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ABSTRACT Collaborative filtering algorithms, such as matrix factorization techniques, are recently gaining
momentum due to their promising performance on recommender systems. However, most collaborative
filtering algorithms suffer from data sparsity. Active learning algorithms are effective in reducing the sparsity
problem for recommender systems by requesting users to give ratings to some items when they enter the
systems. In this paper, a new matrix factorization model, called Enhanced SVD (ESVD) is proposed, which
incorporates the classic matrix factorization algorithms with ratings completion inspired by active learning.
In addition, the connection between the prediction accuracy and the density of matrix is built to further
explore its potentials. We also propose the Multi-layer ESVD, which learns the model iteratively to further
improve the prediction accuracy. To handle the imbalanced data sets that contain far more users than items or
more items than users, the Item-wise ESVD and User-wise ESVD are presented, respectively. The proposed
methods are evaluated on the famous Netflix and Movielens data sets. Experimental results validate their
effectiveness in terms of both accuracy and efficiency when compared with traditional matrix factorization
methods and active learning methods.

INDEX TERMS Matrix factorization, recommender systems, data sparseness, rating completion, active
learning.

I. INTRODUCTION
Recommender systems are one of the most common software
tools and techniques for generating recommendations since
the early 1990s. They provide users with personalized rec-
ommendations by predicting the preference (often expressed
in rating) that the users would give to an item, and typi-
cally apply methodologies and techniques from related areas
such asMachine Learning, Information Retrivial, andHuman
Computer Interaction. They play vital roles in real life and
are adopted by many internet leaders such as Google [1],
Facebook [2], Amazon [3], Netflix [4], etc.
Recommender systems are used for generating recommen-

dations to users, usually in one of the following ways:
- Collaborative filtering algorithms [5] predict other items
the current users might like based on the past knowledge
about the preferences of users for some items.

- Content-based algorithms [6] produce recommendations
based on item descriptions which could be automatically

extracted or manually created, or (and) user profiles that
represent the users’ interests on items.

- Knowledge-based algorithms [7] generate recommen-
dations by exploiting explicit user requirements and
detailed domain knowledge about item features, reason-
ing about what items meet the user’s needs.

- Hybrid approaches [8] generate recommendations
by combining several algorithms or recommendation
components, which are based on the above three
approaches: collaborative filtering and content-based
and knowledge-based algorithms.

Collaborative filtering is considered the most important
techniques, and is widely used in the industry, especially in
online retail sites such as Netflix [4], in order to promote
additional items and increase sales. It is a method that makes
recommendations by using ratings given to items by users
as the only source of information. Empirical studies such
as [9] and [10] categorized collaborative filtering algorithms
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into two classes: memory-based andmodel-based algorithms.
Memory-based algorithms [11], [12] focus on relationships
between users (user-based) or items (item-based), while
model-based approaches [13]–[15] are based on prediction
models that have been trained using the rating matrix. Matrix
factorization methods [16]–[18], as one of the most success-
ful realizations of model-based algorithms, can achieve better
accuracy than classic nearest neighbor methods (memory-
based) when dealing with product recommendations [19].

In real-life scenarios, when a new user comes in, most
recommender systems would only query the user to rate a
limited number of items (which is a small proportion com-
paring to the whole data set). Therefore, there is not enough
knowledge to form accurate recommendations for the user
since the rating matrices are normally very sparse. To get
precise recommendations for the target user, active learning
is often used to elicit more high-quality data [20]–[22].

However, traditional active learning methods [23]–[25]
only evaluate each user independently and only consider the
benefits of the elicitations to the ‘‘new’’ user, neglecting the
effects of the elicitations to the whole system. Moreover, in
previous works [9], [23], [24], selected users are enforced
to rate each elicitation through an active learning process,
which is unrealistic in practice. In this paper an ESVD model
is proposed by incorporating the matrix completion strategy,
which improves the prediction accuracy of the whole system
by automatically ’adding’ ratings only for existing users.
Furthermore, ratings were added on a one by one per
request [23] or user’s by user’s per request basis [25] by
the system in traditional active learning. As a result, the
model is trained at each request, which is considerably time-
consuming. In contrast, the proposed ESVD model increases
the amount of special training ratings simultaneously that
are predicted by matrix factorization. Through this spe-
cial preprocessing step, not only is the computational cost
reduced, but also the performance of the recommender sys-
tem is greatly improved. To alleviate the bias of the added
ratings in the ESVD model, we also propose the Multi-
layer ESVD (MESVD) algorithm, which learns the model
iteratively. To handle the imbalanced datasets that contain
far more users than items or more items than users, we
also propose the Item-wise ESVD (IESVD) and User-wise
ESVD (UESVD), respectively. The connections of the pro-
posed ESVD and its variants are shown in Figure 1.

