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ABSTRACT Visual object tracking is an essential technique for constructing intelligent livestock man-
agement systems. Behavior patterns estimated from the trajectories of animals provide substantial useful
information related to estrus cycle, disease prognosis and so on. However, similar colors and shapes between
animals often lead to the failure of tracking multiple objects, and the background clutter of the breeding space
further makes the problem intractable. In this paper, we propose a novel method for tracking animals using
a single thermal sensor. The key idea of the proposed method is to represent the foreground (i.e., animals)
easily obtained by a simple thresholding in a thermal frame as a topographic surface, which is very helpful
for finding the boundary of each object even in cases with overlapping. Based on the segmentation results
derived from morphological operations on the topographic surface, the center positions of all the animals
are consistently updated with an efficient refinement scheme that is robust to the abrupt motions of animals.
Experimental results using various thermal video sequences demonstrate the efficiency and robustness of our
method for tracking animals in a breeding space compared to previous approaches proposed in the literature.

INDEX TERMS Visual object tracking, intelligent livestock management, thermal sensor, topographic

surface-based segmentation, overlapped cases.

I. INTRODUCTION

With the rapid increase in the use of various sensors for mon-
itoring diverse environments, video surveillance techniques
have been actively applied to a wide range of real-world
scenarios, e.g., safety in public spaces [1], crowd analysis [2],
and traffic control [3], over the last few decades. Thanks
to recently developed operations, such as object detec-
tion and recognition under dynamic outdoor environments
(e.g., illumination changes and moving backgrounds), video
surveillance techniques are now ready to be applied to live-
stock management systems, systems that are totally different
from conventional systems that mainly observe the motion
patterns of people. For example, the number of times ani-
mals drink water or the amount of movement need to be
automatically analyzed by such a system without any human
interaction. Performing visual object tracking is a key tech-
nique for the success of such intelligent livestock breeding
systems. In contrast to general tracking scenarios, animals
in a breeding space, e.g., cows and pigs, have similar
appearances (i.e., colors and shapes), and furthermore, they

often remain in close proximity, thereby yielding significant
occlusions, which often lead to tracking failures. To resolve
this problem, most previous approaches have utilized radio-
frequency identification (RFID) sensors, which can be
easily attached to the body parts of animals (e.g., ear or
neck) [4]-[6]. However, the operating range of RFID sen-
sors is very limited, and thus, the movements of animals
irregularly occurring in the whole breeding space cannot be
completely covered. In the field of computer vision, many
researchers have focused on precisely analyzing motion pat-
terns under complex environments based on robust optical
flow [7]-[9]. Specifically, they adopted various optimization
techniques to reduce the ambiguity of motions, which can
be help for segmenting behavior patterns of animals. On the
other hand, some studies attempted to integrate such optical
flow algorithms into the hardware for the system implemen-
tation [10]-[12].

In this paper, we propose a novel method for multiple-
object tracking based on topographic surface analysis. One
important advantage of using a thermal sensor instead of a
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FIGURE 1. Our intelligent livestock (e.g., cows) management system
based on the thermal sensor. Notice that the thermal sensor is installed
on the roof, which is vertical to the ground for monitoring the movements
of all the animals in the whole breeding space.

traditional RGB sensor is that the foreground (i.e., animals)
can be efficiently extracted from the background by a simple
thresholding even at night since animals have a relatively
high body temperature compared to the ground regardless
of lighting conditions. To the best of our knowledge, this is
the first work to apply thermal object tracking to livestock
management systems. Specifically, we first installed a ther-
mal sensor in the vertical direction from the ground for mon-
itoring the whole breeding space, as shown in Fig. 1. In the
following, we convert extracted foreground regions whose
shapes are almost convex (see Fig. 2) into a topographic
surface based on a distance transform [13]. It is noteworthy
that our scheme has a great ability to separate overlapped ani-
mals since such overlaps form concave parts at the boundary
between different objects (see Fig. 4), which are well revealed
on the topographic surface. Finally, the center position of
each separated region is consistently updated with a simple
refinement scheme particularly devised to handle the abrupt
motions of animals. The main contributions of this paper are
threefold:

o In contrast to traditional surveillance systems mostly
based on RGB camera sensors, we construct a thermal-
sensor-based livestock management system, which
allows the proposed tracking algorithm to work even at
night. This is fairly desirable for correctly analyzing the
behavior patterns of livestock regardless of the outdoor
environment.

