
SPECIAL SECTION ON TRUSTED COMPUTING

Received October 24, 2017, accepted November 17, 2017, date of publication November 21, 2017,
date of current version December 22, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2776160

Provably Leakage-Resilient Password-Based
Authenticated Key Exchange in
the Standard Model
OU RUAN 1, JING CHEN2, AND MINGWU ZHANG1
1School of Computer Science, Hubei University of Technology, Wuhan 430068, China
2School of Computer Science, Wuhan University, Wuhan 430072, China

Corresponding author: Ou Ruan (ruanou@163.com)

This work was supported in part by the Educational Commission of Hubei Province of China under Grant D20151401, in part by the
Natural Science Foundation of Hubei Province of China under Grant 2017CFB596, and in part by the Green Industry Technology Leading
Project of Hubei University of Technology under Grant ZZTS2017006.

ABSTRACT The password-based authenticated key exchange (PAKE) protocol is one of most practical
cryptographic primitives for trusted computing, which is used to securely authenticate devices’ identities and
generate shared session keys among devices in insecure environments by using a short, human-memorable
password. With the fast development of the Internet of Things (IoT), new challenges regarding PAKE have
emerged. The traditional PAKE protocols are completely insecure in IoT environments, since there are many
kinds of side-channel attacks. Therefore, it is very important to model and design leakage-resilient (LR)
PAKE protocols. However, there has been no prior work on modeling and constructing LR PAKE protocols.
In this paper, we first formalize an LR eCK security model for PAKE based on the eCK-secure PAKE
model and the only computation leakage model. Then, we propose the first LR PAKE protocol by using
Diffie–Hellman key exchange, LR storage (LRS) and LR refreshing of LRS appropriately and formally
present a security proof in the standard model.

INDEX TERMS Leakage-resilience, password-based authenticated key exchange, side-channel attacks,
trusted computing, internet of things.

I. INTRODUCTION
Trusted computing (TC) is a very important technology,
which aims to enhance the overall security, privacy and
trustworthiness of a variety of computing devices. Trustwor-
thy software assurance, trusted execution environment and
trusted collaboration are hot research fields of TC. Estab-
lishing and protecting device identity by trustworthy soft-
ware assurance make up one of the fundamental security
requirements of TC. Authenticated key exchange (AKE) pro-
tocols [1] provide a good solution for identity authentica-
tion, which can securely authenticate device identity and
generate a shared session key among devices in an insecure
environment. With the fast development of the Internet of
Things (IoT), new challenges regarding TC have emerged.
There are many IoT devices that vary widely in their cost,
usage, and capabilities. For the trusted execution environ-
ment, IoT devices should have the ability to perform mutual
authentication with IoT services or with other IoT devices [2].
AKE is one of main technologies for performing mutual

authentication and session key generation for IoT devices.
For example, Hsu et al. [3] designed an AKE protocol
for wearable devices in IoT environments. Among AKEs,
the password-based AKE (PAKE) protocols are most widely
used since no additional device is required, just a human-
memorable password for authenticating the parties. The con-
cept of PAKE was introduced by Bellovin and Merritt [4].
The first provably secure PAKE protocols were proposed by
Bellare et al. [5] and MacKenzie et al. [6]; they formally
proved the security in the random oracle (RO) model. Then,
Byun et al. [7] and Mohammad and Mahmoud [8] improved
and generalized the constructions of PAKE in the RO model.
In 2006, the first provably secure PAKE protocol in the
standard model was shown by Goldreich and Lindell [9], and
then [10]–[13] showed efficient constructions for PAKE pro-
tocols in the standard model. In 2012, Wen et al. [14] intro-
duced a three-party password-authenticated multiple key
exchange protocol. Subsequently, Tsai et al. [15] made some
improvements to [14]. However, Luo et al. [16] demonstrated
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off-line password guessing attacks against both protocols.
Recently, Ruan et al. [17] designed an explicit PAKE protocol
with mutual key confirmation and gave a formal security
proof; Yi [18] et al. presented a two-server PAKE proto-
col, in which two servers know only partial information
about the client’s password, but can cooperate to authenti-
cate the client’s identity; Islam [19], Amin and Biswas [20]
and Lu [21] designed three-party/multi-party PAKE pro-
tocols with formal security proofs; Nam et al. [22] and
Guo et al. [23] proposed provably secure group PAKE
protocols.

Computations or communications of IoT devices emit
signals known as ‘‘side channels’’, such as electromagnetic
emissions and power consumption. Most IoT devices are
exposed to the public outside, and an attacker can overcome
the security protections by measuring these signals, which
are called side-channel attacks [24]. Traditional PAKEs are
completely insecure in leakage environments. Moreover, the
technologies of side channel attacks are developing, and
new attack methods may appear at any moment. Thus, it is
impossible to consider all types of side-channel attacks in
the hardware design of IoT devices. Furthermore, we know
that current TC technologies focus on establishing trust, but
how to maintain trust in dynamically changing environments
has not been deeply studied. Thus, to resist side-channel
attacks and provide trustworthy software assurance, it is very
important to model and design leakage-resilient (LR) AKE
protocols.