FIGURE 1. The proposed ESVD and its variants.

The rest of the paper is organized as follows: Preliminaries
and related works are introduced in Section II. In Section III

we first analyze active learning, then propose the ESVD
model for recommender systems. Section IV describes the
MESVD model to further explore its potential. More exten-
sions on ESVD including IESVD, UESVD are presented in
Section V to handle the imbalanced datasets. The paper is
concluded in Section VI.

II. PRELIMINARIES
Collaborative filtering recommender systems usually consist
of a set of users, a set of items and the preferences of users
for various items, which are frequently represented in the
form of [User, Item, Rating] triples. By aggregating these
triples, a U-I rating matrix R ∈ Rm×n that consists of m users
and n items can be obtained, where each rating rij represents
the preference of user i for item j. The task of collaborative
filtering recommender systems is to recommend each user a
list of unrated items that are ranked in a descending order
based on predicted preferences (ratings). As the key point
of collaborative filtering is the ratings prediction task, most
algorithms transform the recommending problem into the
missing value estimation problem in the U-I rating matrix
with high sparsity. The evaluation of the algorithms is often
measured by computing the prediction accuracy of a set of
unknown ratings in the rating matrix based on the predefined
metrics, such as Root Mean Squared Error (RMSE) andMean
Absolute Error (MAE).

As the knowledge of preferences is very limited, the rating
matrices in most recommender systems are extremely sparse.
Take Netflix [4] and Movielens [26] datasets as examples,
the density are 1.18% and 6.3%, respectively, which mean
that only a few elements are rated. Another challenge is
that the dataset used in real-world recommender systems
is typically of high dimensionality. Due to high sparseness
and computational complexity, directly applying traditional
dimensionality reduction methods, like SVD algorithms, to
rating matrices is not appropriate [27].

A. REGULARIZED SVD
Funk [28] proposed the Regularized SVD (RSVD) algorithm,
which is proved to be effective for collaborative filtering.
Denote the ratingmatrix byR ∈ Rm×n that consists ofm users
and n items, and the prediction of the rating matrix by R̃. The
Regularized SVD algorithm decomposes the rating matrix R
into the products of two lower rank matrices U ∈ Rk×m and
V ∈ Rk×n as the feature matrix of users and items:

R̃ = UTV (1)

It is based on an assumption that each user’s rating is
composed of the sum of preferences about various latent
factors of that item. So each rating rij (the corresponding
prediction is represented as r̃ij) the ith user gives to the jth
movie can be represented as:

r̃ij = UiTVj (2)

where Ui, Vj are the feature vectors of the ith user and the jth
movie, respectively.

VOLUME 5, 2017 27669



X. Guan et al.: Matrix Factorization With Rating Completion: ESVD Model

To learn the optimized approximations of U and V , the
system minimizes the sum of squared errors between the
existing scores and prediction values:

E =
1
2

∑
i,j∈κ

(rij − r̃ij)2 +
ku
2

m∑
i=1

Ui2 +
kv
2

n∑
j=1

Vj2 (3)

where κ is a set of (u,i) pairs that has been assigned values
originally in the rating matrix R (a.k.a. the training set), the
regularization parameters ku and kv are used to alleviate over-
fitting.

To solve the optimization problem like Equation (3),
Stochastic Gradient Descent (SGD) is widely used and has
shown to be effective for learningmatrix factorization models
[16], [29]. It loops through training ratings (κ) and modifies
U and V in the opposite direction of the gradient:

Ui ← Ui − α
∂Eij
∂Ui

(4)

Vj ← Vj − α
∂Eij
∂Vj

(5)

where α is the learning rate.
Unlike traditional SVD, RSVD is a procedure of optimizing

the feature matrices, which minimizes the least square error
of the approximations. By solving this optimization problem,
the end result is the same as SVD, which gets the diagonal
matrix arbitrarily rolled into the two side matrices.

B. DATASETS
Movielens [26] is a classic recommender system that rec-
ommends movies for its users through collaborative filtering
algorithms. Movielens 1M contains 1,000,209 anonymous
ratings of 3,952 movies provided by 6,040 users, while
Movielens 100K contains 100,000 ratings from 943 users on
1,682 movies.
Netflix [4] is a recommender system consisting of over

100million 5-star ratings by 480,189 users for 17,770movies.
Each rating in theMovielens and Netflix datasets is an integer
ranging from 1 to 5, which represents the level of perferences
the user has for the corresponding movie. The first 106,150
ratings are extracted from the full Netflix dataset as the
subset of Netflix, which are provided by 1,910 users for
1,780 movies.

