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ABSTRACT A reconstruction method is provided to improve the measurement of the binocular vision.
The image projections of the 3-D point on the 3-D reference are analyzed by the multiple view geometry.
The Plücker coordinates of the two screw projection lines are constructed by the image points. The line
segment perpendicular to two projection lines is generated from the direction vector and the end points of
the line segment. As the bilinear products of the Plücker coordinates between the perpendicular line and the
projection lines are zero, the end points of the perpendicular line segment are parameterized by the Cramer’s
Rule. The reconstruction error of the distance between two parameterized 3-D points is employed as the
minimized objective of the cost function. The impact factors and the enhancements of the reconstruction
accuracy are investigated by the experiments comparing with the original method. The method contributes
the error descents of 27.19%, 38.29%, 19.01%,and 16.31% for the test lengths of 50, 100, 150, and 200 mm.
Therefore, the results demonstrate that reconstruction method of the binocular vision provides the higher
accuracy and application potentials.

INDEX TERMS Binocular vision, calibration, 3D reconstruction.

I. INTRODUCTION
Vision-based measurement is an important aspect of the opti-
cal detection, due to the advantages of non-touch measure-
ment, low cost and capability of spatial inspection [1]–[3].
It has been widely studied in the typical application fields of
vehicle navigation [4], robots [5], [6], medical operation [7]
and architecture [8], etc.

Two majors of the vision-based measurement are reported
in previous works. The first method is the monocular vision,
which employs one camera to perform the measurement
task [9]. The projection from the object to the image plane is
described by the intrinsic and extrinsic parameters of the cam-
era. Furthermore, the spatial information can be conditionally
recovered by the captured object image. In the monocular
vision, the intrinsic and extrinsic parameters of the camera
are derived from the calibration process with the 1D [2], [10],
2D [11]–[14] and 3D [15], [16] references. As the projection
from the 3D object to the 2D image loses a dimension, only
the homography information from the 2D plane to the 2D
image is reserved in the monocular vision. Therefore, the 3D

reconstruction of the monocular vision is limited to the co-
planar points on the basic plane of the world coordinate
system. In addition, three or more images are required to
realize the 3D reconstruction [17]. In order to improve the
3D reconstruction, the binocular vision is proposed to acquire
the entire 3D object information [18]. There are also two
branches in the binocular vision. The first is that one camera
captures two images of the same object [19]. The second is
that two cameras capture two images of the object [20]. The
first approach depends on the relative motion between the
camera and the object. The essential matrix is generated from
the trianglarity to reconstruct the 3D object. The extrinsic
parameters can be decomposed from the essential matrix. The
first binocular approach relies on the appropriate baseline and
themeasurement result is up to a scale factor [21]. The second
approach adopting the two cameras benefits from the fixed
baseline between the two cameras. The 3D measurement is
achieved from the calibration of the binocular vision system.
The reconstruction accuracy of the binocular system with
the short baseline is easy to be impacted by the noises in
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the images, while the long baseline also takes the problem
of matching difficulty, even employing the robust method of
the scale-invariant feature transform (SIFT) [22]. Therefore,
the relationship between the reconstruction accuracy and the
baseline length is valuable for a measurement method of the
binocular system.

The 3D reconstruction is generated from the calibration
results, which depends on the features of the point, the line,
the circle [23], etc. As the lines and the circles provide
the smaller amount of features than the points, the point-
based calibration is widely used in the calibration process.
In the paper, a reconstruction method is provided with the
optimization objective of the distance between the spatial
benchmark points, which is different from the former method
with the optimization objective of the point reprojection
errors and the epipolar constraint [24]. The 3D reference is
employed due to the higher calibration accuracy than 1D and
2D references. The rest article is organized as follows: In
Section 2, the projection geometry of the binocular vision is
analyzed and the parameterized distance of the spatial points
is generated from the bilinear products of the Plücker coor-
dinates and the Cramer’s Rule. In Section 3, the reconstruc-
tion method is verified by the comprehensive experiments,
under different measurement distances, different baseline dis-
tances and different test lengths. Section 4 summarizes the
paper.

