the lexicographic com-

parison of two vectors.
Definition 6: (1st DC Signature Value): The 1st Boolean

Difference and Cofactor (DC) signature value of a Boolean
function f with respect to xi is a two-tuple (|fxi |, |f

′

xi |).

The 1st DC signature values of the two variables xi and
xj of a Boolean function f are (|fxi |, |f

′

xi |) and (|fxj |, |f
′

xj |),
respectively. When they satisfy one of the two following
cases, then (|fxi |, |f

′

xi |) ≺ (|fxj |, |f
′

xj |) and the relation of xi and
xj is xi < xj.
1) |fxi | < |fxj |
2) |fxi | = |fxj | and |f

′

xi | < |f
′

xj |

Definition 7: (kth-order DC Signature Value): The
kth-order DC signature value of a Boolean function f with
respect to a cube b, b = xi1 · · · xik , is (|fxi1···xik |, |f

′

xi1···xik |).
Definition 8: ( DC Signature Vector): The DC signature

vector of an n-input Boolean function f is

Df = {|f |, (|fx1 |, |f
′

x1 |), · · · , (|fxn |, |f
′

xn |), (|fx1x2 |, |f
′

x1x2 |),

· · · , (|fxn−1xn |, |f
′

xn−1xn |), · · · , (|fx1···xn−1 |, |f
′

x1···xn−1 |),

(|fx2···xn |, |f
′

x2···xn |), |fx1···xn |},

which is composed of its 0th-order signature, 1st DC signa-
ture values and higher order DC signature values up to the
nth-order signature.
The authors of [1] proved that each Boolean function has

a unique signature vector. Therefore, each Boolean function
also has a unique DC signature vector. We need not prove that
here.
Definition 9: (The Canonical Representative): The canon-

ical representative of an NPN-equivalent class EC =

{f1, · · · , fm} is the Boolean function that has the maximal DC
signature vector.

Assume that two Boolean functions f and g have the
DC signature vectors Df and Dg. When comparing Df and
Dg, we compare their 0th-order signature first, then their
1st DC signature values, 2nd-order DC signature values and
higher DC signature values until an inequality is encountered.
Df ≺ Dg when the corresponding DC signature value ofDf is
less than that ofDg. If and only ifDf ≺ Dg, the order relation
of f and g is f < g.
Definition 10: (The Maximal Canonical Transformation):

The transformationCf = (t1, t2, · · · , tn) that has themaximal
DC signature vector is the maximal canonical transformation.
In this paper, we use T = (t1, t2, · · · , tn) to denote a

candidate canonical transformation searched in a canonized
process where ti = xϕ(i)π (i). For a candidate canonical transfor-
mation T , the DC signature vector is as follows:

DT = {|f |, (|ft1 |, |f
′

t1 |), · · · , (|ftn |, |f
′

tn |), (|ft1t2 |, |f
′

t1t2 |),

· · · , (|ftn−1tn |, |f
′

tn−1tn |), · · · , (|ft1···tn−1 |, |f
′

t1···tn−1 |),

(|ft2···tn |, |f
′

t2···tn |), |ft1···tn |}

In the canonized process, multiple candidate canonical
transformations similar to T exist. The maximal canonical
transformation Cf is the candidate canonical transformation
that has the maximal DC signature vector. Consider two
candidate canonical transformations T1 and T2: T1 < T2
when DT1 ≺ DT2.
For an n-input Boolean function f , n!2n NP transformations

exist. The canonical transformation T of a Boolean function

VOLUME 5, 2017 27779



J. Zhang et al.: Canonical-Based NPN Boolean Matching Algorithm Utilizing Boolean Difference and Cofactor Signature

f is the transformation that can transform f to F when F has
the maximal DC signature vector in its NPN-equivalent class.
We use Cf to express the maximal canonical transformation
of Boolean function f found in the canonical process. The
input phase assignment and reindexing transformation is X =
(x1, · · · , xn) to Cf = (t1, · · · , tn), where F(Cf ) = f (X ). The
relation between f and F can be expressed by an NP transfor-
mation T , whereX = T Cf [1]. Therefore, the canonical form
of a Boolean function f is f (T X ), and f (T X ) = f (Cf −1X ).

The key step of our algorithm is sorting and grouping the
variables according to their DC signature values. After each
grouping, a group result is obtained.We denoteG as the group
result of f , and G = {G1, · · · ,Gm}, where m ∈ {1, · · · , n}.
Every group Gi has one or more classes, and each class has
one or more variables. We use Gi = {Ci1, · · · ,Cik} denote a
group with k classes.