III. THE PROPOSED ENHANCED SVD (ESVD) MODEL
It is important to note that the characteristics of prediction
algorithms may influence the prediction accuracy. Matrix
factorization models like Regularized SVD (RSVD) are learnt
by fitting a limited number of existing ratings. As a result, the
model trained with good quality as well as large quantity rat-
ings could achieve better performance than the one with less
sufficient ratings. Generally, themore numbers of informative
ratings are obtained, the better performance recommender
systems could achieve. However, most recommender systems
suffer from the sparsity problem, i.e. the rating matrices are
extremely sparse since users are often unwilling to rate a large
amount of items.

A. CLASSIC ACTIVE LEARNING ALGORITHMS
Active learning is widely used for obtaining high quality data
that better represents the preferences of users. To achieve
this purpose, the system requests the user to rate specific
items based on certain strategies or criteria. These strategies
include:

1) Randomization: The system selects items or users to
present randomly with uniform probability over all the
items or users, which can be regarded as the baseline
strategy for comparison [30].

2) Popularity-based: Items or users with the highest num-
ber of ratings are preferred, which is based on the
assumption that the user is more likely to give ratings
to popular items [30].

3) Variance-based: The system selects items with the
largest variance for eliciting. Therefore, the items with
the largest variance are preferred for reducing the cer-
tainty of the system [30].

4) Similarity-based: The system selects the items with the
highest similarity to the user’s previously rated items.

5) Hybrid: This includes Sqrt(Frequency)∗Variance [31],
Voting [25] , which consider the overall effect of previ-
ous methods.

These strategies try to identify the most informative set of
training examples, aiming to achieve better performance for
users with a certain amount of ratings required from them.
However, tradition active learning has several limitations:

1) First, previous works (e.g., [25], [30], [32]) focused
on the accuracy of the recommendations for ’a single
user’, regardless of the fact that the increase of elicita-
tions affect the performance of the whole system.

2) Furthermore, the model was trained by iterating all
the users, which incurs high computational costs. With
classic active learning strategies, the items selected
for different users to elicit are not always the same.
For example, the items with the highest similarity for
a user’s previously rated items may not be the same
as another user’s since different users have different
experiences. Hence the strategy (personalized) has to
be applied repeatedly for each user, in order to elicit
different items.

3) In addition, current active learning methods are based
on the assumption that a user can provide ratings for
any queried items, which is unrealistic and costly. Take
movie recommendations for example, to rate a movie
that is generated by the active learning strategy, a user
has to watch it. On the other hand, the user maybe be
frustrated when asked to rate a movie that he/she has
not watched.

B. THE PROPOSED METHODS
1) SEEKING HIGH DENSITY THROUGH POPULAR ITEMS
Usually the number of ratings to each item (popularity) varies
significantly. Take the Movielens 100K dataset for example,
theminimum andmaximal number of popularity is 0 and 495,
respectively, as shown in Figure 2. Popularity is based on the
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FIGURE 2. The number of ratings each item has received (popularity) in
Movielens 100K.

number of ratings for each item only. Therefore, the popular-
ity of each movie remains the same for all the users. Based
on the assumption that users are more likely to rate world-
famous movies than the less known movies, by selecting N
most popular movies for all the users, a new sub-matrix
could be obtained. Then the unrated items in this sub-matrix
would be the ’desirable’ movies in some sense for the users
who missed before. Unlike traditional active learning that
queries only new users for a certain number of ratings in each
iteration, the proposed strategy is to predict these specific
ratings for all the users at the same time (one iteration) based
on the result of applying matrix factorization algorithms to
this sub-matrix. After these ratings are added to the original
rating matrix, a more accurate matrix factorization model
could be trained.

In summary, this item-oriented (based on item popularity)
approach pre-estimates ratings of only popular movies for all
the users simultaneously (instead of iterating through each
individual user) in order to improve the performance of the
whole system. Therefore, it reduces the training iteration
from as high as the number of users (for active learning) to
only 2 (the proposedmethod), which significantly reduces the
computational cost.

2) SEEKING HIGH DENSITY THROUGH ACTIVE USERS
In contrast to traditional active learning for collaborative
filtering, which selects a number of items to rate so as to
improve the rating prediction for the user, Carenini et al. [33]
proposed an alternative active learning method that elicits
ratings by querying a number of special users about a spe-
cific item in order to improve the rating prediction for the
target item. Inspired by [33], we also propose a user-oriented
approach to further explore the potential of the proposed
method.