II. RECONSTRUCTION METHOD
The calibration approach for the binocular vision system is
illustrated in Fig. 1. The 3D reference is employed to calibrate
the system parameters of the binocular system. The world
coordinate system O-XYZ is defined by the 3D reference.
Two camera coordinate systems O1 − X1Y1Z1, O2 − X2Y2Z2
are determined by the two cameras of the binocular vision
system. The image coordinate systems are generated from
two images. A 3D corner point Xi is projected to two images
by two cameras.

The reconstruction method consists of four main parts.
First, two skew projection lines are generated from the pro-
jection process and represented by the Plücker coordinates.
Then, the direction vector of the perpendicular line of the two
projection lines is solved by the Plücker coordinates. Third,
the parameterized 3D point is obtained from the bilinear
products among the Plücker coordinates of the two projection
lines and the common perpendicular line. Finally, the projec-
tion matrices are optimized by minimizing the reconstruction
error of the distance between two adjacent corner points on
the 3D reference.

The projection points of Xi are xIi x
II
i in the two images.

The projections are expressed as [25]:

PIXi = s1xIi (1)

PIIXi = s2xIIi (2)

where PI = [pIα,β ]3×4, PII = [pIIα,β ]3×4 are the pro-
jection matrices of the two cameras. xIi = [xIi , y

I
i, 1]

T,

FIGURE 1. Parameterization method of the 3D point on the reference.

xIIi = [xIIi , y
II
i , 1]

T are the projection points of Xi =

[Xi,Yi,Zi, 1]T. s1 and s2 are two scale factors.
Equations. (1) and (2) are transformed to [21], [26]:

(pI11 − p
I
31x

I
i )Xi + (pI12 − p

I
32x

I
i )Yi

+ (pI13 − p
I
33x

I
i )Zi + p

I
14 − p

I
34x

I
i = 0

(pI21 − p
I
31y

I
i)Xi + (pI22 − p

I
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I
i)Yi

+ (pI23 − p
I
33y

I
i)Zi + p

I
24 − p

I
34y

I
i = 0 (3)

(pII11 − p
II
31x

II
i )Xi + (pII12 − p

II
32x

II
i )Yi

+ (pII13 − p
I I
33x

II
i )Zi + p

II
14 − p

II
34x

II
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(pII21 − p
II
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II
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II
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II
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II
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II
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II
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i = 0 (4)

Two equations in Eq. (3) or Eq. (4) represent an intersection
line of two planes. Thus, the intersection point of the two
intersection lines in Eqs. (3) and (4) stands for the 3D corner
point Xi, theoretically.
As the noises impact on the positions of the projection

points xIi , x
II
i , the projection lines of the two projection points

do not intersect at the 3D corner point Xi, actually. In other
words, the projection lines of the projection points are two
screw lines.

According to Eqs. (3) and (4), the Plücker matrices of the
two projection lines are expressed as:

L∗Ii = (RI
i)(Q

I
i)
T
− (QI

i)(R
I
i)
T

=


0 (l∗i )

I
12 (l∗i )

I
13 (l∗i )

I
14

(l∗i )
I
21 0 (l∗i )

I
23 (l∗i )

I
24

(l∗i )
I
31 (l∗i )

I
32 0 (l∗i )

I
34

(l∗i )
I
41 (l∗i )

I
42 (l∗i )

I
43 0

 (5)

L∗IIi = (RII
i )(Q

II
i )

T
− (QII

i )(R
II
i )

T

=


0 (l∗i )

II
12 (l∗i )

II
13 (l∗i )

II
14
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II
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II
23 (l∗i )

II
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II
31 (l∗i )

II
32 0 (l∗i )
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 (6)
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where

RI
i = [(pI11 − p

I
31x

I
i ), (p

I
12 − p

I
32x

I
i ),

(pI13 − p
I
33x

I
i ), (p

I
14 − p

I
34x

I
i )]

T,

QI
i = [(pI21 − p

I
31y

I
i), (p

I
22 − p

I
32y

I
i),

(pI23 − p
I
33y

I
i), (p

I
24 − p

I
34y

I
i)]