In the process of grouping variables, each group may have
many classes. We categorize these as asymmetric, symmetric
and independent classes.
Definition 11: (Asymmetric Class): Every asymmetric

variable in a group is an asymmetric class.
Definition 12: (Symmetric Class): A variable set Ci =
{xi1, · · · , xik} and k ∈ {2, · · · , n} is a symmetric class if any
arbitrary two variables in Ci are symmetric.
Definition 13: (Independent Class): A variable set Ci =
{xi1, · · · , xik} and k ∈ {1, · · · , n− 1} is an independent class
if every variable in Ci is an independent variable.

B. COMPUTE CANONICAL FORM
Themaximal canonical transformationCf is found after com-
paring all the candidate canonical transformations. We first
try to use the 1st DC signature value to group the vari-
ables. When the 1st DC signature values can not resolve
all the groups, we use the 2nd-order DC signature values
and higher DC signature values until all the groups are
resolved. Then, our algorithm generates a candidate canonical
transformation.

In the matching process of two Boolean functions f and g,
the algorithm first judges whether there is an output negation
between them. If |f | = |g|∧|f | 6= |g|, the phases of f and g are
positive. There is no output negation and our algorithm com-
putes the canonical form of f and g. If |f | = |g| ∧ |f | 6= |g|,
the phase of f is positive and the phase of g is negative.
There is an output negation and our algorithm computes the
canonical form of f and g. The matching runtime will be
double when |f | = |g| ∧ |f | = |g|, because our algorithm
must try two phases for f and g.
The phase of a variable is obtained by comparing the size of

its positive and negative cofactors. The phase of xi is positive
when |fxi | > |fxi |, and negative when |fxi | < |fxi |. When
|fxi | = |fxi |, we need to use a higher signature to determine
its phase. If the higher signature cannot determine its phase,
we must try both positive and negative.

If variable xi of a Boolean function f is an indepen-
dent variable, the phase of xi is assigned as positive when
|fxi | = |fxi | because xi is independent to the Boolean function.

If f has k independent variables and their phases cannot be
determined by comparing the positive and negative cofactors,
we may try two phases; which doubles the search space.
Therefore, checking independent variables is a necessary
operation.

Procedure 1 Compute Canonical Form
Input: f
Output: F

function Canonical(f )
CT_List=NULL
Create Boolean function f and compute |f |
Compute the 1st DC signature of f
Determine the phase of x1, · · · , xn
Check the independent variables
Check the symmetric variable
m=group(f )
SEARCH(f ,CT_list, group,m)
if |f | = 2n−1 then

f = f
Compute the 1st difference signature of f
Determine the phases of x1, · · · , xn
Check the independent variables
Check the symmetry variable
m=group(f )
SEARCH(f ,CT_list, group,m)
T = Cf −1

else
T = Cf −1

end if
end function

The purpose of Procedure 1 is to compute the canoni-
cal form of a Boolean function f . The individual tasks in
Procedure 1 are as follows.

1) Compute |f |.
2) Compute the 1st DC signature values of all variables

of f .
3) The 1st DC signature value determines the phases of

all variables. Variables whose phases are not determined are
handled in Procedure 2. The method used is the same as that
described in [1].

4) Check the symmetry of all variables.
5) Check the independent variables. If the phases of inde-

pendent variables are not determined, assign the positive
phase to them.

6) Group all variables by comparing their 1st DC signature
values.

7) Call Procedure 2 to get the maximal canonical transfor-
mation Cf .
8) Compute canonical form by the maximal canonical

transformation Cf .
Example 1: Consider a 7-input Boolean function f (X ) =

x3x5x7 + x1x2x4 + x1x2x4x5x6 + x3x4x5x6 + x2x3x4x5x6 +
x2x3x4x5x6, whose phase assignment and group variables are
as follows.

27780 VOLUME 5, 2017



J. Zhang et al.: Canonical-Based NPN Boolean Matching Algorithm Utilizing Boolean Difference and Cofactor Signature

Procedure 2 Canonical transformation search process
Input: f ,map_list, group,m
Output: Cf

function Search(f ,CT_list, group,m)
if D1 then

if Empty(Cf ) then
Cf = T

else if DCf ≺ DT then
Cf = T

end if
else

for all Gi, i ∈ (1, · · · ,m) do
if D2 then

break
end if

end for
if D3 then

Add the variables in Gi to CT_list
SEARCH(f ,CT_list, group,m)

else
for all Cij, j ∈ {1, · · · , k} do

Split Gi
create node_list

end for
for all node_j in node_list do

UPDATE_SEQUENCE(node_j, group)
m=m+1
if D1 then

if Empty(Cf ) then
Cf = T

else if DCf ≺ DT then
Cf = T

end if
else

Add the variables in Gi to CT_list
Update_signature(f )
m=group(f )
SEARCH(f ,CT_list, group,m)

end if
end for

end if
end if

end function

Procedure 1 computes |f | = 46 and assigns a negative
phase to f . Then, it computes the 1st DC signature value of
all the variables of f , and the results are {(16,28), (16,28),
(30,28), (22,44), (24,44), (15,32), (30,28)}. The variables x3,
x5 and x7 are positive, and the others are negative.

