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ABSTRACT The CRISPR/Cas9 system is a creative and innovative gene editing biotechnology tool in
genetic engineering. Although several achievements have been attained using the CRISPR/Cas9 system, it is
still a challenge to avoid off-target effects and improve the editing efficacy. Previous efforts on evaluating
the efficacy and designing the guide RNAmainly focused on DNA properties. However, some DNA features
have not been characterized but can be reflected by protein properties, such as the disorder features and the
sequence conservation. In this paper, we provided a computational framework to identify important features
related to the efficacy of CRISPR/Cas9 focusing on the properties of the proteins encoded by the target DNA
fragments. The feature selection method, maximal-relevance-minimal-redundancy, was adopted to analyze
these features. And incremental feature selection together with support vector machine, were employed to
extract optimal features, onwhich an optimal classifier can be constructed. As a result, 152 important features
were extracted, with which an optimal classifier based on support vector machine was built. This classifier
obtained the highest MCC value of 0.355. Finally, a series of detailed biological analyses were performed on
the optimal features. From the results, we found that some key factors may differentially affect the binding
activity of sgRNAs to their targets. Among them, the disorder status of the target protein sequences was
found to be a major factor that is related to the efficacy of sgRNAs, suggesting the DNA features associated
with the protein disorder status could also affect the CRISPR/Cas9 efficacy.

INDEX TERMS CRISPR/Cas9 system, sgRNAs, maximal-relevance-minimal-redundancy, incremental
feature selection, protein disorder.

I. INTRODUCTION
A protein-coding gene has been widely regarded as a locus
of DNA that can be transcribed into messenger RNA and
translated into a polypeptide chain to exert specific biological
functions [1], [2]. Generally, different genes have different
functions and may play different roles in various biologi-
cal processes. As our understanding of gene functions are
improved, research has aimed at developing functional tools
to explore and even alter the specific function of a known
gene [3], [4]. However, without functional and applicable
molecular biology tools, it is quite difficult to accurately
change and regulate the function of a specific gene. There-
fore, to precisely control the functions of genes, various
biotechnologies have been developed and applied.

Development of gene editing biotechnologies has led to
three main subtypes of gene editing technologies: ZFN
(zinc-finger nucleases) TALEN, (transcription activator-like
effector nuclease) and CRISPR/Cas9 (Clustered Regularly
Interspaced Short Palindromic Repeats). The first strategy
for genome customization was ZFN [5]. The zinc-finger
nuclease strategies contribute to genome editing via various
zinc finger modules, which recognize 3-4 base pairs [5], [6].
Another technology, TALEN, has also been confirmed to be
efficient in gene editing [7]. Although TALEN can complete
gene editingmore quickly and is cheaper and better than ZFN,
it is still quite difficult and time-consuming for most labora-
tories in the world [8]. Therefore, to improve the efficiency
and reduce costs, a new technology, CRISPR/Cas9 has been
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developed and presented [9], [10]. Different from TALEN
and ZFN, CRISPR/Cas9 technology is a functional
RNA-guided Cas9 nuclease-dependent gene editing technol-
ogy [11]. The CRISPR/Cas9 regulatory mechanism under
nature conditions is an acquired immunity mechanism to
fight against foreign plasmids and viruses in bacteria and
archaebacteria [12], [13]. With a length of more than twenty
nucleotides, the CRISPR/Cas9 system greatly improves
the recognition and editing accuracy [11]. In addition,
CRISPR/Cas9 technology has much shorter test and experi-
mental periods compared to TALEN and ZFN, and it can edit
multiple genome sites simultaneously in the same research
system [11]. Therefore, CRISPR/Cas9 is a significant tech-
nological improvement that has great advantages compared to
TALEN and ZFN. Thus, it has attracted wide attention around
the world.