Generally, the number of movies each user has rated
(activity) varies significantly as shown in Figure 3. Take
movie recommendations as an example, though active users
who are enthusiastic about movies may watch far more than

FIGURE 3. The number of ratings each user has rated (activity) in
Movielens 100K.

the ones who are not into movies, there are likely to bemovies
that the users have watched but not yet rated. Therefore, it is
easier to accept that active users aremore likely to give ratings
to their unrated movies. These movie enthusiasts are selected
based on the number of rated movies. Ratings of the unrated
items (as the missing values in the new sub-matrix) would
be predicted by matrix factorization algorithms. These new
ratings are then added to the original matrix for generating
better recommendations.

In brief, this user-oriented approach (based on user
activity) tries to improve the performance of the whole
system by adding pre-estimated ratings simultaneously of
all items provided by active users only. Therefore, it also
has the benefits that item-oriented approach has. However,
both algorithms may still incur significant computational
cost and distortion of the original model because of the
extensive selection of added ratings, especially when a large
number of popular items or active users are selected in the
sub-matrix.

3) PROPOSED ESVD - DENSITY-ORIENTED APPROACH
So far an item-oriented approach and a user-oriented
approach are presented, both based on the idea that pre-
estimating a set of selected ratings simultaneously for the
matrix factorization model to learn. The rationale behind the
pre-estimates is that they are predicted from a denser sub-
matrix, which allowsmore accurate elicitations of themissing
ratings. Typically the denser the matrix is, the better the
matrix factorization model is obtained. For example with the
Movielens 100K dataset, the sub-matrix with 5% of the most
popular movies is of density 29.47% in contrast to the original
matrix (6.3%). On the other hand, the density of the new sub-
matrix by choosing 5% of the most active users is 23.33%,
which is still much denser than the original one. Based on
this observation, we propose a density-oriented approach,
called ESVD as shown in Algorithm 1 and Figure 4),
which combines the afore-mentioned item-oriented and user-
oriented high density seeking strategies.
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Algorithm 1 The Proposed ESVD (Density-Oriented
Approach)

Input: Rating matrix R ∈ Rm×n, where Pi∈[1,m] ∈ R1×n is
the row vector and Qj∈[1,n] ∈ Rm×1 is the column vector;
T , test set in rating matrix R;
N , the number of items selected in the sub-matrix based on
popularity;
N ′, the number of users selected in the sub-matrix based
on activity;

Output: RMSE of the test set T ;
Step 1: Sort both items j(1), j(2), ..., j(m) and users
i(1), i(2), ..., i(n) in the descending order based on popu-
larity and activity, respectively;
Step 2: Create a sub-matrix M1 by selecting the top N
items (columns) of R based on the popularity such that
M1 = [Qj(1),Qj(2), ....,Qj(N )](N < m);
Creat a sub-matrix M2 by selecting the top N ′ users
(rows) of R based on the activity such that M2 =

[Pi(1),Pi(2), ....,Pi(N ′)](N ′ < n);
Step 3: Create a sub-matrix M3 by selecting the intersec-
tion of the top N items (columns) and top N ′ users (rows)
based on the popularity and activity. Therefore, M3 =

M1
⋂
M2;

Step 4: Apply basic matrix factorization (Regularized
SVD) on matrix M3 to obtain feature matrices U and V
according to Equation (1). Then predict every missing
value in sub-matrix M3 to acquire a non-null matrix M ′3
according to Equation (2). Then form a series of ratings
L such that L = {rik(1),jt(1) , ..., rik(n),jt(n′)}, where rik ,jt ∈
(M3

⋂
¬κ);

Step 5: Fill themissing ratings in the original matrixRwith
the value predicted in Step 4 to acquire a new rating matrix
R′. That means the extra ratings are added into the training
set κ = {κ,L};
Step 6: Apply basic matrix factorization (Regularized
SVD) on matrix R′ to obtain feature matrices U ′ and V ′

according to Equation (1). Then predict the target ratings
(test set) according to Equation (2) and calculate RMSE of
the test set T according to Euqation (6);

FIGURE 4. Procedures of ESVD.