Check the symmetry of every variable. There are two
symmetric class {x1, x2} and {x3, x7}. Group the variables
according to the 1st DC signature value. The grouping result
is G = {G1,G2,G3}, and G1 = {C11} = {x6}, G2 =

{C21,C22} = {{x1, x2}, {x3, x7}} and G3 = {C31,C32} =

{{x4}, {x5}}.

C. SEARCHING THE CANONICAL TRANSFORMATIONS
After obtaining the initial group results, Procedure 2 begins to
search candidate canonical transformations. Procedure 2 first
addresses the first group G1, then group G2, and so on until
all groups have been resolved. A group Gi is resolved when

Gi has only one class. There are three possible cases when
group Gi is resolved.
1) Group Gi has only one asymmetric variable and the

phase of this variable is determined.
2) Group Gi has multiple variables, an arbitrary two vari-

ables of Gi are symmetric, and the phases of all variables of
Gi are determined.
3) Group Gi has one or more variables, all of which are

independent variables.
Because the Boolean difference signature of an indepen-

dent variable is 0 and the Boolean difference signature of
dependent variable must not be 0, a group contains only
independent variables when any independent variable occurs.

When searching candidate canonical formations, all the
candidate canonical transformations are stored in a tree and
Procedure 2 uses a depth-first search to find candidate canon-
ical transformations. Each branch of the candidate canonical
transformation tree is a candidate canonical transformation.
In Procedure 2, CT_list is the candidate canonical transfor-
mation tree, which is initialized to NULL. T is the candidate
canonical transformation found in the search process, and
Cf is the maximal canonical transformation, which is initial-
ized empty.

Let G = {G1,G2, · · · ,Gm} be the grouping results that
Procedure 1 obtained using the 1st DC signature values. The
first step in Procedure 2 is to check whether all groups are
resolved. Here we use the condition D1 to denote whether all
groups are resolved.

When D1 is true, Procedure 2 finds a candidate canonical
transformation T . When this occurs, Procedure 2 assigns T
to Cf if Cf is empty or DCf ≺ DT . Then, Procedure 2 contin-
ues to search for other candidate canonical transformations
until all the candidate canonical transformations have been
searched.

When D1 is false, some groups could not be resolved.
At this point, Procedure 2 searches the group Gi which is
an unresolved group that has the minimal sequence number.
Condition D2 becomes true when an unresolved group is
found.

When group Gi (the unresolved group having the minimal
sequence number) is found, it is handled in two ways.

1) Group Gi can be resolved.
The condition D3 denotes whether group Gi can be

resolved. When D3 is true, Procedure 2 adds all the variables
in Gi to the candidate canonical transformation tree and calls
itself recursively.

In Example 1, the condition D1 is false. Procedure 2 finds
that group G1 is the first unresolved group and that it can
be resolved in this call. Procedure 2 adds variable x6 to the
candidate canonical transformation tree, giving a new layer
with a node. Then, Procedure 2 calls itself recursively.

2) Group Gi cannot be resolved.
When condition D3 is false, Procedure 2 splits group Gi.

Group Gi has k classes; thus, there are k approaches for
splitting it. Let group Gi = {Ci1, · · · ,Cik}, select one class
as group Gi; the other classes are in group Gi+1. The first

VOLUME 5, 2017 27781



J. Zhang et al.: Canonical-Based NPN Boolean Matching Algorithm Utilizing Boolean Difference and Cofactor Signature

splitting approach is P1 = {Gi,Gi+1} = {{Ci1}, {Ci2,
· · · ,Cik}}, the second splitting approach is P2 =

{Gi,Gi+1} = {{Ci2}, {Ci1,Ci3, · · · ,Cik}}, and the kth split-
ting approach is Pk = {Gi,Gi+1} = {{Cik}, {Ci1, · · · ,
Ci(k−1)}}. Note when the phases of the variables of group Gi
are not determined, there are 2k splitting approaches, because
we need to try the positive and the negative.