The design of the CRISPR/Cas9 system can be sepa-
rated into three steps: the selection of target genes and
sequences, the design of the sgRNA and the transfection
of the integrated plasmids [14], [15]. The specificity of the
guide RNAs, and the efficacy of the plasmid transfection
and expression are two key points in the protocol of this
newly developed technology. Based on these two key points,
various publications have contributed to the modification
of each step of the CRISPR/Cas9 system to improve the
design principles [16]–[18]. It has been recently reported that
modification of the Cas9 nucleases using structural infor-
mation may alter the recognition ability of alternative PAM
(protospacer adjacent motif) sequences and further improve
the efficacy [19]. With the extensive use and modifi-
cation of this new technology, various off-target effects
have been reported and solved, while differences in the
recognition and editing efficiency have been partially
revealed and identified. Recently, with the assistance of
computational technologies, various studies have success-
fully simulated the CRISPR/Cas9 system and modified the
technical processes. Listgarten from the eScience Research
Group at Microsoft Research in Los Angeles has presented
an in silico predictive modeling approach to predict the
guide efficiency of the CRISPR/Cas9 system. To build up the
optimal predictive modeling approach, they summarized all
the detailed information reported on the CRISPR/Cas9 sys-
tem, which our study mainly relied on. Later, Listgarten and
Root, from the Broad Institute of MIT and Harvard, further
reported a new computational method to optimize sgRNA
design and improve the efficacy of CRISPR/Cas9 sys-
tem [20]. Although such studies have drastically modi-
fied the technical processes, the detailed mechanisms that
affect the recognition or the editing efficiency have not
been fully revealed [14], [15]. Efforts have been made to
identify the efficacy related DNA features such as the GC
content, binding specificity, alignment identity, amino acid
cut position, and amino acid composition of the peptides
encoded [20], [21]. However, some DNA features were not
investigated by these studies. These DNA features remained
uncharacterized but can reflected by the properties of encoded

proteins. For example, the protein disorder status were sug-
gested to be associated with the codon usage [22], indicating
the specific connection between the DNA features with cer-
tain protein properties.

In this study, we identified CRISPR sgRNA effi-
cacy by using protein sequence features translated from
the target DNA for the first time. Based on the data
from http://research.microsoft.com/en-us/projets/azimuth,
we obtained detailed information reported on the CRISPR/
Cas9 system [20]. Doench et al. provided a resource for
the design of improved sgRNA reagents for large-scale
screens and gene editing experiments, and they developed
metrics to predict off-target sites and effects [20]. However,
the important factors and underlying mechanisms that con-
tribute to the observed variable gene editing efficacy and
accuracy have not been fully elucidated. To identify the
core factors that affect the efficiency and accuracy of the
CRISPR/Cas9 system, we classified candidate associated
factors into three main groups incorporating two protein
properties: (1) the stability and variability of the target pro-
teins (which is described as the sequence disorder status);
(2) the evolutionary conservation (which is described by
the position-specific scoring matrix, PSSM); and (3) the
nucleotide composition of the sgRNA. Based on several
reliable computation methods, including maximal-relevance-
minimal-redundancy (mRMR) [23], incremental feature
selection (IFS), support vector machine (SVM) [24], [25],
we presented a new computational framework to screen a
group of core factors that may affect the efficiency of the
CRISPR/Cas9 system. Results yielded by this framework
may help us deepen our understanding of this new and
important biotechnology.

II. MATERIAL AND METHODS
A. DATASET
To predict the activity of sgRNAs on target proteins,
a reliable and qualified dataset needed to be con-
structed. We downloaded the sgRNA efficacy data,
which was reported in Doench et al.’s study [20],
from http://research.microsoft.com/en-us/projets/azimuth.
The associated description of the 17 target genes and the
corresponding lengths of the 17 protein sequences are listed
in Table 1. In the original dataset containing 5,310 sgRNA-
target pairs, four items were selected to represent each pair:
(I) the target gene; (II) the cut position in the protein translated
from the DNA cut position; (III) the 30mer sgRNA in the tar-
get site; and (IV) the efficacy score. The efficacy scores of the
specific sgRNA-target pairs represent the activity or binding
affinity of the sgRNAs.

To construct a well-defined dataset, a data cleaning
procedure was executed on the aforementioned dataset.
First, if more than one sgRNA-target pairs with slightly
different efficacy scores cut in same position, then one
sgRNA-target pair was randomly selected and was used to
represent that specific cut position, resulting in 3,345 sgRNA-
target pairs for further utilization. Next, a 21-amino acid
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TABLE 1. The detailed description of the 17 target genes and proteins.

peptide segment representing each cut position by combining
ten residues in its upstream and downstream, respectively.
Then, the 30mer sgRNA was aligned with the corresponding
21-amino acid peptide at the same cut position using
BLASTX [26] and the target protein was obtained if a suc-
cessful alignment occurred. The resulting dataset consisted
of 2,799 sgRNA-target pairs that successfully aligned with
the target protein. At the same time, the identity of the target
protein was appended onto the information for each sgRNA-
target pair to represent the activity of sgRNA for each cut
position.