ESVD is based on the assumption that the recommender
system was first built with a set of the most popular movies
that are rated by a set of the most active users. Because
item popularity depends on the number of ratings each user
provides and user activity is related to the number of ratings
each item receives, by choosing the N most popular items
(columns) and theN ′ most active users (rows), a much denser

sub-matrix is obtained (as shown in Figure 4). Take the
Movielens 100K dataset as an example, the newly-formed
sub-matrix would reach to 77.28% density by selecting 5%
of the most popular movies and 5% of the most active users
(Step 3 in Algorithm 1). Themissing values in this sub-matrix
can be explained as ratings of the most famous movies but
have not been rated by a group of the most active users.
Therefore, the recommendations generated by this recom-
mender system should be of high accuracy. Afterwards some
rare movies most people had probably not seen and users
who provide very few ratings are added to the dataset (the
originalmatrix), which could lower the prediction accuracy of
the whole system. To achieve better performance, the ratings
generated from the sub-recommender system (pre-estimates)
could be used (by applying matrix factorization on the sub-
matrix) as the known knowledge for further learning and
inference. Finally an enhanced matrix factorization model
can be obtained with higher accuracy by learning the existing
and extra ratings.

C. EVALUATION
1) EXPERIMENTAL SETUP
Experiments of the proposed algorithms (ESVD-I, ESVD-U
and ESVD) are conducted on the classic recommender system
datasets: Movielens 100K and the subset of Netflix. Some
experiments with the larger version are also performed and
similar results are obtained. However, it requires a longer time
to perform the experiments since the models are trained and
tested each time for different choice of N and N ′. Therefore,
the smaller datasets Movielens 100K and the subset of the
original Netflix are used in order to run more experiments so
as to evaluate how these two parameters affect the results of
the proposed algorithm.

Normally each dataset is partitioned into a training set
and a test set. The model is trained on the training set and
the quality of results is usually measured by the Root Mean
Square Error (RMSE) of the test set:

RMSE =

√√√√√ ∑
({i,j}∈TestSet)

(
rij − r̃ij

)2
T

(6)

where T represents the total number of (u,i) samples in the
test set. RMSE is used as the default metric which is widely
used in the Netfilx Competition [4] and proved to be effective
for measuring recommender systems.

The number of the latent factors (rank) k is a key factor
for matrix factorization models. Increasing k would result
in better prediction at a higher computational cost. Here we
set k = 10 for training each matrix factorization model in
both datasets that balances the performance and training time.
To learn the matrix factorization model from the sub-matrix,
the regularization coefficient ku and kv in Equation (3) are set
to 0.01 and 0.05 for theMovielens 100K and Netflix datasets,
respectively. The learning rate α in Equation (4) is set to 0.1
and is decreased by a factor of 0.9 each iteration for both
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datasets. To learn the matrix factorization model in the rating
matrix R′ (with pre-estimates), the regularization parameters
ku′ and kv′ are set to 0.1 for both datasets. The learning rates α
are set to 0.01 and 0.05 initially and allowed to decrease by a
factor of 0.9 each iteration for theMovielens 100K andNetflix
datasets, respectively.

2) EXPERIMENTAL RESULTS
We use ESVD-I, ESVD-U and ESVD to identify our methods
proposed in Section III.B.1, III.B.2, and III.B.3, respectively.
Figure 5 and Figure 6 show the results of the proposed meth-
ods based on the number of items and users selected (simply
setting N = N ′ in this case) in the sub-matrix on the Movie-
lens 100K and Netflix datasets, respectively. All the methods
start at 0 point where no extra filling is added into the learning
process, which is the same as RSVD. It can be seen that the
results of ESVD-I and ESVD-U sometimes are not promising.
This is because the pre-estimates added to the training sets
are either based only on item popularity (or user activity),
which may lead bias and distort the latent factor model. For
example, most people prefer movies with a happy ending, and
hence popular movies always contain more comedies than
tragedies. As a result, more ratings of comedy movies would
be added to the learning process by the users, which leads to
more weights added to the factor corresponding to comedies
in the latent factor model (RSVD in this case) and deteriorate
the performance. It is apparent fromFigure 5 and Figure 6 that
the proposed ESVD consistently outperforms other methods
including the baseline method, RSVD.

FIGURE 5. Movielens 100K: RMSE Comparisons of the proposed methods
based on RSVD. Note the results corresponding 0 percentage in the plot is
the results the the baseline RSVD.

FIGURE 6. Netflix: RMSE Comparisons of the proposed methods based on
RSVD. Note the results corresponding 0 percentage in the plot is the
results the the baseline RSVD.

TABLE 1. RMSE of ESVD on Movielens 100K (The density-oriented
approach).

TABLE 2. RMSE of ESVD on Netflix (The density-oriented approach).