T,

RII
i = [(pII11 − p

II
31x

II
i ), (p

II
12 − p

II
32x

II
i ),

(pII13 − p
II
33x

II
i ), (p

II
14 − p

II
34x

II
i )]

T

and

QII
i = [(pII21 − p

II
31y

II
i ), (p

II
22 − p

II
32y

II
i ),

(pII23 − p
II
33y

II
i ), (p

II
24 − p

II
34y

II
i )]

T

are the four planes in Eqs. (3) and (4).
From Eqs. (5) , (6) and the dual relationship of (l∗34)

I,II
:

(l∗42)
I,II
: (l∗23)

I,II
: (l∗14)

I,II
: (l∗13)

I,II
: (l∗12)

I,II
= (l12)I,II :

(l13)I,II : (l14)I,II : (l23)I,II : (l42)I,II : (l34)I,II [26] the Plücker
coordinates of the two projection lines are given as:

LI
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{
(li)I12, (li)

I
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I
34

}
(7)
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(8)

where
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i )(p
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II
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In order to solve the direction vector of the perpendicular
line segment of the two projection lines, the direction vectors
of the intersection lines are [27]:
uIi
= mI

i × nIi

=

(p
I
12−p

I
32x

I
i )(p

I
23−p

I
33y

I
i)−(p

I
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I
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I
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32y

I
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I
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I
33x

I
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I
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I
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I
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
(9)

uIIi
= mII

i × nIIi

=

(p
II
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II
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II
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II
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II
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where
nIi = [(pI11 − p

I
31x

I
i ), (p

I
12 − p

I
32x

I
i ), (p

I
13 − p

I
33x

I
i )]
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mI
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32y
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I
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I
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I
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nIIi = [(pII11 − p
II
31x

II
i ), (p
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II
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II
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I I
22 − p

II
32y
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II
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II
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T.

Therefore, the normal vector to the intersection lines
is [27]:

vi = uIi × uIIi = [vxi, vyi, vzi]T (11)

where
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33x
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−

[
(pI13 − p

I
33x

I
i )(p

I
21 − p

I
31y

I
i)− (pI11 − p

I
31x

I
i )(p

I
23

− pI33y
I
i)
] [

(pII12 − p
II
32x

II
i )(p

II
23 − p

II
33y

II
i )

− (pII13 − p
II
33x

II
i )(p

II
22 − p

II
32y

II
i )
]
.

Let the end points of the line segment perpendicular to
the two projection lines be XI

i = [X I
i ,Y

I
i ,Z

I
i , 1]

T, XII
i =

[X II
i ,Y

II
i ,Z

II
i , 1]

T. The perpendicular line of the two projec-
tion lines is:

vyiX I
− vxiY I

+ vxiY I
i − vyiX

I
i = 0

vziX I
− vxiZ I

+ vxiZ I
i − vziX

I
i = 0 (12)

From Eq. (12), the Plücker matrix of the perpendicular line
is:

L∗i = Gi(Hi)T − Hi(Gi)T =


0 l∗12 l∗13 l∗14
l∗21 0 l∗23 l∗24
l∗31 l∗32 0 l∗34
l∗41 l∗42 l∗43 0

 (13)

where Gi = [vyi,−vxi, 0, (vxiY I
i − vyiX I

i )]
T and Hi =

[vzi, 0,−vxi, (vxiZ I
i − vziX

I
i )]

T.
The Plücker coordinates of the perpendicular line are given

as:

Li = {(li)12, (li)13, (li)14, (li)23, (li)42, (li)34} (14)

where (li)12 = vx(vxY I
i − vyX I

i ), (li)13 = vx(vxZ I
i − vzX I

i ),
(li)14 = v2x , (li)23 = vxvzY I

i −vxvyZ
I
i , (li)42 = −vxvy, (li)34 =

vxvz.
As the perpendicular line Li intersects the two lines LI

i and
LII
i , the bilinear products of the Plücker coordinates satisfy:

(Li|LI
i) = (li)12(li)I34 + (li)I12(li)34 + (li)13(li)I42
+ (li)I13(li)42+ (li)14(li)I23+ (li)I14(li)23 = 0 (15)

(Li|LII
i ) = (li)12(li)II34 + (li)II12(li)34 + (li)13(li)II42

+ (li)II13(li)42+ (li)14(li)II23+ (li)II14(li)23 = 0 (16)

Stacking Eqs. (7), (8), (14), (15) and (16), we have:

−

[
vxvy(li)I34 + vxvz(li)

I
42

]
X I
i +

[
v2x(li)

I
34 − vxvz(li)

I
14

]
Y I
i

+

[
v2x(li)

I
42 + vxvy(li)

I
14

]
Z I
i + vxvz(li)

I
12 − vxvy(li)

I
13

+ v2x(li)
I
23 = 0 (17)

−

[
vxvy(li)II34 + vxvz(li)

II
42

]
X II
i +

[
v2x(li)

II
34 − vxvz(li)

II
14

]
Y II
i

+

[
v2x(li)

II
42 + vxvy(li)

II
14

]
Z II
i + vxvz(li)

II
12

− vxvy(li)II13 + v
2
x(li)

II
23 = 0 (18)

From Eqs. (3), (4), (17) and (18), the two end points of
the perpendicular line segment of the two projection lines are
solved by the Cramer’s Rule as:

XI
i =

[
det

(
DI
i

)
1
/ detDI

i, det
(
DI
i

)
2
/ detDI

i,

det
(
DI
i

)
3
/ detDI

i, 1
]T

(19)

FIGURE 2. Parameterization method of the distance objective generated
from two pairs of skew projection lines.

FIGURE 3. Optimization process with the distance objective generated
from two pairs of skew projection lines.

XII
i =

[
det

(
DII
i

)
1
/ detDII

i , det
(
DII
i

)
2
/ detDII

i ,

det
(
DII
i

)
3
/ detDII

i , 1
]T

(20)

where DI
i and DII

i are the coefficient matrices of Eqs. (3),
(17) and Eqs. (4), (18), respectively. (DI

i)j and (DII
i )j are the

matrices formed by replacing the j-th columns of DI
i and D

II
i

by the constant column vectors.
As the middle point of the perpendicular line segment is

a reasonable estimation of the 3D point [28], the 3D point
derived from the 2D projection points xIi , x

II
i , is parameterized

as:

X̂i(PI,PII, xIi, x
II
i ) =

1
2

[
XI
i(P

I,PII, xIi)+ XII
i (P

I,PII, xIIi )
]
(21)
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FIGURE 4. Reconstruction and verification experiments of the binocular
vision system. (a) Reconstruction setup with a 3D reference, a left camera
and a right camera, (b) Verification setup with a target and two cameras,
(c) Reconstruction image captured from the right camera,
(d) Reconstruction image captured from the left camera, (e) Verification
image captured from the right camera, (f) Verification image captured
from the left camera.

where X̂i(PI,PII, xIi, x
II
i ) is the parameterized estimation on

the 3D corner point of the 3D reference. Eq. (21) gives the
function relationship between the parameterized 3D corner
point and the two projection matrices.

In order to improve the accuracy of the binocular vision
measurement, a cost function is constructed to minimize
the distance error between the reconstruction points on
the 3D reference, as shown in Fig. 2 and Fig. 3. The
function with respect to the projection matrices PI, PII

is:{
P̂
I
, P̂

II}
= argmin

n∑
i=1

{∥∥∥X̂i(PI,PII, xIi, x
II
i )

− X̂i−1(PI,PII, xIi, x
II
i )
∥∥∥− li}

(22)

where
{
P̂
I
, P̂

II}
are the optimization results of the projection

matrices. li is the standard distance between the adjacent cor-
ner points on the 3D reference. The 3D point is reconstructed
by
{
P̂
I
, P̂

II}
and Eqs. (1), (2).