In this study, we tried to use some advanced machine
learning algorithms to extract important factors that can
influence the efficacy of sgRNAs. Thus, all 2,799 sgRNA-
target pairs were divided into two partitions according to
their efficacy scores. sgRNA-target pairs with efficacy scores
greater than 0.5 constituted one partition andwere regarded as
‘‘positive samples’’, while the rest pairs, i.e., those with less
than or equal to 0.5, comprised the other partition and were
called ‘‘negative samples’’. Accordingly, we constructed a
dataset composing of 1,377 negative samples and 1,422

positive samples. In this way, the problem of predicting the
sgRNA activities were transformed into a binary classifica-
tion problem. The main purpose of this study was to extract
important factors that give important contribution for this
classification problem. The description of the 1,377 negative
and 1,422 positive samples is listed in Table S1.

B. FEATURE CONSTRUCTION
As described in Section II.A, the activity of sgRNA at each
cut position was represented by its related 30mer sgRNA and
its target protein. Given this information, one type of features
was derived from the 30mer sgRNA, and two types of features
were derived from the target protein; these three types of fea-
tures were used to represent each sgRNA-target pair. These
features included: (1) single and pair-wise nucleotides (SNTs
and PNTs); (2) position specific scoring matrix (PSSM);
and (3) disorder status, all of which have been widely used
in several studies [27]–[32].

1) SNT AND PNT FEATURES
Following the one-letter code of four types of nucleotides
(A, C, G and T), each 30mer sgRNA was encoded as
a four-dimensional vector. In these vectors, each position
was set to one or zero depending on the identity of the
base. For example, a ‘‘G’’ in sgRNA was encoded as a
vector of ‘‘0010’’. Likewise, the pair-wise nucleotides in
the position of [i, i + 1] (i = 1, 2,.., 29) were encoded
as a sixteen-dimensional vector according to the possible
pairwise combinations of all single nucleotides (AA, AC,
AG,. . . .., TG, TT). For example, a ‘‘CG’’ in sgRNA was
encoded as a vector of ‘‘0000001000000000’’, in which the
7th position was set to one. Accordingly, each 30mer sgRNA
was represented by 584 (30×4+29×16) SNT and PNT
features.

2) PSSM FEATURES
The sequence conservation could be another factor affecting
the efficiency of CRISPR/Cas9. Here we investigated the
conservation in the translated protein level as all sgRNA in
the dataset that were designed to target the CDS of protein-
coding genes [20], which in some extent reflect the DNA
conservation. The technique of position specific iteration
BLAST (PSI-BLAST) was used to search for remote homol-
ogous proteins against the query protein. For a query pro-
tein sequence, each amino acid residue is represented by
twenty values, which indicate the mutation frequency of the
twenty native amino acids against the given residue. For each
target protein, the PSI-BLAST [33] was utilized to retrieve
the UniRef100 (Release: 15.10 03-Nov-2009) database with
three iterations and cutoff E-value of 0.0001. If the length of a
given target protein was shorter than ten, one or more ‘‘X’s’’
denoting the empty amino acid residues were appended to the
C-terminus of the peptide segment. The empty residue
was represented by an empty vector with twenty zero.
Accordingly, a 10-amino acid target protein was encoded as
200 (10×20) PSSM features.
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3) DISORDER STATUS FEATURES
As we mentioned above, protein disorder is associated
with codon usage [22], which provides us another angle to
address the CRISPR/Cas9 efficacy evaluation. The VLS2
program [34], using the protein sequence as the input, was uti-
lized to calculate the probability of the given residues existing
in disordered regions. The output score for each amino acid
residue, ranging from zero to one, was denoted as its disorder
status, and a higher score indicated a greater possibility of
the given residue existing in a disordered region. Accordingly,
10 disorder status features were used to represent the disorder
property of the residues in the target proteins.

TABLE 2. Three types of features used to encode the sgRNAs-target pairs.

In total, 794 (584+200+10) features can be derived from
the nucleotide and peptide segments, and these features were
utilized to encode each sgRNA-target pair in the dataset. The
distribution of these 794 features is listed in Table 2. Addi-
tionally, the detailed description of 794 features is provided
in Table S2. These features would be analyzed by some fea-
ture selectionmethods and key features thatmay influence the
efficiency of CRISPR/Cas9 would be extracted. Compared to
other sequence analysis studies from the point view of bio-
logical mechanism, features mentioned above were widely
applied for the purpose of designing computational methods.
Analysis on these featuresmay provide new insights for better
comprehension of CRISPR/Cas9.