« Based on the observation that the shape of an animal
is almost convex from a top-down view, we propose to
exploit our tracking algorithm using topographic sur-
face analysis, which successfully reveals concave points
generated by overlaps between animals (such points are
actually associated with the boundary). Therefore, the
proposed method significantly improves the tracking
performance even when addressing the complex motion
patterns of animals, whereas previous approaches suffer
from such overlap problems.

o We estimate the center position of each foreground
region (i.e., animal) with pixels inside the boundaries
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precisely obtained from the topographic surface-based
segmentation rather than by exploiting the bounding box
generally employed in previous tracking methods. Fur-
thermore, the corresponding positions are consistently
updated with a simple refinement scheme, which helps
to overcome issues caused by the abrupt motions of
animals.

The remainder of this paper is organized as follows.
A comprehensive review of previous tracking methods is
presented in Section II. The proposed tracking method based
on topographic surface analysis is introduced in detail in
Section III. We evaluate the performance of the proposed
method with various thermal video sequences and compare
our method with other approaches in Section I'V. The conclu-
sions follow in Section V.

Il. RELATED WORK

In this section, we give a brief review of visual object tracking
methods introduced in the field of computer vision. Since
visual object tracking is a key prerequisite for further appli-
cations, such as object recognition and behavior understand-
ing, many researchers have devoted considerable efforts to
constructing reliable tracking methods.

Initially, researchers focused on explicitly estimating the
statuses of target objects (i.e., position and shape) based on
Kalman and particle filtering techniques [14]-[18]. How-
ever, most such methods are vulnerable to slight changes
in the target objects since they employ static appearance
models. On the other hand, some studies have focused on
estimating the density distribution of features in a target
region [19], [20] to track the region consistently. Although
these models are robust to variations in the target object,
they are weak to feature ambiguities driven by deformations
and occlusions between animals. To resolve this problem,
adaptive models, which evolve during the tracking process
by utilizing the target region and its surroundings, have been
introduced [21], [22]. As representative methods among a
vast number of studies, Grabner et al. [23] proposed to define
tracking as an online classification problem, which has the
distinct advantage of being able to be adaptive to appearance
changes in the target object. To do this, they developed a
novel online AdaBoost algorithm with fast computable fea-
tures (e.g., Haar-like wavelets, orientation histograms, and
local binary patterns). In a similar spirit, Babenko et al. [24]
also trained a discriminative classifier in an online manner
to separate objects from the background. Furthermore, to
reduce the drift problem, they proposed to exploit multiple
instance learning instead of traditional supervised learning
models. Hare ef al. [25] attempted to avoid the intermediate
classification step, which does not actually coincide with
the objective of the tracker, based on a structured output
prediction scheme. For the definition of the prediction model,
they adopted a kernelized structured output support vector
machine (SVM), which was also built in an online manner.
Kalal et al. [26] proposed to combine the tracking proce-
dure with learning and detection, which makes the tracking
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performance robust to drift problems and variations in the tar-
get object. To this end, they guided a sampling process of the
boosting classifier using structural constraints. Most notably,
Henriques et al. [27] proposed to exploit the kernelized cor-
relation filters to achieve fast computation based on their
observation that samples obtained from the neighbor regions
of the target object can be represented as a circulant matrix.
Note that they efficiently reduced the processing time as well
as storage requirements by diagonalizing this matrix with the
fast Fourier transform (FFT). On the other hand, some studies
have developed robust optical flow algorithms for segmenting
multiple motions. Specifically, Heas et al. [7] proposed to
select the optimal model and corresponding hyper-parameters
for estimating motions in a generic Bayesian framework.
Mohamed et al. [8] proposed to adopt the texture descriptor
for modeling an illumination-robust constancy rather than the
brightness constancy, leading to the significant increase of the
accuracy for constructing the motion field. Crivelli et al. [9]
proposed a novel inverse integration scheme, which shows the
robustness to input noise and better stability properties com-
pared to the traditional Euler integration method. Although
these methods have achieved remarkable improvements for
object tracking, they still suffer from issues arising from long-
time occlusions and background clutter.