The first LR security model for AKEs was introduced by
Moriyama and Okamoto [25] and is called the MO model.
The MO model was based on the eCK security model [26],
which is an extension of the CK security model [27]. The
adversary of the eCK security model has more power than the
CK model and can access both the long-term secret key and
the ephemeral secret randomness of the test session. The cen-
tral limitation of the MO model is that the leakages are only
allowed until the adversary learns the challenge. Leakage that
occurs after the adversary learns the challenge is called after-
the-fact (AF) leakage. The first AFLR CK security model
and the first continuous AFLR (CAFLR) AKE protocol were
introduced by Alawatugoda et al. [28]. Then, the first AFLR
eCK security model and the first bounded AFLR (BAFLR)
AKE protocol were proposed by Alawatugoda et al. [29], and
the first CAFLR eCK-secure AKE protocol was introduced
by Alawatugoda et al. [30]. In 2016, Chen et al. [31] first
considered leakage attacks on both the long-term secret pri-
vate key and the ephemeral secret randomness, and proposed
a one-round AFLR AKE protocol under this strong security
model. In 2017, the first ID-based BAFLRAKE protocol was
introduced by Ruan et al. [32]. Recently, Toorani [33] demon-
strated an ephemeral key compromise impersonation (KCI)
attack on the construction of [28]; Yang and Li [34] also
showed that the construction of [29] was insecure against KCI
attacks and the proofs of Case 2 (the adversary is active) were
incorrectly reduced to the Decision Diffie-Hellman (DDH)
assumption, and then they improved the construction and

formally showed the security proof under the Gap Diffie-
Hellman (GDH) assumption in the RO model.

In this paper, we formalize the LR eCK security model
for PAKE and propose an LR PAKE protocol that is based
on the key derivation function (KDF) [35], leakage-resilient
storage (LRS) [36] and leakage-resilient refreshing of LRS.
Then, we give the detailed formal security proof. The main
contributions are as follows:
• First, we first formalize an LR eCK security model
for PAKE by combining the eCK security PAKE
model and the only computation leakage (OCL) model
appropriately.

• Second, we propose the first LR PAKE protocol by using
Diffie-Hellman key exchange and the Dziembowski-
Faust (DF) LRS (DF-LRS) scheme [37] properly.
Our protocol is more efficient than other LR AKE
protocols.

• Third, based on game simulation techniques, we show
a formal security proof in the standard model under
a stronger security model, namely, the λ-CAFLR eCK
securitymodel, in which the leakages are continuous and
are allowed after the adversary selects the test session.
In the model, the total leakage size may be infinitely
large, and for each protocol instance, the amount of
leakage is bounded by λ.

The remainder of this paper is organized as follows.
In Section 2, we review the primitives that are used.
In Section 3, we describe the CAFLR eCK security model
of PAKE. In Section 4, we present the proposed protocol
and analyse the provable security, performance comparison
and leakage tolerance. Finally, in Section 5, we conclude the
paper.

Compared with the conference version [38], there are
four significant improvements in this paper. First, we for-
mally give the detailed security proof in the standard model.
Second, we analyse the leakage tolerance of our pro-
posed protocol. Third, we complement the LR eCK secu-
rity model for PAKE with a graphical framework of the
security game. Finally, we present the primitives that are
used and analyse why they are needed and how they are
used.

II. PRELIMINARIES
In this section, we address the primitives that are used, such
as the DDH assumption, KDF, LRS and leakage-resilient
refreshing of LRS.

Notation: Let s
$
←− S denote that s is a uniform value that

is selected from a finite set Sat random and let κ and λ denote
the system security parameter and the leakage parameter,
respectively.
Definition 1 (Negligible Function): A negligible function

ε(κ) is a function N → R such that for each positive integer
c ≥ 0, there exists an integer kc such that ε(κ) < k−c for all
k ≥ kc.
Definition 2 (DDH Assumption):We define a distinguish-

ing game as follows:
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(1) A challenger C generates a cyclic multiplicative group
G with a large prime order p, picks a generator g at
random, and then sends (G, g) to an adversary A.

(2) C picks a bit b
$
←− (0, 1) and three elements

x, y, z
$
←− Z∗p at random. If b = 0, C sends

(gx , gy, gxy) to A; otherwise, A is given (gx , gy, gz).
(3) A outputs his guessed bit b′. A wins if b

′

= b.
DDH assumption is satisfied if

AdvDDH (A) = |Pr[b′ = b]− 1/2| = ε(κ),

where AdvDDH (A) denotes the advantage of A in the distin-
guishing game and ε(κ) is a negligible function.
Definition 3 (λ-Leakage-Resilient Storage): An λ-LRS

consists of a pair of algorithms (Encode, Decode) and a
bounded leakage parameter λ = (λ1, λ2).
Encode: Encode(s) = sL×sR is a randomized and efficient

probabilistic polynomial time (PPT) algorithm, where s is an
element that is chosen from the message space M and sL× sR
is the encoded output element in the encoding space L × R.
Decode: Decode(sL × sR) = s is a deterministic and

efficient PPT algorithm.
An λ-LRS should satisfy the following two properties:

I. Correctness of the LRS. For every s
$
←− M ,

Decode(Encode(s)) = s.
II. Security of the LRS.
We define a distinguishing game as follows:

(1) A chooses two random messages (s0, s1)
$
←− M and

sends (s0, s1) to C.
(2) C picks a bit b

$
←− (0, 1) at random and calculates

Encode(sb) = sLb × s
R
b .