C. FEATURE SELECTION
As described in Section II.B, a total of 794 features were
used to represent the sequence features that may influence
the activity of the sgRNAs. It is clear that not all of the
794 features contribute equally in this regard. A feature
selection procedure was necessary to extract key features
among them [28], [30]–[32], [35]–[45]. Thus, the mRMR
method [23] was utilized to rank the 794 features, which
would be further used for selection of key features.

During the classification, a target class was assigned to
each sample. According to the relationships between the
features and their target classes, each feature was ranked in
descending order; the resulting list was called the MaxRel
feature list. However, it has been found that the usage of some
top individual features in the MaxRel feature list does not

always lead to good predictions due to the redundancy among
these features. Thus, the mRMRmethod also ranked features
according to not only their relevance to the target class but
also the redundancy of features in another feature list, called
the mRMR feature list. The brief description of yielding this
feature list is introduced below. Initially, the mutual informa-
tion (MI) is calculated to measure the relevance between two
variables x and y, which was defined in Eq. 1:

I (x, y) =
∫∫

p(x, y) log
p(x, y)
p(x)p(y)

dxdy, (1)

where p(x) and p(y) represent the marginal probabilistic
density of variables x and y and p(x, y) denotes their joint
probabilistic density.

In the measurement of maximal relevance, the selected
feature f is required to have the largest value of MI to the
target class c. The MI value, denoted as D, between feature f
and target class c is shown in Eq. 2:

D = I (f , c) (2)

Let � be the feature set with N features, �s be a feature
set containing the selected features and �t includes the rest
features, i.e., �t = � - �s. The relevance R between a given
feature f in �t and all features in �s is defined in Eq. 3:

R =
1
|�S |

∑
fi∈�S

I (f , fi) (R = 0 if �s is empty) (3)

For each feature f in �t , the value D-R is calculated, and the
feature with the maximal D-R value is removed from �t and
put into�s. When all features are in�s, the whole procedures
stop.

According to the selection order of each feature,
the mRMR feature list can be constructed in a way that
the first selected feature receives the top place in the list,
the second selected feature gets the second place, and so forth.
The mRMR feature list is illustrated in Eq. 4:

S = [f1, f2, . . . , fN ] (4)

To select important features from the mRMR feature
list, the IFS method constructs a series of feature sets, say
S1, S2, . . . , SN , such that Si = {f1, f2, . . . , fi}. For each fea-
ture set, a classification algorithm was executed on a dataset,
in which each sample is represented by features in the set. The
feature set yielding the best performance can be extracted.
Features in this set were deemed as optimal features and
the classifier based on these features is called the optimal
classifier.

D. CLASSIFICATION ALGORITHM
As described in Section II.C, the IFS method creates a series
of feature sets. To test the discriminating power of each
feature set and select the best one, a proper classification algo-
rithm should be adopted. In this study, the classic machine
learning algorithm, SVM [24], [25], was employed. Its brief
introduction is as below.
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SVM [24], [25] is applied to investigate the problems of
pattern recognition, regression and classification based on
statistical learning theory, which is especially applicable for
the modeling of small datasets [46]–[48]. The basic prin-
ciple of SVM is to map linear non-separable data in low-
dimensional space to high-dimensional space so that the
mapped data in high dimension can be optimized and sep-
arated by a hyper-plane. A query sample is then mapped into
the same high-dimensional space, and its predicted class is
determined according to which side of the hyper-plane the
sample belongs to. In this study, the algorithm of sequential
minimal optimization [49] was utilized to train the SVM
classifier. In the training process, the modeling problem was
split into a series of the smallest possible linearly related
sub-problems. Then, the sub-solutions of the sub-problems
were combined as the final solution of the original modeling
problem. In Weka [50], the classifier, SMO, implements this
type of SVM and was directly used in this study. The kernel
function was the polynomial.

E. PREDICTION PERFORMANCE MEASUREMENT
To validate the effectiveness of constructed classifiers,
some widely accepted and reliable measurements were
necessary. Four measurements called sensitivity (SN), speci-
ficity (SP), accuracy (ACC) and Matthew’s correlation coef-
ficient (MCC) [51] were calculated to evaluate the predicted
ability of all classifiers. Their definitions are listed in Eq. 5
to Eq. 8.