Suppose there are k splitting approaches. These k split-
ting approaches are stored in the variable node_list.
Then, Procedure 2 selects one splitting approach from
the variable node_list in order. Let Procedure 2 selects
the qth splitting approach Pq = {Gi,Gi+1} =

{{Ciq}, {Ci1, · · · ,Ci(q−1),Ci(q+1), · · · ,Cik}}, Procedure 2
calls UPDATE_SEQUENCE() to update the sequence num-
ber of the groups from Gi to Gm. the group sequence
number of the variables of Ciq remains unchanged and the
group sequence number of the variables of {Ci1, · · · ,Ci(q−1),
Ci(q+1), · · · ,Cik} is incremented by one. Finally, the group
sequence number of the variables of original group
Gi+1, · · · ,Gm is incremented by one, and the value of m is
incremented by one.

Then, Procedure 2 checks the condition D1. When con-
dition D1 is true, Procedure 2 creates a candidate canonical
transformation T and compares the DC signature vector of
T andCf . When conditionD1 is false, the qth branch is added
to the |Ciq| layers as one layer with one node. In other words,
|Ciq| expresses the number of variables in Ciq. Procedure 2
calls Update_signature() to update the DC signature value
of f and regroups the variables of Gi+1, · · · ,Gm, and calls
itself recursively.

Procedure 2 starts with the first splitting approach and
then processes the next splitting approach until all splitting
approaches have been processed.

In Example 1, after handling group G1, group G2 is the
next unresolved group with the minimal sequence number.
Group G2 has two symmetric classes; therefore, it can not
be resolved. There are two ways to split group G2: P1 =
{G2,G3} = {{x1, x2}, {x3, x7}} and P2 = {G2,G3} =

{{x3, x7}, {x1, x2}}. The first branch added to the candidate
canonical transformation tree has two layers with the nodes x1
and x2. The second branch added to the candidate canonical
transformation tree has two layers with the nodes x3 and x7.
Procedure 2 selects one splitting approach in sequence and

updates the DC signature values. Themethod for updating the
DC signature is similar to that used in [1] to update signatures.
In Example 1, Procedure 2 uses variable x6 to compute the
2nd-order DC signature value for the other variables. Thus,
there are new DC signature values, and Procedure 2 regroups
all the unresolved groups and calls itself recursively.

Our algorithm uses three strategies to reduce the search
space.

1) A symmetric class has multiple variables. When we
group and sort variables, all the variables of a symmetric class
are regarded as a single operational object.

2) Take advantage of the independence of independent
variable. When the phase of independent variables cannot

be determined, we assign positive phase to them. If we do
not make use of independent variable, a independent class
Cil is a symmetric class. When the phases of the variables
in Cil are not determined, the number of candidate canonical
transformations is doubled. When there are other symmetric
classes having the same signatures to Cil , the number of
candidate canonical transformations is grow even more.

3) The combination of the cofactor signature and Boolean
difference signature can better distinguish variables.

In Example 1, after updating the DC signature using vari-
able x1, variables x4 and x5 are also resolved. There are
two candidate canonical transformations T1 = {x6, x1,
x2, x3, x7, x4, x5} and T2 = {x6, x3, x7, x1, x2, x4, x5}. The
candidate canonical transformation tree of Example 1 is
shown in Fig. 1.

FIGURE 1. The candidate canonical transformation tree of Example 1.

For a 7-input Boolean function, there are 7!27 NP transfor-
mations, while only two candidate canonical transformations
exist after using our algorithm in Example 1. Through the DC
signature vector comparison, the maximal canonical transfor-
mation Cf is {x6, x1, x2, x3, x7, x4, x5}.
To demonstrate that our algorithm is superior to the

algorithm proposed in [1], we use both algorithms to
search the maximal candidate canonical transformations in
Example 2.
Example 2: Consider a 6-input Boolean function f (X ) =

x1x2x3x4+ x1x2x3x4+ x1x2x3x4+ x1x2x3x6+ x1x2x4x5x6+
x1x2x3x6 + x1x2x3x6 + x1x2x3x4x5 + x1x2x3x4x6 +
x1x2x3x5x6+ x1x2x3x5x6+ x1x2x3x4x5x6+ x1x2x3x4x5x6+
x1x2x3x4x5x6. We use both the signature vector from [1] and
the DC signature vector proposed in this paper to search the
candidate canonical transformations.

27782 VOLUME 5, 2017



J. Zhang et al.: Canonical-Based NPN Boolean Matching Algorithm Utilizing Boolean Difference and Cofactor Signature

1) Using the algorithm of [1], the candidate canonical
transformation search process is as follows.