(3) For i = 1, · · · , t , A selects leakage functions f =
(f Li , f

R
i ) and sends it to C and C returns the leak-

ages (f Li (s
L
b ), f

R
i (s

R
b )) back to A. The total leakage size

should be bounded by (λ1, λ2), i.e.,
t∑
i=1

f Li (s
L
b ) ≤ λ1 ∧

t∑
i=1

f Ri (s
R
b ) ≤ λ2.

(4) A outputs his guessed bit b′. A wins if b
′

= b.
The λ-LRS is secure if the following holds:

AdvLRS (A) = ε(κ),

where AdvLRS (A) represents the advantage of A in the
distinguishing security game and ε(κ) is a negligible
function.
Definition 4 ((λRefresh, λ)-Leakage-Resilient Refreshing of

the LRS): A leakage-resilient refreshing is a PPT algorithm
Refresh with an λ-LRS (Encode,Decode), a secret s and a
bounded leakage amount λRefresh = (λRefresh1, λRefresh2).
Refresh: Refresh(sL × sR) = s′L × s

′
R where sL × sR is the

encoding value of the secret s.
A leakage-resilient refreshing of an λ-LRS should satisfy

the following two properties:

I. Correctness of the leakage-resilient refreshing.

For every s
$
←− M ,

Decode(s′L × s
′
R) = Decode(sL × sR).

II. (λRefresh, λ)-security of the leakage-resilient refreshing.
We define a distinguishing game as follows:

(1) A chooses two random messages (s0, s1)
$
←− M and

sends (s0, s1) to C.
(2) C picks a bit b

$
←− (0, 1) at random and calculates

Encode(sb) = sLb × s
R
b .

(3) For i = 1, · · · , t , C runs the ith round refresh-
ing protocol, Refresh(si−1bL × si−1bR ) = sibL × sibR,
A selects the ith round leakage functions fRefresh-i =
(f LRefresh-i, f

R
Refresh-i) and sends it to C, and C returns

the leakages (f LRefresh-i(s
i
bL), f

R
Refresh-i(s

i
bR)) to A, where

f LRefresh-i(s
i
bL) ≤ λRefresh1 ∧ f RRefresh-i(s

i
bR) ≤ λRefresh2

should hold.
(4) A outputs his guessed bit b′. A wins if b

′

= b.
An (λRefresh, λ) leakage-resilient refreshing is secure if the

following holds:

AdvRefresh−LRS (A) = ε(κ),

where AdvRefresh−LRS (A) denotes the advantage of A in dis-
tinguishing the above security game and ε(κ) is a negligible
function.
Definition 5 (DF-LRS Scheme): The DF-LRS Scheme [37]

is an LRS that efficiently stores a secret value s ∈ (Z∗p )
m with

any m ∈ N , where p is a large prime. We denote it as 8n,m
Z∗p

.

Encode: Pick sL
$
←− (Z∗p )

n
\{(0n)} at random, compute

sR ∈ (Z∗p )
n×m such that sL × sR = s, where n ∈ N , and then

output (sL , sR).
Decode: Output s such that s = sL × sR.
Lemma 6 [37]: The scheme that is defined in Defini-

tion 5 is an λ-secure LRS scheme if 20m < n, where
λ = (0.3nlog p, 0.3nlog p).
Lemma 7 [37]: If 8n,m

Z∗p
is an λ-secure DF-LRS scheme

and m/3 ≤ n ∧ n ≥ 16, there is an (λ/2, λ)-secure leakage-
resilient refreshing Refreshn,mZ∗p for 8n,m

Z∗p
.

Definition 8 (Key Derivation Function): A KDF is a
function key ← KDF(σ, `, r, c) that can generate a cryp-
tographically strong secret key efficiently, where σ is the
source material of the secret key and ` denotes some public
knowledge about σ such as its length, r represents a salt value
and c denotes a context variable.
Definition 9 (Security of KDF):We define a distinguishing

game as follows:
(1) C picks (σ, `) and a salt value r at random, and then

gives (`, r) to A.
(2) A chooses a value c at random, and then gives it to C.
(3) C selects a random bit b

$
←− (0, 1). If b = 0, C

calculates key ← KDF(σ, `, r, c) and gives it to A;
otherwise, C picks a string s at random and gives it to
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A, where the length of s is the same as the length of
key← KDF(σ, `, r, c).

(4) A outputs his guessed bit b′. A wins if b
′

= b.
A KDF is secure if the following holds:

AdvKDF (A) = ε(κ),

where AdvKDF (A) denotes the advantage of A in the distin-
guishing security game and ε(κ) is a negligible function.

III. THE λ-CAFLR eCK SECURITY MODEL FOR PAKE
Based on the eCK security PAKEmodel and the OCL model,
we define the λ-CAFLR eCK security model for PAKE in
this section, where leakage attacks are modelled as leakage
functions that are defined in Send queries. A can learn the
leakages of the long-term secret password by asking Send
queries with leakage functions that are chosen by him. The
new model has three main properties: First, we suppose that
only the calculations will lead to leakages of the long-term
shared secret password pw. Second, in each instance of the
protocol, the total leakage size of the secret password is
limited to λ. A can perform leakage attacks by asking Send
queries with the leakage functions f = (f1, . . . , fn), which
are chosen adaptively by him, and get back the leakages of
pw. However, we require that the total leakage amount is

limited to λ for each instance, i.e.,
n∑
i=1
|fi(pw)| ≤ λ. Third,

A can continuously carry out the leakage attacks instance
by instance and learn an infinitely large amount of leakage
information about the secret password.