SN =
TP

TP+ FN
, (5)

SP =
TN

TN + FP
, (6)

ACC =
TP+ TN

TP+ TN + FP+ FN
, (7)

MCC =
TP× TN − FP× FN

√
(TP+FP)(TP+FN )(TN+FP)(TN + FN )

, (8)

where TP (true positive), TN (true negative), FP (false pos-
itive) and FN (false negative) can be directly obtained by
comparing the target classes and predicted classes of samples
in the dataset. The descriptions of the four values are shown
as below:
TP: the number of positive samples predicted correctly;
TN: the number of negative samples predicted correctly;
FP: the number of negative samples predicted incorrectly;
FN: the number of positive samples predicted incorrectly.
Among four measurements listed in Eqs. 5-8, the MCC is

a balanced measurement even if the dataset is great unbal-
anced. It has been used as a major measurement in several
studies [52]–[56]. Accordingly, the MCC was also selected
as the major measurement to validate the classifiers in this
study.

III. RESULTS
As introduced in Section II.C, the mRMR method was uti-
lized to rank all of the 794 features. Features were first ranked

FIGURE 1. The IFS-curve. The X-axis denotes the number of features
participating in the construction of classifiers and the Y-axis denotes the
corresponding MCC values yielded by SVM.

TABLE 3. The performances of the optimal classifier derived from SVM.

by their maximal relevance to the target class, resulting in the
MaxRel feature list. Then, they were sorted by their maximal
relevance to the target class and minimal redundancy to the
already selected features, which produced the mRMR feature
list. These two lists are provided in Tables S3 and S4.

From the mRMR feature list, a series of feature sets were
constructed using the IFS method. For each feature set, The
SVM was executed on the dataset, in which each sample
was represented by features in the set, with its performance
evaluated by 10-fold cross-validation [57]–[59]. The pre-
dicted results were counted as SN, SP, ACC and MCC. For
easy observation, an IFS-curve was plotted usingMCC as its
Y-axis and the number of used features as its X-axis, as shown
in Figure 1. The best MCC 0.355 was obtained when the
feature number was pointed to 152. Thus, the optimal clas-
sifier based on SVM used the top 152 features in the mRMR
feature list to represent sgRNA-target pairs. The performance
of the optimal classifier evaluated by the four measurements
is shown in Table 3. Therefore, the top 152 features in the
mRMR feature list are deemed to be the optimal features for
identification of highly active sgRNAs. The following section
would give detailed analyses on them.

IV. DISCUSSION
The mRMR method produced the MaxRel feature list,
in which features were ranked according to their relevance
to target variable. Here, top 10% (80) features in this list
were extracted for investigating which feature types are
more important. Among the 80 features, 16 of these features
belonged to the SNT and PNT, 54 features were derived
from the PSSM, and 10 features were features of disorder
status. Because the number of features in each type was
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FIGURE 2. The relative ratio for each type of features derived from the
top 80 features in MaxRel feature list.

FIGURE 3. The relative ratio for each type of features derived from the
top 152 features in mRMR feature list.

not same, only considering the absolute value of number of
selected features cannot correctly measure the contribution
of each feature type. For example, there were 584 features
for SNT and PNT, 16 were included in the top 10% of the
MaxRel feature list. However, it may not be more important
than disorder status features because all ten disorder status
features were included in the top 10% of the MaxRel feature
list and top nine features are all disorder status. In view
of this, the ratio of each feature type appearing in the top
10% of the MaxRel feature list vs. the total number of each
feature type was also calculated. The results are illustrated in
Figure 2. It is clear that all features of disorder status were in
the top 80 features (10 / 10 = 1.000), followed by PSSM
features (54 / 200 = 0.270), and SNT and PNT features
(16 / 584 = 0.027). It can be concluded that the disorder
status of the target protein sequences is more important than
other properties.

As mentioned in Section III, 152 features were extracted as
the optimal features. Among them, the numbers of SNT and
PNT, PSSM and disorder status features were 115, 31, and 6,
respectively. Similar with that of the top 80 features from
the MaxRel feature list, the ratio of the 152 features in the
mRMR feature list for each type was computed. The results
are shown in Figure 3. These results showed that features of
disorder status had the highest ratio, indicating that disorder

status is also essential for classification. The detailed analysis
of three feature types based on the above results can be seen
below.