The algorithm from [1] computes the 1st signature, checks
the symmetry and groups variables. The Boolean function f
has 32minterms, i.e., |f | = 32. The results of the 1st signature
are |fx1 | = 13 and |fx2 | = |fx3 | = |fx4 | = |fx5 | = |fx6 | = 16.
There are no symmetric classes. The phase of variable x1
is negative and the phases of the other variables are not
determined. According to the 1st signatures, the grouping
result is G = {G1,G2} = {{x1}, {x2, x3, x4, x5, x6}}.

The first group G1 can be resolved, and the variable x1
is used to compute the 2nd-order signature of the vari-
ables in G2. The results are |fx1x2 | = 9 and |fx1x3 | =
|fx1x4 ||fx1x5 ||fx1x6 | = 10. We know that |fx1 | = |f | −
|fx1 | = 19; therefore, we can determine the phases of these
5 variables. Variable x2 is negative and the others are positive.
But G2 cannot be resolved: these 5 variables have the same
2nd-order signature. Group G2 has 5 asymmetric classes,
the algorithm of [1] splitsG2 and there are fiveways to split it.
• P1 = {G2,G3} = {{x2}, {x3, x4, x5, x6}}
• P2 = {G2,G3} = {{x3}, {x2, x4, x5, x6}}
• P3 = {G2,G3} = {{x4}, {x2, x3, x5, x6}}
• P4 = {G2,G3} = {{x5}, {x2, x3, x4, x6}}
• P5 = {G2,G3} = {{x6}, {x2, x3, x4, x5}}
The algorithm of [1] traverses each possible split shown

above. We select the first split approach as an example. The
updated groups are G1 = {x1}, G2 = {x2} and G3 =

{x3, x4, x5, x6}.
Group G2 can be resolved; therefore, we use variable x2

to compute 2nd-order signature and group variables. The
2nd-order signatures of the unresolved variables are |fx2x3 | =
|fx2x4 | = |fx2x5 | = |fx2x6 | = 8. From these results, we also
know that group G3 also cannot be resolved. There are four
ways to split it as follows.
• P1 = {G3,G4} = {{x3}, {x4, x5, x6}}
• P2 = {G3,G4} = {{x4}, {x3, x5, x6}}
• P3 = {G3,G4} = {{x5}, {x3, x4, x6}}
• P4 = {G3,G4} = {{x6}, {x3, x4, x5}}
Continuing, the algorithm of [1] computes its signature

and splits the group. Because variables x2, x3, x4, x5 and x6
always have the same 2nd-order signature, the following
computations will generate a total of 5× 4× 3× 2 candidate
canonical transformations.

2) Using the algorithm proposed by this paper, the candi-
date canonical transformation search process is as follows.

Our algorithm computes the 1st DC signature value of each
variable, checks the symmetry, and searches the independent
variables and groups variables by the 1st DC signature value.
Boolean function f has no symmetry classes or indepen-

dent classes. The 1st DC signature values are (|fx1 |, |f
′

x1 |) =
(13, 64), (|fx2 |, |f

′

x2 |) = (16, 36), (|fx3 |, |f
′

x3 |) = (16, 52),
(|fx4 |, |f

′

x4 |) = (16, 20), (|fx5 |, |f
′

x5 |) = (16, 12) and
(|fx6 |, |f

′

x6 |) = (16, 28).
Because |f | = 32, we can determine that the phase of

variable x1 is negative and the phases of others are not

determined. Our algorithm groups the variables and generates
6 groups: G1 = {x1}, G2 = {x3}, G3 = {x2},G4 = {x6},
G5 = {x4} and G6 = {x5}.

Group G1 can be resolved. The other groups are not
resolved because the phases of the variables in these groups
have not been determined. Our algorithm uses the variable
x1 to compute the 2nd-order DC signature values, which
are: (|fx1x2 |, |fx1x2 |

′

) = (9, 18), (|fx1x3 |, |fx1x3 |
′

) = (10, 26),
(|fx1x4 |, |fx1x4 |

′

) = (10, 10), (|fx1x5 |, |fx1x5 |
′

) = (10, 6), and
(|fx1x6 |, |fx1x6 |

′

) = (10, 14).
From the above 2nd-order DC signature values, the phases

of all variables are determined. Therefore, groups G2, G3,
G4, G5 and G6 are all resolved. One candidate canonical
transformation is generated: {x1, x3, x2, x6, x4, x5}.