To efficiently overcome such problems, several researchers
have begun to employ thermal sensors alongside traditional
RGB cameras. Specifically, Leykin et al. [28] defined a back-
ground model based on a multi-modal distribution of colors
and temperatures, which can be efficiently incorporated into
a particle filter maximizing the probability of the scene
model with a number of samples obtained from the model
probability space. Talha and Stolkin [29] also proposed a
particle-filter-based tracking scheme for camouflaged targets
by adaptively combining data from thermal and visible spec-
tra cameras. Li et al. [30] conducted the multi-task joint
sparse coding for combining grayscale and thermal modal-
ities. They further incorporated the reliability constraint into
the Laplacian sparse representation for adaptively fusing
different types of source data. Although they attempted to
alleviate the classic problems of visual object tracking, most
methods still require color information, which is not available
at night. On the other hand, some studies have focused on
developing single thermal sensor-based tracking algorithms.
Zhang et al. [31] exploited the edge information obtained
from the target object in a partial manner to efficiently
describe the shape without colors in the thermal image.
Gundogdu ef al. [32] attempted to apply deep convolutional
neural network (CNN) features to the correlation filter, which
are trained on the thermal image sequences, for improv-
ing the tracking performance. Berg et al. [33] proposed a
template-based scheme with the background update to avoid
contamination of background in terms of the object template
in the thermal video sequence. Kwak ef al. [34] employed
the online learning strategy using the boosted random fern,
which is constructed based on the temperature difference in
the thermal image. In this paper, we adopt a single thermal
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sensor for this task. Rather than tracking people or cars,
as is well studied in previous approaches, we focus on the
motion patterns of animals obtained from the thermal sensor
for constructing the intelligent livestock breeding system.
Technical details will be introduced in the following section.

Ill. PROPOSED METHOD

The motivation of our new approach is that convex-like
objects (e.g., animals captured from a top-down viewpoint)
tend to form concave points when they are overlapped or
occluded, which can be efficiently detected based on the
topographic surface. It follows that a measure of the distance
from the center position of each object provides a good
approximation for finding the segmentation line related to
concave points in a single connected component. Based on
pixels belonging to the same segmented region, the center
position of each object can be correctly computed and con-
sistently updated with the simple refinement scheme even in
severely overlapped cases as well as considering the abrupt
motions of animals.

FIGURE 2. (a) Original input frame from the thermal sensor installed in
the cow breeding space. (b) Binarized result obtained by a simple
thresholding. (c) Result of distance transform. (d) Topographic surfaces.

A. TOPOGRAPHIC SURFACE-BASED OBJECT
SEGMENTATION

Due to the power of the thermal sensor, we can easily obtain
the binarized image B(x, y) of each frame by a simple thresh-
olding on the original input /(x,y), i.e., B(x,y) = 1 if
I(x,y) > 7 (e.g., T = 150) and B(x, y) = 0 otherwise. In the
following, we define our topographic surface by applying the
distance transform to the binarized image, as shown in Fig. 2.
It is noteworthy that the derived topographic surface can be
regarded as multiple watersheds (see Fig. 2(d)).