A. ADVERSARIAL POWERS
In our model, two parties, who are denoted as U and V , run
the PAKE protocol together to obtain a secure shared key. We
define the following notations.

Session is used to represent a protocol instance.
Principal is used to denote a party of a session. A principal

may be involved in multiple different sessions that may be
executed concurrently.

Oracle(5s
U ,V ) is used to represent the sth session with

principals U and V , of which U is the owner principal and
V is the intended partner principal.

Initiator is used to represent the principal who activates a
session.

Responder is used to represent the principal who responds
to the initiator.

In our model, the adversary A is active, adaptive and
malicious, interacts with any oracles and performs attacks.
We model the adversarial capabilities by the following
queries.
Send(U, V, s, m, f ) query: this query models A’s abilities

to execute the protocol and carry out the leakage attacks. The
adversary A sends a Send(U, V, s, m, f ) query to the oracle
5s
U ,V in the sth session, where m is a protocol message and

f is a leakage function. Then, A gets back a normal protocol
message and the leakage f (pw) of the long-term password,
which are produced by the oracle5s

U ,V based on the protocol

specifications and f . A can use this query to run a proto-
col or activate a new protocol instance as an initiator with
blank m and f .
RevealSessionKey(U, V, s) query: this query models A’s

capability to learn the sth session key. The adversary A sends
this query to the oracle5s

U ,V in the sth session. Then, A gets
back the sth session key from 5s

U ,V .
RevealEphemeralKey(U, V, s) query: this query models

A’s capability to learn ephemeral keys of the sth session. The
adversary A sends this query to the oracle 5s

U ,V in the sth

session. Then, A gets back the sth ephemeral keys of 5s
U ,V .

RevealPassword() query: this query models A’s capability
to learn the principals’ shared password. The adversary A
sends this query to any oracle in any session. Then, A gets
back the long-term shared secret password pw.
Test(U , s) query: this query is different from all of the

above queries, as it is only used to specify the security
definition of our model. Upon receiving this query from the

adversary A, the challenger C chooses a bit b
$
←− (0, 1) at

random. If b = 1, then C sends the actual session key to A,
while a random string is given to A. A can issue this query
only once across all sessions.

B. λ-CAFLR eCK SECURITY MODEL
In our security model, the total leakage size of the secret pass-
word for each instance is bounded by the leakage parameter

λ, i.e.,
n∑
i=1
|fi(pw)| ≤ λ.

Definition 10 (Partner in λ-CAFLR eCK Security Model):
Two oracles 5s

U ,V and 5s′
U ′,V ′ are partners if they have the

following properties:
(1) 5s

U ,V and5s′
U ′,V ′ have received the same session keys;

(2) The messages that are sent from 5s
U ,V are the same as

the messages that are received by 5s′
U ′,V ′ ;

(3) The messages that are sent from5s′
U ′,V ′ are the same as

the messages that are received by 5s
U ,V ;

(4) U = V ′ and V = U ′;
(5) There are an initiator and a responder of two principals

U and V .
Definition 11 (λ-C AFLR-eCK-Freshness): Assume f =

(f1, . . . , fn) denotes n PPT leakage functions for a certain
protocol instance that is chosen by the adversaryA arbitrarily.
An oracle 5s

U ,V is λ-CAFLR-eCK-fresh if the followings
hold:
(1) RevealSessionKey queries have not been asked by the

oracle 5s
U ,V or its partner, 5s

′

V ,U (if it exists).

(2) If the partner 5s
′

V ,U exists, neither of the following
combinations has been queried:
(a) RevealPassword() and RevealEphemeralKey(U,

V, s);
(b) RevealPassword() and RevealEphemeralKey(V,

U,s
′

).

(3) If the partner 5s
′

V ,U does not exist, A cannot ask the
RevealPassword() query.
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(4) For all Send(., U , ., ., fi) queries,
n∑
i=1
|fi(pw)| ≤ λ.

(5) For all Send(., V , ., ., fi) queries,
n∑
i=1
|fi(pw)| ≤ λ.

C. SECURITY DEFINITION
This section formalizes the security definition of the
λ-CAFLR eCK model.

FIGURE 1. The Security Game of λ-CAFLR eCK-Secure PAKE.

Definition 12 (λ -CAFLR eCK Security Game): The λ -
CAFLR eCK security game is shown in Fig. 1, which is run
by the protocol challenger C with a PPT adversary A:
(1) A asks any of the Send, RevealSessionKey, RevealE-

phemeralKey and RevealPassword queries to any
oracle.

(2) A chooses an λ-CAFLR-eCK-fresh oracle and asks
a Test query. Upon receiving a Test query, C selects

a random bit b
$
←− (0, 1). If b = 1, then sends

the actual session key to A, while a random string is
given to A.

(3) A continues askingSend,RevealSessionKey, RevealE-
phemeralKey and RevealPassword queries. All these
queries should satisfy the λ-CAFLR-eCK-freshness of
the chosen oracle.

(4) At last, A outputs his guessed bit b′. A wins if b
′

= b.
Definition 13 (λ-CAFLR eCK Security): Let

Advλ−CAFLReCKPAKE be the advantage of A in the λ-CAFLR eCK
security game that is defined in Definition 12. λ-CAFLR eCK
security means that

Advλ−CAFLReCKPAKE = |Pr[b′ = b]− 1/2| = NS/N + ε(κ),

where NS is the number of sessions, N denotes the size
of the password dictionary, and ε(κ) represents a negligible
function.