Because |f | = |f |, the algorithm of [1] and ours must
both perform the same search for f . However, the Boolean
function f results in 240 candidate canonical transformations
when computed by the algorithm of [1] but only 2 when
computed by the algorithm proposed in this paper.

Using our algorithm, theNPNBooleanmatching algorithm
is denoted as follows: Given two Boolean function f (X )
and g(X), Boolean function f is NPN-equivalent to g if the
canonical form F of f is equal to that of g.

V. EXPERIMENTAL RESULTS
We reimplemented the algorithm of [1] to compare it with
the algorithm of this paper and obtain supporting experi-
mental evidence. The two algorithms were tested on a set
of randomly generated circuits and a set of MCNC bench-
mark circuits. The two circuit sets include a number of
NPN-equivalent circuits. We tested the NPN matching run-
time and the number of candidate canonical transformations
generated when searching for the canonical transformation of
a Boolean function. The runtime is measured in seconds. The
following experimental results were obtained on a computer
equipped with 3.3 GHz CPU and 4GB RAM.

TABLE 1. Boolean matching results on the random circuits.

Tables 1 and 2 show the experimental results on the ran-
dom circuit and MCNC benchmark circuit sets, respectively.

1A.T: Average runtime, A.C.N: Average number of candidate canonical
transformations

VOLUME 5, 2017 27783



J. Zhang et al.: Canonical-Based NPN Boolean Matching Algorithm Utilizing Boolean Difference and Cofactor Signature

TABLE 2. Boolean matching results on the MCNC benchmark circuits.

FIGURE 2. The comparison results on the equivalent random circuits.

In these two tables, the first column shows the number of
inputs (#I), the second and third columns show the average
matching runtime (#A.T) and the average number of can-
didate canonical transformations (#A.C.T) of the algorithm
in [1], respectively, and the forth and fifth columns show the
average matching runtime and the average number of candi-
date canonical transformations of our algorithm, respectively.

The experimental results listed in Table 1 show that our
algorithm improves the speed of the Boolean matching pro-
cess and reduces the search space effectively. In the best
case, our algorithm’s runtime is 70% faster and its search
space is 82% smaller than that of the algorithm from [1].
On average, our algorithm improves the runtime by 37% and
reduces the search space by 67%. Fig. 2 shows the results on
the equivalent random circuits.

Form Table 2, we can see that the average runtime
improves by 83% and the search space is reduced by 96%

compared with [1] when the number of input variables is 7.
However, neither the runtime nor the search space are dras-
tically improved in the other input cases. In majority of
the circuits of the MCNC benchmark, using only cofactor
signature serves to quickly identify the variables. Therefore,
the average runtime of the algorithm of [1] when tested
on 22 inputs is slightly faster than ours. Despite this, our
algorithm improves the average runtime by 6% and reduces
the average search space by 19% compared with that of [1]
when tested on the MCNC benchmark circuits.

VI. CONCLUSIONS
In this paper, we propose a canonical-based Boolean match-
ing algorithm. The proposed DC signature vector is more
effective in computing canonical form than the algorithm
of [1]. We test the runtime and the canonical transfor-
mation search space of Boolean matching algorithms with
7-22 inputs. The experimental results show that the average
runtime of our algorithm is 37% faster and its search space
is 67% smaller than those of the algorithm proposed in [1].
The algorithm proposed in this paper is highly effective at
reducing the search space and enhancing the Boolean match-
ing speed. In future work, we plan to extend this Boolean
matching approach to Boolean matching with don’t care set
and multiple-output Boolean matching.

REFERENCES
[1] A. Abdollahi andM. Pedram, ‘‘Symmetry detection and Boolean matching

utilizing a signature-based canonical form of Boolean functions,’’ IEEE
Trans. Comput.-Aided Design Integr., vol. 27, no. 6, pp. 1128–1137,
Jun. 2008.

[2] Y. Zhang, G. Yang, W. N. Hung, and J. Zhang, ‘‘Computing affine equiv-
alence classes of Boolean functions by group isomorphism,’’ IEEE Trans.
Comput., vol. 65, no. 12, pp. 3606–3616, Dec. 2016.

[3] B. Kapoor, ‘‘Improved technology mapping using a new approach to
Boolean matching,’’ in Proc. Eur. Design Test Conf., Paris, France,
Mar. 1995, pp. 86–90.

[4] F. Mailhot and G. De Micheli, ‘‘Technology mapping using Boolean
matching and don’t care sets,’’ in Proc. Eur. Design Autom. Conf. (EDAC),
Glasgow, U.K., Mar. 1990, pp. 212–216.