III. RECONSTRUCTION METHOD
3D reconstruction of the binocular vision adopting the
distance objective generated from two pairs of skew
projection lines is verified by the experiments. The

FIGURE 5. Reconstruction results of the benchmark lengths on the target.
MD=Measurement Distance, mm, BD=Baseline Distance, mm.
(a) MD=900, BD=900, (b) MD=1000, BD=900, (c) MD=1100, BD=900,
(d) MD=1200, BD=900, (e) MD=900, BD=1000, (f) MD=1000, BD=1000,
(g) MD=1100, BD=1000, (h) MD=1200, BD=1000, (i) MD=900, BD=1100,
(j) MD=1000, BD=1100, (k) MD=1100, BD=1100, (l) MD=1200, BD=1100,
(m) MD=900, BD=1200, (n) MD=1000, BD=1200, (o) MD=1100,
BD=1200, (p) MD=1200, BD=1200.

3D reconstruction method employing the 3D reference in
Ref [16] is selected as the comparison method. A target is
designed as the benchmark of the reconstruction test. The
test lengths of 50 mm, 100 mm, 150 mm and 200 mm are
marked by the five collinear feature points on the target.
A binocular system with two cameras is built for the veri-
fication experiments. The image resolution is 2048 × 1536
in the experiments. The distance between the two cameras is
the baseline distance, which contains four cases of 900 mm,
1000 mm, 1100 mm and 1200 mm. The distance between
the two cameras and the 3D reference is the measurement
distance, which also includes the above four cases. Therefore,
sixteen different cases, including four different measurement
distances and four different baseline distances, are performed
to verify the proposed method. The reconstruction and verifi-
cation experiments of the binocular vision system are shown
in Fig. 4.

Calibration results of the five feature points on the tar-
get are shown in Fig. 5. Each subfigure demonstrates the
reconstruction results of twenty groups of five feature points
on the target. The benchmark lengths of 50 mm, 100 mm,
150 mm and 200 mm are derived from the five uniformly-
spaced points. The reconstruction five points are collinear
and in the right places relative to the world coordinate
system on the 3D calibration reference. The observed dis-
tance between two neighbor points is the same as the other
distance.

In order to quantitatively evaluate the accuracy of
the reconstruction method and compare the distance-
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FIGURE 6. Absolute errors and relative errors of the reconstructed test lengths of the distance-based method and point-based method, which
relate to Fig. 5(a)-5(d).

FIGURE 7. Absolute errors and relative errors of the reconstructed test lengths of the distance-based method and point-based method, which
relate to Fig. 5(e)-5(h).

based method with the previous point-based method,
the absolute errors and the relative errors of the recon-
struction lengths on the target are shown in Figs. 6-9,
under different baseline distances and different mea-
surement distances. The statistical data are summarized
in Table 1.

The experiment results with the increasing test length are
explained in Table II. When the baseline distance is 900 mm
and the test lengths are 50 mm, 100 mm, 150 mm 200 mm,
the rootmean squares of the point-basedmethod are 0.32mm,
0.70 mm, 1.60 mm and 2.37 mm. The root mean squares of
the distance-based method are 0.21 mm, 0.54 mm, 1.46 mm
and 2.12 mm. For the baseline distance of 1000 mm and the

increasing test lengths, the root mean squares of the point-
based method are 0.28 mm, 0.74 mm, 1.28 mm and 2.04 mm.
The root mean squares of the distance-based method are
0.21 mm, 0.55 mm, 1.12 mm and1.74 mm. In terms of the
baseline distance of 1100 mm, the related root mean squares
of the point-based method are 0.26 mm, 0.59 mm, 1.21 mm
and 1.99 mm. The related root mean squares of the distance-
based method are 0.17 mm, 0.46 mm, 0.99 mm and 1.65 mm.
With respect to the baseline distance of 1200 mm, the cor-
responding root mean squares of the point-based method are
0.27 mm, 0.49 mm, 1.00 mm and 1.71 mm. The correspond-
ing root mean squares of distance-basedmethod are 0.21mm,
0.39 mm, 0.83 mm and 1.35 mm. Thus, the reconstruction
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FIGURE 8. Absolute errors and relative errors of the reconstructed test lengths of the distance-based method and point-based method, which
relate to Fig. 5(i)-5(l).