In other words, a PAKE protocol is λ-CAFLR eCK-secure
if there is no PPT adversary who can win the above secu-
rity game with an advantage of more than NS/N . In PAKE

protocols, on-line dictionary attacks are unavoidable, and
NS/N represents the success probability of on-line dictio-
nary attacks. However, this attacks can be limited by some
kind of strategy, for example, by disallowing further attempts
after a certain number of failed attempts to the correct
password.

IV. A NEW λ-CAFLR ECK-SECURE PAKE PROTOCOL
In this section, we formally present our λ-CAFLR
eCK-secure PAKE protocol and its detailed security proof
in the standard model.

A. THE PROPOSED PROTOCOL
1) OVERVIEW OF THE PROPOSED PROTOCOL
There are three main stages:
• Initially, we map the password pw to a random element
s of a group G using a one-way collision-free hash
function H, and then encode s using an LRS scheme.
This approach can resist leakage attacks on the shared
secret password. However, determining how to use the
encodings of the shared password to achieve authenti-
cation and obtain a secure session key becomes a big
challenge.

• Then, we use the encodings of the shared password
to achieve authentication and obtain a secure session
key by combining Diffie-Hellman key exchange and
the DF-LRS scheme appropriately. This method gives
a good solution to the above challenge. The important
observations are as follows: (1) Two primitives can share
a common group G with a big prime order p; (2) In the
DF-LRS scheme, (gsL )sR = gsL ·sR = gs since s = sL ·sR,
where g is a generator of G, s denotes the secret mapping
element, and (sL , sR) represents two encodings of the
DF-LRS scheme.

• Finally, since there is an efficient leakage-resilient
refreshing protocol for the DF-LRS scheme, we can
refresh two encodings of s after using them in the end
of the protocol. Thus, our construction is secure against
continuous leakage attacks.

2) DETAILS OF THE PROPOSED PROTOCOL
Fig. 2 illustrates the proposed protocol, which includes the
following two stages.

a: THE INITIAL SETUP STAGE
Users U and V first map the shared secret password to a
random element of the groupG, sUV = H (pwUV ).We assume
that this computation is executed in secret and leakage attacks
are not allowed. Then, U runs an λ-secure DF-LRS scheme
8
n,1
Z∗p

, picks a0L
$
←− (Z∗p )

n
\{(0n)} at random and generates

a0R ∈ (Z∗p )
n×1such that a0L · a

0
R = sUV ; V also chooses

b0L
$
←− (Z∗p )

n
\{(0n)} at random and computes b0R ∈ (Z∗p )

n×1

such that b0L · b
0
R = sUV .
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b: THE PROTOCOL EXECUTION STAGE
Step 1. User U calculates YU = gxU and TU1 = (YU )a

j
L ,

where xU
$
←− Z∗p is a random number, and then sends

(U ,TU1) to user V.
Step 2. Upon receiving (U,TU1), V calculates YV =

gxV ,TU2 = (TU1)xV and TV1 = (YV )b
j
L , where xV

$
←− Z∗p is

a random number, and then sends (V,TU2,TV1) to U.
Step 3. Upon receiving (V,TU2,TV1), U calculates TV2 =

(TV1)xU and sends it to V. Finally, U calculates TU = (TU2)a
j
R

and kUV = KDF(U,V ,TU ), and refreshes the stored pieces
with

(aj+1L , aj+1R )← Refreshn,1Z∗p (a
j
L , a

j
R).

Step 4. Upon receiving (U,TV2), V calculates TV =
(TV2)b

j
R and kUV = KDF(U,V ,TV ), and refreshes the stored

pieces with
(bj+1L , bj+1R )← Refreshn,1Z∗p (b

j
L , b

j
R).

Correctness of the proposed protocol.
From

TU = (TU2)a
j
R = (((gxU )a

j
L )

xV )a
j
R

= (((gxU )xV )a
j
L )a

j
R = ((gxU )xV )

ajL ·a
j
R

= ((gxU )xV )sUV = (((gxU )xV )b
j
L )b

j
R

= (((gxV )b
j
L )xU )b

j
R

= (((YV )b
j
L )

xU )b
j
R

= (TV2)b
j
R = TV

it follows that

⇒ KDF(U,V ,TU ) = KDF(U,V ,TV ).

Therefore, the proposed protocol is correct.

B. MUTUAL AUTHENTICATION
In our protocol, we can add mutual authentication con-
veniently. To do this, we can introduce an authenticator
structure KDF(U,V , kUV ), where kUV = KDF(U ,V ,TV ).
At the end of the protocol, users U and V each calculate
the authenticator Auth = KDF(U,V , kUV ) and send Auth
to the other user. Then, each user can identify the other’s
identity by checking whether the received authenticator Auth
is equal to KDF(U,V , kUV ). When we give our security
proof, we will not consider the security of mutual authentica-
tion because this authenticator transformation preserves the
indistinguishability security of the original protocol.