[5] M. Damiani and A. Y. Selchenko, ‘‘Boolean technology mapping based
on logic decomposition,’’ in Proc. 16th Symp. Integr. Circuits Syst.
Design (SBCCI), Sao Paulo, Brazil, Sep. 2003, pp. 35–40.

[6] D. Debnath and T. Sasao, ‘‘Efficient computation of canonical form for
Boolean matching in large libraries,’’ in Proc. Asia South Pacific Design
Autom. Conf. (ASP-DAC), Yohohama, Japan, Jan. 2004, pp. 591–596.

[7] G. Agosta, F. Bruschi, G. Pelosi, and D. Sciuto, ‘‘A transform-parametric
approach to Boolean matching,’’ IEEE Trans. Comput.-Aided Design
Integr., vol. 28, no. 6, pp. 805–817, Jun. 2009.

[8] D. Chai and A. Kuehlmann, ‘‘Building a better Boolean matcher and
symmetry detector,’’ in Proc. Design, Autom. Test Eur. (DATE), Munich,
Germany, Mar. 2006, pp. 1–6.

[9] J. Ciric and C. Sechen, ‘‘Efficient canonical form for Boolean matching of
complex functions in large libraries,’’ IEEE Trans. Comput.-Aided Design
Integr., vol. 22, no. 5, pp. 535–544, May 2003.

[10] G. Agosta, F. Bruschi, G. Pelosi, and D. Sciuto, ‘‘A unified approach
to canonical form-based Boolean matching,’’ in Proc. 44th ACM/IEEE
Design Autom. Conf. (DAC), San Diego, CA, USA, Jun. 2007,
pp. 841–846.

[11] Z. Huang, L. Wang, and Y. Nasikovskiy, ‘‘Fast Boolean matching based on
NPN classification,’’ in Proc. Int. Conf. Field-Program. Technol. (FPT),
Kyoto, Japan, Dec. 2013, pp. 310–313.

[12] A. Petkovska, M. Soeken, G. De Micheli, P. Ienne, and A. Mishchenko,
‘‘Fast hierarchical NPN classification,’’ in Proc. Int. Conf. Field Program.
Logic Appl., Lausanne, Switzerland, Aug./Sep. 2016, pp. 1–4.

27784 VOLUME 5, 2017



J. Zhang et al.: Canonical-Based NPN Boolean Matching Algorithm Utilizing Boolean Difference and Cofactor Signature

[13] K.-C. Chen and J. C.-Y. Yang, ‘‘Boolean matching algorithms,’’ in
Proc. Int. Symp. VLSI Technol., Syst., Appl., Taipei, Taiwan, May 1993,
pp. 44–48.

[14] A. Abdollahi, ‘‘Signature based Boolean matching in the presence of don’t
cares,’’ in Proc. 45th ACM/IEEE Design Autom. Conf. (DAC), Anaheim,
CA, USA, Jun. 2008, pp. 642–647.

[15] Y.-T. Lai, S. Sastry, and M. Pedram, ‘‘Boolean matching using binary
decision diagrams with applications to logic synthesis and verification,’’
in Proc. IEEE Int. Conf. Comput. Design, VLSI Comput. Process. (ICCD),
Cambridge, MA, USA, Oct. 1992, pp. 452–458.

[16] J. Zhang, G. Yang, W. N. Hung, and Y. Zhang. (2017). ‘‘An efficient NPN
Boolean matching algorithm based on structural signature and shannon
expansion.’’ [Online]. Available: https://arxiv.org/abs/1708.04597

[17] K. H. Wang, C. M. Chan, and J. C. Liu, ‘‘Simulation and SAT-based
Boolean matching for large Boolean networks,’’ in Proc. ACM/IEEE
Design Autom. Conf. (DAC), San Francisco, CA, USA, Jul. 2009,
pp. 396–401.

[18] H. Katebi and L. Igor, ‘‘Large-scale Boolean matching,’’ in Advanced
Techniques in Logic Synthesis, Optimizations and Applications. NewYork,
NY, USA: springer, 2010, pp. 771–776.

[19] Y. Matsunaga, ‘‘Accelerating sat-based Boolean matching for heteroge-
neous fpgas using one-hot encoding and cegar technique,’’ in Proc. Design
Autom. Conf., Chiba, Japan, Jan. 2016, pp. 255–260.

[20] X.-Q. Wang and Y. Yang, ‘‘New approach of exploiting symmetry in SAT-
based Boolean matching for FPGA technology mapping,’’ in Proc. IEEE
Int. Conf. Veh. Electron. Saf., Dongguan, China, Jul. 2013, pp. 282–285.