Table 1 and Table 2 illustrate the experimental results of the
proposed density-oriented (ESVD) approach on the Movie-
lens 100K andNetflix datasets. The results of the performance
(in terms of RMSE) are shown based on the percentages of
items and users (N = N ′ from 0% to 20%) selected. Note
that the basicRSVD is a special case of the proposed approach
with N = 0%, which is used as the baseline for comparision.
It can be observed that the density of the sub-matrix decreases
with more items and users selected from the original matrix
since the items and users are chosen based on the number of
ratings. Although sparser matrices may result in poor quality
of pre-estimates, the quantity is increased as the size of the
sub-matrix gets large. Therefore, more missing values can be
pre-estimated by matrix factorization on the sub-matrix and
put into the learning process of the original model. Because
the sub-matrix of the ESVD approach is the intersection of the
N items (item-oriented) and N ′ users (user-oriented) with the
largest number of ratings, its density is much greater than
the ones used for ESVD-I and ESVD-U. Even with fewer
ratings to be added compared with ESVD-I and ESVD-U, the
performance is better.

In the experiments, it can be observed that for the Movie-
lens 100K dataset, the performance of ESVD fluctuates as
the number of users and items increases (Figure 5). While
for the Netflix dataset (Figure 6), the RMSE of ESVD drops
at first and then deteriorates (the lower RMSE the better
performance) asN goes up. This is mainly because theNetflix
dataset is much sparser than the Movielens 100K dataset. As
N increases, more poor quality data is added into the learning
process and leads to poorer performance (Figure 6). The
optimal value for N that balances the quality (density of sub-
matrix) and the quantity (number of added ratings) depends
on the distribution of ratings. For theMovielens 100K dataset,
ESVD can reach 0.9570 (when N = 20%) which reduces the
RMSE by 0.0139 when compared with the RSVD 0.9709. For
the Netflix dataset, ESVD can reduce the RMSE by 0.0047
from 0.9306 to 0.9259 when N = 3%.

IV. PROPOSED MULTILAYER ESVD (MESVD)
With ESVD, all the extra ratings are predicted in a single
matrix factorization model simultaneously, which could lead
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to significant bias and distort the original model when the
number of pre-estimates is large. To alleviate this problem a
method calledMultilayer ESVD (MESVD) is proposed, which
obtains the fillings incrementally through multiple matrix
factorization on different sub-matrices.

The example of a Two-layer ESVD is shown in Figure 7.
First a set of sub-matrices are created in each layer by select-
ing the intersections of different numbers of columns and
rows (as starred) based on the number of ratings each item
received or each user provided, respectively. Therefore, each
smaller sub-matrix (with red frame) in the upper layer can be
seen as a part of the bigger sub-matrix in the lower layer. The
missing values (yellow ratings) in the smaller sub-matrix can
be predicted by the matrix factorization method and then be
regarded as known ratings in the bigger sub-matrix. Similar to
deep learning, the outputs generated by each layer are utilized
as the inputs of the next layer, for enhancing the prediction
accuracy of their outputs (pre-estimates). For example in
Figure 7, the ratings in black and yellow are known in layer-2.
Therefore, the sub-matrix in the next layer is much denser
than the one without pre-estimates (the ratings in yellow)
from the first layer. In this way fillings are predicted itera-
tively layer by layer. At last all the pre-estimated ratings are
added to the original matrix to evaluate the performance of
the whole system.

FIGURE 7. Procedures of Multilayer ESVD.

Basically, theMESVD approach is based on the assumption
that the recommender system is built by a very dense matrix
with sufficient ratings first. Therefore, the recommendations
(the missing values in the sub-matrix) were reliable and can
be regarded as the known knowledge. After that, it is better
to keep inviting the most active users to rate the most popular
movies for the recommender system. In this way, each time
a set of movies and users are added to the system, which
generates knowledge iteratively for further learning and infer-
ence (from the upper layer to lower layer). As a result, better
performance can be obtained by learning the current systems
with extra knowledge generated in each of the sub-systems.

A. EXPERIMENTAL RESULTS
Experiments of the MESVD method on the Movielens 100K
and Netflix datasets are also conducted. The corresponding
results are shown in Table 3 and Table 4. For the Movielens
100K dataset, experiments of ESVD are conducted when

TABLE 3. RMSE of MESVD on Movielens 100K.

TABLE 4. RMSE of MESVD on Netflix.

N = 20% (optimal point), Two-layers ESVD where the first
layer is 10% and the 2nd layer is 20%, Four-layers ESVD
with layers from 5% to 20% with a 5% interval (setting
N = N ′). Specifically, in the first experiment, ratings are
predicted from the sub-matrix of density 45.66%. In Two-
layers ESVD, the first 5496 ratings are predicted from the
sub-matrix of density 65.20%, while the rest are calculated
from the sub-matrix of density 54.32%. InFour-layers ESVD,
ratings are predicted successively, from where each time
ratings are added based on a much denser matrix. Since we
add the same amount of pre-estimates totally (34508) for each
experiment, the sub-matrices in the final layers are the same
correspondingly. However, the performance gets better from
single layer ESVD to Four-layers ESVD, for the reason that
the quality of pre-estimates gets better.