C. SECURITY PROOF
Our CAFLR PAKE protocol is eCK-secure if the DDH prob-
lem is hard and the leakage-resilient refreshing of LRS and
KDF is secure.
Theorem 14: Let Advλ−CAFLReCKPAKE represent the advan-

tage of a PPT adversary A against the λ -CAFLR eCK-
security of the proposed protocol, and let AdvDDH ,AdvKDF

FIGURE 2. The λ-CAFLR eCK-Secure PAKE Protocol.

and AdvRefresh−LRS be advantages of A against the security of
the DDH assumption, KDF and leakage-resilient refreshing
of LRS, respectively. Then

Advλ−CAFLReCKPAKE ≤ NS/N + N 2
PN

2
S (AdvDDH

+AdvRefresh−LRS + AdvKDF ),

where NP is the number of protocol principals, NS denotes
the number of sessions on a principal, and N represents the
size of the password dictionary.

Proof: The proof can be divided into the following two
main cases.
Case 1 (A Partner Session to the Test Session Exists):
In this case, the adversary A may obtain the principals’

long-term shared secret password pwUV by the RevealPass-
word query. Let Advλ−CAFLReCKPAKE be the advantage of A in the
λ-CAFLR eCK security game.We split this case into two sub-
cases as follows:

(1) A asks a RevealPassword query. In this case, A can
learn the principals’ long-term shared secret password. To not
violate the λ-CAFLR-eCK-freshness of the chosen session,
A cannot ask RevealEphemeralKey query to learn random
ephemeral keys of the owner or partner principals to the
chosen session.

(2) A doesn’t ask a RevealPassword query. In this case, A
cannot obtain the long-term shared secret password, but can
learn random ephemeral keys of the owner and his partner to
the chosen session.
Case 1.1 (A Asks a RevealPassword Query):
In this case, the adversaryA can obtain the principals’ long-

term shared secret password pwUV by the RevealPassword
query and learn sUV = H (pwUV ). Thus, leakage attacks do
not need to be considered. To not violate the λ-CAFLR-eCK-
freshness of the chosen session, A cannot obtain any of the
principals’ ephemeral keys to the chosen session.
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Game 1: This game is the original λ-CAFLR eCK security
game that is defined in Definition 12.

Game 2: Game 2 has the following differences from
Game 1: First, the adversaryA picks two random distinct prin-

cipals U∗,V ∗
$
←− {U1, . . . ,UNp} and two random numbers

s∗, t∗
$
←− {1, . . . ,Ns}, where NP denotes the number of

principals and NS represents the number of sessions on a
principal. Second, A activates the security game and chooses
5s∗
U∗,V ∗ as the target oracle and5

t∗
V ∗,U∗ as the partner oracle.

If the test oracle is not 5s∗
U∗,V ∗ or the partner oracle is not

5t∗
V ∗,U∗ , the Game 2 challenger stops and exits the game.
Game 3: Game 3 has the following differences from

Game 2: The Game 3 challenger C picks z
$
←− Z∗p

at random and calculates sU∗V ∗ = H (pwU∗V ∗ ) and
kU∗V ∗ = KDF(UU∗ ,UV ∗ , (gsU∗V∗ )z). After receiving a
Test(U∗,V ∗, s∗) query from A, C gives kU∗V ∗ to A. In addi-
tion, after receiving a Test(V ∗,U∗, t∗) query, C sends the
same kU∗V ∗ to A, since there is a partner session 5t∗

V ∗,U∗ .
Game 4: Game 4 has the following differences from

Game 3: The Game 4 challenger C selects a random value

kU∗V ∗
$
←− {0, 1}k . Then, after receiving a Test(U∗,V ∗, s∗)

query or Test(V ∗,U∗, t∗) query from A, C gives kU∗V ∗ to A.
Differences Between Games: We analyse the indistin-

guishability of each game t from its previous game t-1. Let
AdvGamet (A) be the advantage of A in Game t .
Game 1:

AdvGame1(A) = Advλ−CAFLReCKPAKE (I)

Game 1 and Game 2: Game 1 and Game 2 are the same if the
target oracle and the partner oracle are chosen byA correctly.
The probability of A choosing a correct test oracle and its
correct partner is 1/N 2

PN
2
S . Therefore,

AdvGame2(A) = 1/N 2
PN

2
SAdvGame1(A) (II)

Game 2 and Game 3: In Game 2, kU∗V ∗ = KDF(UU∗ ,UV ∗,
(gsU∗V∗ )xU∗ ·xV∗ ), while kU∗V ∗ = KDF(UU∗ ,UV ∗ , (gsU∗V∗ )z)
in Game 3. Assume A outputs a bit b to distinguish
between Game 2 and Game 3: b = 1 if Game 2 is
running; otherwise, b = 0. We design an algorithm
B against the DDH distinguishing game, which uses A
as a subroutine and runs as follows: (1) Upon receiv-
ing a message ((gsU∗V∗ )xU∗ , (gsU∗V∗ )xV∗ , (gsU∗V∗ )xU∗ ·xV∗ ) or
((gsU∗V∗ )xU∗ , (gsU∗V∗ )xV∗ , (gsU∗V∗ )z) from the DDH chal-
lenger, B transfers it to A’schallenger, who uses it to generate
the response message to A’s challenge. If the received mes-
sage is ((gsU∗V∗ )xU∗ , (gsU∗V∗ )xV∗ , (gsU∗V∗ )xU∗ ·xV∗ ), the simula-
tion is the same as Game 2; otherwise, it’s the same as Game
3. (2) B outputs the bit that A outputs.