A. ANALYSIS OF DISORDER STATUS FEATURES
Among the three feature types (SNT and PNT, PSSM and
disorder status), the relative ratio of disorder status was the
highest, implying that sequence disorder is the principal
influential factor for the CRISPR/Cas9 system. The top nine
features in the MaxRel feature list and the top feature in the
mRMR feature list are all disorder status features. It is true
that the CRISPR/Cas9 gene editing progress does not require
the participation of the proteins encoded by the target genes.
However, this attribute of protein structure can be influenced
by codon usage [22], suggesting the protein disorder prop-
erty can somehow reflect certain DNA sequence features
which we do not know so far. Our results demonstrated a
strong correlation between this protein structure property
with CRISPR efficacy, implying that some unknown DNA
features can affect both the CRISPR efficacy and the protein
structure. We also noticed that the ranks of disorder features
in mRMR list were much lower than those in MaxRel list.
This alteration may be attributed to the similarity of different
disorder features, producing the corresponding redundancy
which is considered when constructing the mRMR feature
list.

B. ANALYSIS OF SNT AND PNT FEATURES
Apart from the disorder status features of the target sequence,
another feature type, SNT and PNT, which describes the
sequence characteristics of sgRNAs has also been screened
out to be quite significant for the efficacy and accuracy
of the CRISPR/Cas9 system. Based on mRMR method,
such group of features turned out to be quite significant
for CRISPR/Cas9 system (relative ratio 0.197 for optimal
features). In the MaxRel feature list (before redundancy
removal), two SNT and PNT features in this type followed
the top nine disorder status features, validating the specific
contribution of sgRNAs. As we all know, the core structure
of sgRNA is a spacer sequence complementary to the tar-
geted DNA sequence to guide the Cas9 or dCas9 proteins to
genomic targets [60]. Various publications have reported that
the sequence of the sgRNA may greatly affect the work effi-
ciency of the CRISPR/Cas9 system [61]. By the MaxRel and
mRMR feature lists, the 21st and 24th site of sgRNAs turn out
to be quite significant for the CRISPR/Cas9 system. As we
have mentioned above, there are two main basic principles
for the sgRNAs to recognize and bind to the target sequence:
initial 20 nt RNA sequence complementary pairing with the
target sequence and the following three deoxyribonucleotides
pairing with the conservative PAM (protospacer adjacent
motif) district which usually contains specific nucleotide pat-
tern: NGG [61]. Since the conservative PAM district usually
turns out to be ‘‘NGG’’, the matching sgRNA sequence of
such district should be ‘‘NCC’’, corresponding with the high
rank of the feature that describes the frequency of ‘‘AC’’ in
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the 21st in sgRNAs. Furthermore, there are also publications
reported the purine/pyrimidine composition near the 3’ end
of the spacer sequence (near the 20th site of sgRNAs) [62].
Another feature about the frequency of ‘‘G’’ in the 24th

site of sgRNA may definitely affect the purine/pyrimidine
composition near the 3’ end of the spacer sequence, which
may further influence the efficiency and accuracy of sgRNA
and the whole CRISPR/Cas9 system. The relative ratios
of this feature type for the top 80 features in the MaxRel
feature list and optimal features (i.e., the top 152 features
in the mRMR feature list) were quite different, validating
the crucial regulatory role of such group of features for the
CRISPR/Cas9 system.

C. ANALYSIS OF PSSM FEATURES
The PSSM features describe the evolutionary conservation of
the target protein sequence, which may somehow reflect the
conservation level of cDNA sequences in this study. The top
PSSM feature in the mRMR feature list and top three PSSM
features in the MaxRel feature list are all about the second
amino acid site of the target sequence, meaning the 4th to 6th

nucleotides in the target DNA fragments. It has been reported
that the 14 nucleotides near (upstream of) the PAM region
are crucial for the identification of the target protein in the
CRISPR/Cas9 system [63]. However, our results found that
the 5’ end of the sgRNA-targeted DNA fragments is also
important. In addition, it has been reported that the sequences
of tracrRNAs show significantly high diversity while the
sequences closely related to the CRISPR/Cas loci show high
evolutionary conservation [64], emphasizing the association
of the sequence conservation with CRISPR/Cas9 efficacy.

V. CONCLUSIONS
This study contributed a computational framework to pre-
dict the activity of sgRNAs binding to their target proteins.
Based on the mRMR method, IFS method and support vec-
tor machine, we obtained a group of optimal features that
may affect the activity of sgRNAs and influence the efficacy
and accuracy of the CRISPR/Cas9 system. Based on the
results, features describing the disorder status of the target
proteins were significant for this system. Our newly pro-
posed computational framework based on the support vector
machine andmRMRmethod provides a new point of view for
the famous CRISPR/Cas9 system, and the detailed analyses
of the optimal features may help us gain insight into the
underlying mechanism of this genome editing tool. Together,
these results may further improve the efficacy and accuracy
of the CRISPR/Cas9 system in a large number of practical
applications.
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