For the Netflix dataset, four experiments are performed:
ESVD when N = 10%, Two-layers ESVD where the first
layer is 5% and the 2nd layer is 10%, Four-layers ESVD with
layers from 2.5% to 10% with a 2.5% interval, and Six-layers
ESVD with layers from 5% to 10% with a 1% interval. It can
be observed that Two-layers ESVD yields better performance
than ESVD, because each batch of extra ratings are predicted
from the denser matrices with better accuracy. For the same
reason, better results can be obtained based on Four-layers
ESVD than Two-layers ESVD. When compared Six-layers
ESVD with Two-layers ESVD, the first batch of extra ratings
are the same. However, the rest are of better quality because
they are learnt layer by layer in the denser matrices. When
compared Six-layers ESVDwith Four-layers ESVD, although
all the pre-estimates are learnt through more iterations, the
first batch of extra ratings are of poorer quality. As a result,
the performance of Six-layers ESVD is not as good as Four-
layers ESVD. In summary, although the optimal value forN is
not selected, better performance is obtained throughMESVD
than ESVD.
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Experimental results show that the quality of MESVD
depends on the number of layers and the choice of each
layer. With the ESVD algorithm, decent result cannot be
obtained if the number of items and users selected in the sub-
matrix N is inappropriate. Through the MESVD method, this
problem can be alleviated with comparable or better results.
With optimal value for N, better performance can still be
obtained by learning the extra ratings iteratively through the
MESVDmethod. The improvements of theMESVD approach
is limited, as the ratings added in the original matrix are the
same when compared with ESVD approach. However, if the
training time is not a concern,MESVD is preferable.

V. PROPOSED EXTENSIONS OF ESVD
Experimental results presented in the previous sections show
that adding pre-estimates by applying ESVD do improve the
performance of the system. The reason behind is that the
model is learnt by extra high quality ratings that are predicted
from the dense sub-matrix based on item popularity and user
activity. Based on this finding, we propose two extensions of
ESVD to deal with the datasets with a substantial imbalance
between the number of users and the number of items.

A. PROPOSED ITEM-WISE ESVD (IESVD)
When dealing with the rating matrix of which the number of
users is far greater than the number of items, most items are
rated by a significant number of users (popularity) but each
user only rates a few items (activity) on average. Therefore,
popular items have more impacts than active users on the
density of the newly formed sub-matrix. As a result, obtain-
ing a sub-matrix based on item popularity and user activity
simultaneously is not appropriate under such circumstance.

The Item-wise ESVD (IESVD) is proposed by first selecting
a number of most popular items to form a sub-matrix as
the ESVD Algorithm does (Figure 8). Then, only the active
users that have seen these specific movies (as starred) are
chosen. In this way, a denser sub-matrix can be obtained
than the one from the ESVD method. Therefore, the missing
values in the sub-matrix can be pre-estimated by the matrix
factorization method. Finally, the predicted ratings are filled
in the original matrix. Therefore, the newmatrix factorization
model is learnt and tested based on the newly formed rating
matrix.

FIGURE 8. Procedures of Item-wise ESVD.

B. PROPOSED USER-WISE ESVD (UESVD)
Likewise, in the datasets consisting of far more items than
users, the quantity of ratings each user rates (activity) is

much greater than the quantity of ratings each item is rated
(popularity) on average. Therefore, the User-wise ESVD
(UESVD) is proposed as shown in Figure 9. Initially, a num-
ber of most active users are selected to form a sub-matrix
based on the number of ratings each user has rated. Then the
most popular items that the active users have seen are chosen
to form the sub-matrix, i.e. the items with most ratings in the
sub-matrix only. As a result, a denser sub-matrix is obtained
than the one from ESVD. The remaining procedures is the
same as the ESVD algorithm.

FIGURE 9. Procedures of User-wise ESVD.

Therefore, both IESVD andUESVD train the matrix factor-
ization model twice by automatically adding pre-estimates in
the dataset. However, the IESVD and UESVD approaches are
not applicable to multilayer learning (i.e.MESVD) because in
the IESVD and UESVD algorithms, the sub-matrices selected
based on a few items and users are not necessarily included
in the larger sub-matrices consisting of more items and users.