Motivated by several studies employing the concept of a
topographic surface to separate overlapped cells in medical
images [35], [36], we propose to adopt the marker-controlled
watershed segmentation technique [37] for our tracking
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purpose. More specifically, let My, My, - - - , Mg denote the
positions of the regional minima in the watershed, which are
given by the center position of each object (i.e., marker),
in the distance image D(x,y) (see Fig. 2(c)) where R is
the total number of target objects. Notice that the distance
transform yields the smallest value at the center of each con-
nected component in our implementation. C(M;) denotes a
set of pixels belonging to the same watershed associated with
regional minimum M;, where i is the index for each watershed
(i.e., object). Notice that all the pixels in the catchment basin
form a connected component. Finally, we let S[€] denote a set
of coordinates (p, g) satisfying the following conditions [38]:

Slel ={(p, PIDp, q) < €}. ey

Here, S[€] contains all the pixels lying below the plane
D(x,y) = € in a geometrical view. Conceptually, € and
S[e] can be regarded as the water level and the surface of
the catchment basin, respectively. Based on this, we define
a submerged region C¢(M;) as a set of pixels (x, y) when the
water level goes up to €, given by

CcM) = {(x, )(x,y) € C(M)) and (x, y) € S[e]}. (2)

FIGURE 3. Change in the catchment basin according to the water level.
(a) Topographic surface (i.e., distance map). Notice that the pure black
denotes the smallest distance. (b) e = 1. (c) e = 5. (d) e = 7. (e) € = 10.

Subsequently, we also define the union of catchment basins
as Cle] = Ule Cc.(M;). In this work, we set € based on
the value onto each marker position (m, n), e.g., ¢ = 1.3 x
D(m, n). Some examples of Cc(M;) maps with different water
levels € are shown in Fig. 3. Notice that pixels belonging
to Cc(M;) are indicated in black. As the water rises gradually
from the river bed (i.e., the marker position), nearby catch-
ment basins may become merged at a specific level, and thus,
a dam, i.e., a boundary between different watersheds, needs
to be constructed to prevent overflow. To build a one-pixel-
thick dam, we employ the morphological approach [38].
Briefly, the dilating operation is iteratively applied to Cc(M;)
belonging to the same connected component in S[e] until
the expanded regions from different watersheds (i.e., objects)
are overlapped, as shown in Fig. 4. It is worth noting that
this overlap occurs at the concave point (see the arrows in
Fig. 4(d)). Such overlapped regions are determined as the
boundary between nearby objects and can be formulated as
follows:

—_

. if (x,y) € {CE(M;) N CL(M;)} or
(x,y) € CBle], (3)
0, otherwise,

L(x,y) =
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FIGURE 4. (a) Surfaces of two catchment basins (pink regions), e.g.,
C<(M;) and C.(M,). Notice that the black region is one of the connected
components belonging to S[e]. (b)(c) Intermediate results of dilation
using C.(M;) and C.(M,). (d) Results of building a dam (i.e., watershed
line), which is also defined at the concave point (see arrows). For a better
view, we assign different colors to each object, while the dam is
represented by red-colored lines.

where C’f (M;) denotes the ¢ times dilated watershed related
to the i marker and C5[¢] indicates the boundary pixels of
submerged regions defined by €. Therefore, we can compute
the new center position of each object at the next frame as
follows:

Mk + 1) : 3 )
kD= &M @

Card(C2 (M;(k))) e ES )

where S indicates the status of the catchment basin when the
dam is constructed and k denotes the frame index, respec-
tively. q is the pixel position belonging to the corresponding
catchment basin. As shown in Fig. 4(d), our watershed-based
scheme is capable of precisely extracting target objects with
tracked markers M;. In the following subsection, the method
for refining estimated positions will be explained in detail.

B. VELOCITY WEIGHT AND THE RIVER-BED REFINEMENT
Based on the proposed topographical segmentation, target
objects can be robustly tracked in most cases. However, the
motion of livestock is often nonlinear in the breeding space,
e.g., movement speed is getting faster, which leads to the
tracking failure. To compensate such nonlinearity, we pro-
pose to apply the velocity weight to the estimated position
by (4) as follows:

Mk + 1) = Mi(k + 1) 4+ Avik + 1), 5)

where k denotes the frame index as mentioned and v;(k) is the
velocity of the i watershed. A is a weight for the velocity,
which is set to 0.5 in our implementation. Notice that the
initial positions of the markers are manually given at the
starting frame of the tracking (i.e., M;(0)), and the center
position of each object acts as a marker in subsequent frames.
Therefore, the velocity v;(k) can be formulated as follows:

vitk +1) = Mk + 1) — M;(k). (6)