If A can distinguish between Game 2 and Game 3, B wins
the DDH distinguishing game. Therefore,

|AdvGame2(A)− AdvGame3(A)| ≤ AdvDDH (III)

Game 3 and Game 4: In Game 3, kU∗V ∗ = KDF(UU∗ ,UV ∗ ,
(gsU∗V∗ )z), while in Game 4, kU∗V ∗

$
←− {0, 1}k . Assume A

outputs a bit b to distinguish between Game 3 and Game 4:
b = 1 if Game 3 is running; otherwise, b = 0. We design
an algorithm B against the KDF distinguishing game, which
uses A as a subroutine and runs as follows: (1) Upon
receiving a message kU∗V ∗ = KDF(UU∗ ,UV ∗ , (gsU∗V∗ )z)

or kU∗V ∗
$
←− {0, 1}k from the KDF challenger, B trans-

fers it to A’s challenger, who uses it to generate the
answer message to A’s challenge. If the received message
is KDF(UU∗ ,UV ∗ , (gsU∗V∗ )z), the simulation is the same as
Game 3; otherwise, it’s the same as Game 4. (2) B outputs
the bit that A outputs.
If A can distinguish between Game 3 and Game 4, B wins

the KDF distinguishing game. Therefore,

|AdvGame 3(A)− AdvGame 4(A)| ≤ AdvKDF (IV)

Game 4: A has no advantage in Game 4 because the session
key kU∗V ∗ of5s∗

U∗,V ∗ is picked at random and doesn’t depend
on any other values. Therefore,

AdvGame4(A) = 0 (V)

Using equations (I)-(V), we obtain

Advλ−CAFLReCKPAKE ≤ N 2
PN

2
S (AdvDDH + AdvKDF ).

Case 1.2 (A Does Not Ask a RevealPassword Query):
For simplicity, we assume that the test oracle is an initiator.
Game 1: Same as Game 1 in Case 1.1.
Game 2: Same as Game 2 in Case 1.1.
Game 3: Game 3 has the following differences from

Game 2: Game 3 challenger C picks s
$
←− Z∗p at random,

encodes (sL , sR) = Encode(s), continues refreshing the two
encodings, and then uses the refreshed encodings of s to
simulate the answers to A’s leakage query function fRefresh =
(f LRefresh, f

R
Refresh) of the principal U

∗.
Game 4: Game 4 has the following differences from Game

3: Game 4 challenger C chooses a random element s′
$
←−

Z∗p and calculateskU∗V ∗ = KDF(UU∗ ,UV ∗ , (gxU∗ ·xV∗ )s
′

).
After receiving a Test(U∗,V ∗, s∗) query from the adver-
sary A, C gives kU∗V ∗ to A. In addition, after receiving a
Test(V ∗,U∗, t∗) query, C also sends the same kU∗V ∗ to A,
since there is a partner oracle 5t∗

V ∗,U∗ .
Game 5: Same as Game 4 in Case 1.1.
Differences Between Games:
Game 1:

AdvGame1(A) = Advλ−CAFLReCKPAKE (I)

Game 1 and Game 2: From Game 1 and Game 2 in Case 1.1.,
we get

AdvGame2(A) = 1/N 2
PN

2
SAdvGame1(A) (II)

Game 2 and Game 3: In Game 2, the leakage of the shared
password is the real leakage of sU∗V ∗ = H (pwU∗V ∗ ), while
the leakage in Game 3 is a leakage of a random value s.
Assume A outputs a bit b to distinguish between Game 2
and Game 3: b = 1 if Game 2 is running; otherwise, b =
0. We design an algorithm B against the leakage-resilient
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refreshing security distinguishing game, which uses A as a
subroutine and runs as follows: (1) Upon receiving sU∗V ∗ or

s
$
←− Z∗p from the leakage-resilient refreshing challenger, B

transfers it toA’s challengerC.C uses it as the mapping group
element of the shared secret password, encodes it, continues
refreshing two encodings, and then uses these encodings to
simulate the answers to A’s Send queries with fRefresh =
(f LRefresh, f

R
Refresh) of the principal U

∗. If the received message
is sU∗V ∗ in the first step, the simulation is the same as Game
2; otherwise, it’s the same as Game 3. (2) B outputs the same
bit that A outputs.

If A can distinguish between Game 2 and Game 3, B wins
the leakage-resilient refreshing security distinguishing game.
Therefore,

|AdvGame2(A)− AdvGame3(A)| ≤ AdvRefresh−LRS (III)

Game 3 and Game 4: In Game 3, kU∗V ∗ = KDF(UU∗ ,UV ∗ ,
(gxU∗·xV∗ )sU∗V∗ ), while kU∗V ∗ = KDF(UU∗ ,UV ∗ , (gxU∗ ·xV∗ )s

′

)
in Game 4. Because s′ is chosen at random and is indepen-
dent of sU∗V ∗ , (gxU∗ ·xV∗ )sU∗V∗ and (gxU∗·xV∗ )s

′

are perfectly
indistinguishable. Therefore,

|AdvGame3(A)− AdvGame4(A)| = 0 (IV)

Game 4 and Game 5: From Game 3 and Game 4 in Case 1.1.,
we obtain

|AdvGame4(A)− AdvGame5(A)| ≤ AdvKDF (V)

Game 5: In Game 5, the leakage is computed using a random
value s, and the session key kU∗V ∗ of 5s∗

U∗,V ∗ is picked at
random. Therefore,

AdvGame5(A) = 0 (VI)

Using equations (I)-(VI), we obtain

Advλ−CAFLReCKPAKE ≤ N 2
PN

2
S (AdvRefresh−LRS + AdvKDF ).

Case 2 (A Partner Session to the Test Session Does Not
Exist):

In this case, A is an active adversary who masquerades
as the intended partner principal of the owner principal.
Therefore, A is not permitted to obtain the principals’ long-
term shared password by asking a RevealPassword query.
However,A can learn the two parties’ ephemeral session keys
by asking RevealEphemeralKey queries.
Game 1: Same as Game 1 in Case 1.2.
Game 2: Game 2 has the following differences from

Game 1: A picks a random password pw′UV , computes s′UV =
H (pw′UV ), encodes it, and then uses the encodings of s′UV to
generate the protocol message based on the protocol specifi-
cations.