FIGURE 9. Absolute errors and relative errors of the reconstructed test lengths of the distance-based method and point-based method, which
relate to Fig. 5(m)-5(p).

error increases with the grow-up test lengths from 50 mm to
200 mm.

The experiment results with the increasing measurement
distance are interpreted in Table III. While the baseline dis-
tance is 900 mm, the root mean squares of the point-based
method are 0.97 mm, 1.37 mm, 1.58 mm and 1.86 mm corre-
sponding to themeasurement distances of 900mm, 1000mm,
1100 mm and 1200 mm. The root mean squares of the
distance-based method are 0.87 mm, 1.20 mm, 1.39 mm and
1.69 mm. When the baseline distance increases to 1000 mm,
the rootmean squares of the point-basedmethod are 0.97mm,
0.91 mm, 1.14 mm and 1.82 mm, under the measurement
distances of 900 mm, 1000 mm, 1100 mm and 1200 mm. The

root mean squares of the distance-based method are 0.73 mm,
0.74 mm, 0.95 mm and 1.61 mm. For the baseline distance
of 1100 mm and the same measurement distances, the cor-
responding root mean squares of the point-based method are
0.89 mm, 0.95 mm, 1.05 mm and 1.74 mm. The root mean
squares of the distance-based method are 0.69 mm, 0.75 mm,
0.77 mm and 1.52 mm. Finally, when the baseline distance
increases to 1200 mm, the root mean squares of the point-
based method are 0.75 mm, 0.80 mm, 0.82 mm and 1.53 mm
and the root mean squares of the distance-based method are
0.60 mm, 0.58 mm, 0.67 mm and 1.24 mm. The maximum
relative error is 1.48%, which is less than 1.5 %, on the
condition that the measurement distance is 1200 mm and

27278 VOLUME 5, 2017



G. Xu et al.: 3-D Reconstruction of Binocular Vision Using Distance Objective Generated From Two Pairs of Skew Projection Lines

TABLE 1. Experiment results of the verification experiments. Abs is the abbreviation of the absolute error. Rel is the abbreviation of the relative error.

TABLE 2. Experiment results with different test length. Abs is the
abbreviation of the absolute error.

the baseline distance is 900 mm. The distance-based method
contributes the 27.19%, 38.29%, 19.01%, 16.31% descents
for the test lengths of 50mm, 100 mm, 150 mm, 200 mm,
compared with the point-based method. As the baseline dis-
tance increases from 900 mm to 1200 mm, in most cases,
the absolute errors of the reconstructed test lengths show
the decreasing trends. When the baseline distance is consid-
ered as a constant, the absolute errors of the reconstructed
test lengths increase with the measurement distances from
900 mm to 1200 mm.

TABLE 3. Experiment results with different measurement distance. Abs is
the abbreviation of the absolute error.

IV. CONCLUSION
In summary, a 3D reconstruction method for the binocular
vision is achieved by the distance objective generated from
two pairs of skew projection lines. The end points of the
line segment perpendicular to the pair of two projection lines
are deduced by the bilinear products among the Plücker
coordinates of the projection lines and the line segment. The
distance between two feature points on the 3D reference is
parameterized by the projection matrices. The cost function
is constructed by the difference between the reconstruction
distance of the parameterized points and the real distance
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on the reference. The measurement distance, the baseline
distance and the test length are considered as the accuracy
impact factors of the reconstructionmethod. The baseline dis-
tance, as well as themeasurement distance includes four cases
of 900 mm, 1000 mm, 1100 mm and 1200 mm. The average
root mean squares of the distance-based method in the above
cases are 0.20 mm, 0.49 mm, 1.12 mm and 1.73 mmwhen the
test length are 50 mm, 100mm, 150mm and 200mm, respec-
tively. The reconstruction error decreases with the increasing
baseline distance and the decreasing measurement distance.
The comparison experiments prove that the reconstruction
method improves the reconstruction accuracy of the binocular
vision system.
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