Notice that the effect of our velocity weight will be explained
in the following subsection. Since the velocity-weighted
marker position may not be perfectly matched with the valley
points in our topographic surface due to the abrupt motions
of animals, we propose to simply refine our result based on
the spatial proximity with valley points in the distance map
(i.e., topographic surface). Specifically, we find the spatially
nearest point in the valley (e.g., C5(M;)) of the topographic
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surface with the estimated position in (5) and simply update
our result as follows:

Mk + 1) = arg{nin||l~)—M,-(k+ DIl (7
b

where b denotes the point belonging to the valley of the topo-
graphic surface. Our watershed-based segmentation, which
was explained in the previous subsection, is subsequently
conducted based on the corresponding position (i.e., b mini-
mizing the right part of (7)) in subsequent frames.

For the sake of completeness, the overall procedure of the
proposed method is summarized in Algorithm 1.

Algorithm 1 Topographic-surface-based object tracking
in thermal videos
Data: M;(0): initial center positions (i.e., river bed)
k: index of frames, R: number of animals
Result: Trajectories of multiple objects
while until the video terminates do
1. Binary image generation
i) Generate B(x, y) with a predefined threshold
while i <R do
2. Topographic surface-based object
segmentation
1) Compute the distance map D(x, y)
ii) Set catchment basins with markers C.(M;)
wherei e {1,2,--- R}
iii) Conduct the morphological dilation to
construct a dam (i.e., segmentation)
1, (x,y) € {CL(M;) N CL(M)}
or (x,y) € CBle]
0, otherwise
iv) Compute the new center position using (4)
3. Marker refinement
i) Compute new positions of makers via
velocity
Mi(k + 1) = Mi(k + 1) + Avi(k + 1) (see (5))
where vi(k + 1) = M;(k + 1) — M;(k)
ii) Refine estimated makers
M;(k 4+ 1) = argmin||b — M;(k + 1)]|

Lx,y) =

b
i =i+ 1 (object index)
end
k = k + 1 (frame index)

end

C. IMPLEMENTATION DETAILS

In this subsection, we provide the process of setting param-
eters and implementing the proposed tracking method
in detail. Specifically, we have three main parameters,
i.e., a threshold value for binarization 7, an initial water
level €, and a weight for the velocity A. For binarization,
a widely-used adaptive thresholding scheme [39] is
employed, thus 7 is automatically set for every frame. In the
procedure of segmentation, first of all, to extract the area
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FIGURE 5. Effect of the velocity weight. (a) Results without the velocity
weight (top) and with the velocity weight » = 0.5 (bottom). (b) Result by
the velocity weight A = 1 (top) and A = 0.5 (bottom). Colors denote the
identities of each cow. Notice that identities between red and blue are
exchanged without the proposed velocity weight.

which we are sure such regions belong to objects (i.e.,
catchment basins), we conduct the distance transform based
on binarization results and apply a proper threshold as the
initial water level (see (1) and (2)). According to the general
scheme of watershed [40], [41], € is set to 1.3 x Dyin where
Dpin denotes the smallest distance in each object region.
To cover the accelated motion of animals, we attempt to
apply the velocity weight to the newly estimated position.
As shown in Fig. 5(a), identities between nearby cows can
be exchanged due to accelerated motions. In our implemen-
tation, X is set to 0.5 throughout many experiments. If the
velocity-weighted position is not out of foreground regions,
the proposed method converges (i.e., yields segmentation
results). Notice that too large weight (e.g., A > 0.5) also
leads to the tracking failure in some cases due to the over-
accelerated speed (see Fig. 5(b)), which drives the velocity-
weighted position towards background.