[21] S. Safarpour, A. Veneris, G. Baeckler, and R. Yuan, ‘‘Efficient SAT-based
Boolean matching for FPGA technology mapping,’’ in Proc. ACM/IEEE
Design Autom. Conf., San Francisco, CA, USA, Jul. 2006, pp. 466–471.

[22] K.-H. Wang and C.-M. Chan, ‘‘Incremental learning approach and SAT
model for Boolean matching with don’t cares,’’ in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design, San Jose, CA, USA, Nov. 2007,
pp. 234–239.

[23] J. Moore, K. Fazel, M. A. Thornton, and D. M. Miller, ‘‘Boolean func-
tion matching using walsh spectral decision diagrams,’’ in Proc. IEEE
Dallas/CASWorkshop Design, Appl., Integr. Softw., Richardson, TX, USA,
Oct. 2008, pp. 127–130.

[24] C.-F. Lai, J.-H. R. Jiang, and K.-H. Wang, ‘‘Boolean matching of
function vectors with strengthened learning,’’ in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Design (ICCAD), San Jose, CA, USA, Nov. 2010,
pp. 596–601.

[25] U. Hinsberger and R. Kolla, ‘‘Boolean matching for large libraries,’’
in Proc. Design Autom. Conf., San Francisco, CA, USA, May 1998,
pp. 206–211.

[26] J. S. Zhang, M. Chrzanowska-Jeske, A. Mishchenko, and J. R. Burch,
‘‘Linear cofactor relationships in Boolean functions,’’ IEEE Trans.
Comput.-Aided Design Integr., vol. 25, no. 6, pp. 1011–1023, Jun. 2006.

JULING ZHANG is currently pursuing the Ph.D.
with the School of Computer Science and Engi-
neering, University of Electronic Science and
Technology of China, China. Her research inter-
ests include logic synthesis, Booleanmatching and
information security risk assessments.

GUOWU YANG received the B.S. degree from the
University of Science and Technology of China
in 1989, the M.S. degree from the Wuhan Univer-
sity of Technology in 1994, and the Ph.D. degree in
electrical and computer engineering from Portland
State University in 2005. He was with the Wuhan
University of Technology from 1989 to 2001 and
with Portland State University from 2005 to 2006.
He is currently a Full Professor with the University
of Electronic Science and Technology of China.

His research interests include verification, logic synthesis, quantum comput-
ing, and machine learning. He has published over 100 journal and conference
papers.

WILLIAM N. N. HUNG received the B.S.
and M.S. degrees from the University of Texas
at Austin in 1994 and 1997, respectively,
and the Ph.D. from Portland State University
in 2002 all in electrical and computer engineering,
respectively.

He is currently leading technological innova-
tion efforts on constraint-based verification and
hardware-accelerated verification, such as emula-
tion and prototyping as Synopsys Scientist (Senior

Director) with Synopsys, Mountain View, CA, USA. He was with several
high-tech companies, including Intel, Syncplicity and Synopsys. He has
over 19 years of industrial Research and Development experience, has
published over 80 journal and conference papers, and has patented numerous
inventions.

Dr. Hung has served on the technical program committees of conferences,
such as DAC, DATE, ICCD, CAV, FMCAD, CEC, WCCI, and others.
He was the Chair of the Quantum Computing Task Force under the Emergent
Technologies Technical Committee of the IEEE Computational Intelligence
Society. He also served as the Co-Chair of the Logic and Circuit Track for the
technical program committee of ICCD. He is currently an Associate Editor
of the IEEE TRANSACTIONS on CAD and the IEEE TRANSACTIONS on CIRCUITS

and SYSTEMS II.

JINZHAO WU was born in 1965. He received
the Ph.D. degree in science from the Institute of
Systems Science, Chinese Academy of Sciences.
He is currently a Professor with the Guangxi Key
Laboratory of Hybrid Computation and IC Design
Analysis, Guangxi University for Nationalities.
His research interests include the fields of formal
methods, symbolic computation, and automated
reasoning.

VOLUME 5, 2017 27785


	INTRODUCTION
	RELATED WORKS
	PRELIMINARIES AND PROBLEM STATEMENT
	CANONICAL-BASED BOOLEAN MATCHING
	THE PROPOSED CANONICAL FORM
	COMPUTE CANONICAL FORM
	SEARCHING THE CANONICAL TRANSFORMATIONS

	EXPERIMENTAL RESULTS
	CONCLUSIONS
	REFERENCES
	Biographies
	JULING ZHANG
	GUOWU YANG
	WILLIAM N. N. HUNG
	JINZHAO WU