C. EXPERIMENTAL RESULTS
To emphasize the merits of the proposed IESVD and UESVD
approaches, the following two subsets are extracted from
Movielens 1M to make the size similar to theMovielens 100K
dataset in the experiments:

1) MI (6040 × 263): This dataset contains ratings for
263 movies randomly selected from 3,952 movies pro-
vided by 6,040 users.

2) MU (401 × 3952): This dataset contains ratings for
3,952 movies provided by 401 users randomly selected
from 6,040 users.

Likewise, the following two subsets are also extracted from
the originalNetflix dataset tomake the size equal to theNetflix
subset for comparative purpose.

1) NI (6800 × 500): This dataset contains ratings for
500 randomly selectedmovies provided by 6,800 users.

2) NU (955 × 3561): This dataset contains ratings for
3,561 randomly selectedmovies provided by 955 users.

Experiments of the proposed IESVD, UESVD approaches
are conducted on theMovielens 1M subsets (MI andMU) and
Netflix subsets (NI and NU). The details are shown in Table 5.

TABLE 5. Experimental datasets.
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Table 6 to Table 9 show some experimental details of
proposed methods on the datasets including the number of
selected items and users (N = N ′ = 10% for the Movielens
1M subsets MI, MU and N = N ′ = 5% for the Netflix
subsets NI, NU), the density of sub-matrix, the number of
added ratings and the results of different algorithms on the
corresponding datasets.

TABLE 6. Comparison of the proposed methods on MI (6040 × 263).

TABLE 7. Comparison of the proposed methods on MU (401 × 3952).

TABLE 8. Comparison of the proposed methods on NI (6800 × 500).

TABLE 9. Comparison of the proposed methods on NU (955 × 3561).

It can be observed that for the datasets of which the number
of users is far greater than the number of items (i.e. MI
and NI), IESVD could obtain denser sub-matrices. While for
datasets with far more items than users (i.e. MU and NU),
the density of the sub-matrices produced by UESVD are
greater. However, the number of extra ratings predicted from
the denser sub-matrix is less than that from the sparser sub-
matrices. Therefore, it is inappropriate to compare the results
of different algorithms based on the certain number of items
and users N . As a result, the best performance (with least
RMSE) of the proposed algorithms are listed based on the best
choices of N (setting N = N ′).
Figure 10 to Figure 13 show the performance (RMSE) of

the proposed methods with respect to the percentage of items
and users (setting N = N ′) selected in the sub-matrices on
MI, MU, NI, NU datasets, respectively. It can be seen from
the figures all the algorithms start from N = N ′ = 0, where
no extra ratings are added into the original matrix. This can be
seen as the special case of RSVD. As the number of items and

FIGURE 10. RMSE of the proposed methods on MI (6040 × 263).

FIGURE 11. RMSE of the proposed methods on MU (401 × 3952).

FIGURE 12. RMSE of the proposed methods on NI (6800 × 500).

FIGURE 13. RMSE of the proposed methods on NU (955 × 3561).

users selected in the sub-matrix N goes up, the performance
fluctuates. When N is getting large, excessive ratings distort
the model and the performance deteriorates. Therefore, the
best choices for N that lead to the least RMSE are compared.
It can be observed that when dealing with the datasetsMI and
NI where the number of user is far greater than the number
of items, IESVD yields a denser sub-matrix than the UESVD
method. When the datasets contain more items than users
(MU, NU), UESVD performs better than IESVD.
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VI. CONCLUSION
The lack of information is an acute challenge in most recom-
mender systems. In this paper, we propose a series of meth-
ods, which apply traditional matrix factorization methods
that best approximates a given matrix with missing values.
Specifically, the general EVSD model is firstly proposed by
seeking high density through popular items and active users in
a special manner inspired by active learning. The correspond-
ing experimental results show its feasibility. The proposed
EVSD model is further extended into the MESVD approach,
which learns the model iteratively. The MESVD approach
can achieve better performance than ESVD at the expense
of higher computational complexity. In addition, two variants
of ESVDmodel are proposed: IESVD and UESVD. Although
the multilayer learning strategy (adopted by MESVD) is not
applicable to IESVD and UESVD, their performance are bet-
ter than ESVD when dealing with datasets with imbalanced
number of items and users. Instead of viewing active learn-
ing from the individual user’s point of view, the proposed
methods deal with the problem from the system’s perspec-
tive in a more realistic and effective manner. Although the
proposed methods cannot deal with the cold start problem,
where the database keeps growing as new users or items
continue to be added, it does reduce the computational cost
greatly since all the ratings are added simultaneously (ESVD,
IESVD and UESVD) or iteratively by a predefined number of
iterations (MESVD).
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