To implement the proposed method, the float-typed data
is sufficient to allow for the sub-pixel accuray in tracking
since most operations are related to estimating the position
of pixels onto the discrete grid space. The overall steps of
implementation can be summarized as follows: initial posi-
tions of each cow to be tracked are given at the beginning of
the test video. Based on given positions, segmentation is con-
ducted using the proposed topographical approach explained
in previous subsections. Then, we update center positions
of each cow based on newly segmented results and such
positions are refined with the velocity weight and our river-
bed refinement scheme. In the following frames, those pro-
cedures are repeated while maintaining the identity of each
cow throughout the whole video sequence. The complexity
of the proposed method is highly dependent on the distance
transform and iterative dilations used in the topographical
segmentation, thus the burden of such operations increase
in proportion to the size and the number of objects to be
tracked. It is noteworthy that the complexity of the proposed
method can be efficiently reduced with the multi-threaded
image processing (e.g., GPU-based acceleration) since the
proposed algorithm can be applied to each object indepen-
dently. In regard to the calculation precision, the float-type
data is sufficient since the main operations of the proposed
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method are mostly related to morphological dilations and
pixel-wise distance computations as mentioned.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the efficiency and robustness
of the proposed method for tracking animals in the breeding
space based on the thermal sensor. As the first step, we
analyzed the motion patterns of cows, and this can be directly
applied to other animals (e.g., pigs and horses) without any
significant changes. To this end, we first installed the ther-
mal sensor on the roof of the breeding space to reduce the
projection effect, as shown in Fig. 1. For this experiment,
a single thermal sensor, manufactured by FLIR (FLIR A615),
is employed. Notice that this sensor is capable of capturing
a given scene at VGA resolution (i.e., 640 x 480 pixels)
with a high thermal sensitivity (<50 mK). The size of the
experimental breeding space in the livestock house shown in
Fig. 6 is 5 mx 10 m, and motion patterns of three cows in this
space are obtained for this experiment.

FIGURE 6. Some examples from our test sequences (640 x 480 pixels).
Notice that we apply the proposed tracking method to three cows in the
breeding space, whose size is 5 mx 10 m, based on thermal images
captured from a top-down viewpoint. (a) Seq. 1. (b) Seq. 2. (c) Seq. 3.
(d) Seq. 4.

A. QUALITATIVE EVALUATION

First, we evaluate the performance of the proposed method
using our three test sequences, which were captured on differ-
ent days. Those video sequences are composed of 630 frames
(Seq. 1), 1,000 frames (Seq. 2), and 1,000 frames (Seq. 3).
Notice that Seqs. 2 and 3 are captured from slightly higher
locations compared to Seq. 1 to cover a wide range of
the breeding space. Some examples of our test sequences
are shown in Fig. 6. To provide a better comparison, we
indicate our results using the bounding box (similar to pre-
vious approaches) defined by the center position of each
segmented region. Notice that the complete results obtained
by the proposed topographic surface segmentation are shown
in Fig. 10. To show the robustness of the proposed method,
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we compared our method with other tracking approaches
popularly employed in the field of computer vision, i.e.,
BOOSTING [23], MIL [24], MEDIAN [42], TLD [26], and
KCF [27], as shown in Fig. 7. It is worth noting that some
of these models have often been applied to thermal infrared
video sequences [43]. As shown in Fig. 7, previous methods
often fail to track cows due to overlaps and the fast motions of
animals. Specifically, when three cows move together in the
corner space (see the third column of Fig. 7), most of the pre-
vious methods loss the identity of each cow due to the severe
occlusion. In the case of TLD [26] (see Fig. 7(e)), tracking
loss occurs even at the beginning part of the test sequence
since the detection module of this method becomes confused
due to the similar intensity of each object. Although KCF [27]
yields reliable results among the previous approaches, it suf-
fers from issues caused by fast motions, as shown in the sixth
image of Fig. 7(f). It should be emphasized that the proposed
method successfully estimates the center position of each
object, as shown in Fig. 7(g), and furthermore provides the
boundary of each object accurately based on our topographic
surface analysis (see Fig. 10); in contrast, other schemes are
vulnerable to the deformation of non-rigid objects. We also
demonstrate the tracking results of Seqs. 2 and 3 by KCF [27]
and those of the proposed method in Fig. 8. When the cows
remain relatively static, KCF reliably tracks multiple objects,
as shown in the results for Seq. 3 (see the right four images
in Fig. 8(b)); however, it still misses target objects under
abrupt changes in motion patterns (see the results for Seq. 2).
In contrast, the proposed method is able to address such
nonlinear motions based on our marker refinement scheme.
Moreover, the performance comparison under conditions of
severe overlap is also shown in Fig. 9. In this case, most of the
previous methods cannot address the ambiguity from merge
and split actions, while the proposed method successfully
retains the identities of the cows. Therefore, it is thought
that our tracking strategy can be applied to various livestock
breeding systems.