Game 3: Game 3 has the following differences from
Game 2: First, A chooses two random distinct principals

U∗,V ∗
$
←− {U1, . . . ,UNp} and a random number s∗

$
←−

{1, . . . ,Ns}. Second, A begins to run the game and chooses
5s∗
U∗,V ∗ as the target oracle. If the test oracle is not 5

s∗
U∗,V ∗ ,

the Game 3 challenger stops and exits the game.

Game 4: Same as Game 3 in Case 1.2.
Game 5: Same as Game 4 in Case 1.2.
Game 6: Same as Game 5 in Case 1.2.
Differences Between Games:
Game 1:

AdvGame1(A) = Advλ−CAFLReCKPAKE (I)

Game 1 and Game 2: If pw′UV selected by A is equal to
pwUV , Game 2 is the same as Game 1; otherwise, Game 2
is independent of Game 1. The probability that pw′UV =
pwUV is NS/N , where NS denotes the number of sessions
on a principal and N is the size of the password dictionary.
Therefore,

|AdvGame2(A)− AdvGame1(A)| = NS/N (II)

Game 2 and Game 3: The analysis is the same as that for
Game 1 and Game 2 in Case 1.1.

AdvGame3(A) = 1/N 2
PNSAdvGame2(A) (III)

Game 3 and Game 4: The analysis is the same as that for
Game 2 and Game 3 in Case 1.2.

|AdvGame3(A)− AdvGame4(A)| ≤ AdvRefresh−LRS (IV)

Game 4 and Game 5: The analysis is the same as that for
Game 3 and Game 4 in Case 1.2.

|AdvGame4(A)− AdvGame5(A)| = 0 (V)

Game 5 and Game 6: The analysis is the same as that for
Game 4 and Game 5 in Case 1.2.

|AdvGame5(A)− AdvGame6(A)| ≤ AdvKDF (VI)

Game 6: The analysis is the same as that for Game 5 in
Case 1.2.

AdvGame6(A) = 0 (VII)

Using equations (I)-(VII), we obtain

Advλ−CAFLReCKPAKE ≤ NS/N+N 2
PNS (AdvRefresh−LRS+AdvKDF ).

FromCase 1 and Case 2, we obtain

Advλ−CAFLReCKPAKE ≤ NS/N + N 2
PN

2
S (AdvDDH

+AdvRefresh−LRS + AdvKDF ).

D. SECURITY AND PERFORMANCE COMPARISON
We summarize the security and performance comparison of
our protocol with other protocols in Table 1, where Exp
denotes modular exponentiation.

From Table 1, our protocol enjoys three advantages: (1)
it’s the first LR PAKE protocol; (2) it’s an AFLR eCK-
secure AKE protocol in the standard model, while leakage
attacks are not allowed after the adversary chooses the test
session in [25], and its AFLR eCK-security has just been
proven in the CK security model in [28] and in the RO model
in [29] and [30]; (3) our protocol is more efficient than other
LR AKE protocols [25], [28]–[31].
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TABLE 1. Security and efficiency comparison of AKE protocols.

E. LEAKAGE TOLERANCE OF THE PROPOSED PROTOCOL
First, the overall leakage amount is arbitrarily large since
the encodings are refreshed in each instance of the proposed
protocol and continuous leakage is allowed.

Second, for each instance of the proposed protocol, the
leakage size is bounded by λRefresh = (λRefresh1, λRefresh2).
Based on Lemma 6, an LRS scheme 8n,1

Z∗p
is λ-secure with

λ = (0.3nlog p, 0.3nlog p) if 20 < n. Moreover, based
on Lemma 7, a leakage-resilient refreshing Refreshn,1Z∗p for

8
n,1
Z∗p

is (λ/2, λ)- secure if 1/3 ≤ n ∧ n ≥ 16. There-
fore, the leakage size for each occurrence is bounded by
(0.15nlog p, 0.15nlog p). In the protocol, the shared secret
password is mapped to a group element sUV = H (pwUV )
and encoded into two parts, namely, aL ∈ (Z∗p )

n and aR ∈
(Z∗p )

n×1, of size n · log p. Thus, the leakage tolerance for each
occurrence is

(0.15nlog p/nlog p, 0.15nlog p/nlog p) = 15%.

V. CONCLUSION
By combining Diffie-Hellman key exchange and the
DF-LRS scheme appropriately, we first design an λ-CAFLR
eCK security PAKE protocol. Our protocol is one of most
practical cryptographic primitives for trusted computing,
which could be used to securely authenticate devices’ iden-
tities and generate shared session keys among devices in
insecure leakage environments such as IoT.
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