B. QUANTITATIVE EVALUATION

For the quantitative analysis with the tracking algo-
rithms employed in the previous subsection, we adopted
three metrics of the global multiple-object tracking accu-
racy (GMOTA) [44], [45], i.e., false negative (FN), false
positive (FP), and global identity miss match (GMME). These
metrics are defined as follows: FN = Zn %, FP =) %,
and GMME = Zn % where g, denotes the number of
ground truth cows at the n'™ frame, my, is the number of lost
cows, fp, is the number of falsely tracked cows, and ids,
is the number of identity switches in a given frame. Based
on these metrics, we compared our method with previous
methods quantitatively, as shown in Table 1. Notice that lower
values of the three metrics are desirable for robust object
tracking. Clearly, the proposed method reliably provides the
trajectories of multiple cows, whereas the other approaches
often track incorrect targets due to the similar intensities
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FIGURE 7. Comparison of the tracking results obtained from Seq. 1. (a) Ground truth (®, @, and ® are indicated in red, green, and blue, respectively).
(b) BOOSTING [23]. (c) MIL [24]. (d) MEDIAN [42]. (e) TLD [26]. (f) KCF [27]. (g) Proposed method. Notice that the proposed method successfully tracks
three cows even under merged cases, whereas the other approaches fail to estimate the position of each cow. Red, green, and blue denote the identity

of each cow. Best viewed in color.

obtained from the thermal sensor, which leads to the high
false positive rates shown in Table 1. Moreover, we checked
the completeness of all the tracking methods, which indicates
how completely the ground truth trajectories are tracked by a
given algorithm, with metrics defined as follows [46]:

e« MT : percentage of ground truth trajectories that are
covered by the tracker across more than 80% of the
frames.

« ML : percentage of ground truth trajectories that are cov-
ered by the tracker across less than 20% of the frames.

e PT:1—-MT - ML.

The performance comparison based on the completeness
metrics is also as shown in Table 2. In addition, the tracking
accuracy based on the number of correctly tracked cows is
shown in Fig. 11. As can be seen, our approach success-
fully tracks actively moving cows without significant losses,
whereas most previous tracking models fail to estimate the
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TABLE 1. Performance comparison based on our test sequences.

Methods [ FN] | FP| | GMME |
BOOSTING [23] | 0.651 | 0.743 0.161
MIL [24] 0.721 | 0.595 0.173
MEDIAN [42] 0.677 | 0.005 0.065
TLD [26] 0.804 | 0.784 0.315
KCF [27] 0 0.275 0.131
Proposed method 0 0.059 0.029

positions of cows under complex motion patterns, particularly
those contained in test sequence 1. Based on the various
evaluation results, we confirm that the proposed tracking
method is very suitable for monitoring the motion patterns
of animals in the breeding space. By exploiting such motion
trajectories, we can efficiently analyze the behavior patterns
of livestock for disease prevention, estrus detection, etc.
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FIGURE 8. Comparison of tracking results obtained from Segqs. 2 (left four images) and 3 (right four images). (a) Ground truth. (b) KCF [27].
(c) Proposed method. The fast motions frequently generated by cows lead to tracking failures under the KCF [27], whereas such motions can be well
handled by the proposed method. Notice that @, @, and ® are indicated in red, green, and blue, respectively. Best viewed in color.

FIGURE 9. Tracking results under merge and split actions between cows.
Notice that @, @, and ® are indicated in red, green, and blue, respectively.
Best viewed in color.

TABLE 2. Performance comparison based on completeness metrics.

Methods [MTt [ML] [ PT
BOOSTING [23] | 0.444 | 0.111 | 0.0.445
MIL [24] 0.667 | 0.111 0.222
MEDIAN [42] 0.556 | 0.222 0.222
TLD [26] 0.333 | 0.556 0.111
KCF [27] 0.778 0 0.222
Proposed method | 0.889 0 0.111

To show the robustness of the proposed method in more
detail, we have tested our algorithm with more stimuli.
Specifically, the experiment of changing contrast, which is
defined as (E] — E»)/(E1 + E») where E| and E> denote the
brightest and the darkest level of the stimulus [10], has been
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TABLE 3. Performance comparison in terms of the flow metric.

Method | Mean Barron error
BOOSTING [23] 5.09°
MIL [24] 5.39°
MEDIAN [42] 6.07°
TLD [26] 5.85°
KCF [27] 4.89°
Proposed method 4.05°

TABLE 4. Performance comparison according to the processing speed.

Method | Processing speed | Implementation
BOOSTING [23] 15.92 fps C++
MIL [24] 3.38 fps C++
MEDIAN [42] 40.37 fps C++
TLD [26] 1.86 fps C++
KCF [27] 49.53 fps C++
Proposed method 32.02 fps C++

conducted and the tracking accuracy is evaluated accordingly.
For computing this accuracy, we have manually labeled the
center position of each frame for the test sequence 1 (i.e.,
ground truth) and computed the distance between estimated
center positions and ground truth. Corresponding results are
shown in Fig. 12. From the result, the proposed method
works reliably even under the significant change of the con-
trast whereas the previous method (e.g., KCF [27]) fails to
yield the tracking performance consistently. Furthermore, the
errors of the proposed method is analyzed in terms of the flow
metric [47], which is formulated as s = cos ™1 (v, - vg) where
v, and v, denote the trajectory vectors of estimated center
positions and ground truth, respectively. Notice that such vec-
tors are normalized with their magnitude. The performance
comparison based on the flow metric is shown in Table 3.
The framework of the proposed method was implemented
on a single PC (Intel i7 2.5 GHz CPU and 8 GB of
RAM without parallel processing) with Visual Studio 2015

VOLUME 5, 2017



W. Kim et al.: Thermal Sensor-Based Multiple Object Tracking for Intelligent Livestock Breeding

IEEE Access

FIGURE 10. Complete results obtained by the proposed topographic surface segmentation using test sequence 1. Notice that @, @, and ® are

indicated in red, green, and blue, respectively. Best viewed in color.

FIGURE 11. Comparison of the tracking performance based on the number of correctly tracked cows throughout the whole video sequences.

(a) Results of Seq. 1. (b) Results of Seq. 2. (c) Results of Seq. 3.

FIGURE 12. Performance according to the contrast of the input stimulus.
Top : examples of tracking results of the proposed method with changing
contrast. Bottom : Tracking accuracy in terms of the distance between
estimated center positions and ground truth.

(C implementation). The processing times for all the methods
employed for our experiments are shown in Table 4. Although
certain approaches, e.g., MEDIAN [42] and KCF [27], are
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very fast, the proposed method provides tracking results
that are reliable enough to be applied to real-time applica-
tions (> 30 fps). It should be noted that we can use multi-
threaded image processing with a GPU to effectively increase
the processing speed since the proposed algorithm can be
applied to each object independently.

V. CONCLUSION

In this paper, a novel method for multiple-object tracking
using a single thermal sensor has been proposed. The key idea
of the proposed method is that each object captured from a
top-down view can be interpreted as a topographic surface,
which provides an accurate boundary even when multiple
objects are overlapped. Due to the power of the thermal
sensor, we can easily extract the foreground (i.e., animals)
by a simple thresholding. Then, the topographic surface
is generated based on a distance transform, which is sub-
sequently fed into our segmentation scheme with makers
(i.e., the center positions of multiple objects). The center
position of each segmented object is consistently updated
with a simple refinement scheme to be robust to the abrupt
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motions of animals. Based on various experimental results,
it is confirmed that the proposed method provides reliable
tracking results for monitoring the behavior patterns of ani-
mals in the breeding space with a real-time processing speed.
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