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ABSTRACT Various approaches and perspectives have been presented in safety analysis during the last
decade, but when some continuous outcome variables take on values within a bounded interval, the conven-
tional statistical methods may be inadequate, and frequency distributions of bounded outcomes cannot be
used to handle it appropriately. Therefore, in this paper, a logistic quantile regression (QR) model is provided
to fill this gap and deal with continuous bounded outcomes with crash rate prediction. The crash data set
from 2003 to 2005 maintained by the Nevada Department of Transportation is employed to illustrate the
performance of the proposed model. The results show that average travel speed, signal spacing, driveway
density, and annual average daily traffic on each lane are significantly influencing factors on crash rate, and
logistic QR is verified as an alternative method in predicting crash rate.

INDEX TERMS Crash rate, logistics quantile regression, bounded outcomes.

I. INTRODUCTION
Access management techniques can be used to control the
location, spacing design and operation of driveways, median
treatments, median openings, and related auxiliary lanes sys-
tematically. The goal of access management is to perform
the roadway functional hierarchy in the transportation plan-
ning, which provides the accessibility to the adjacent land as
well as the safety and efficiency of the transportation system
(particularly along arterials and other primary roadways).
Thus, identification of access management factors, such as
signal spacing, driveway spacing, median treatments, etc.,
is required to support safe and efficient operations for the
main arterials, as well as providing the convenient accesses
for the adjacent land.

During the last decade, there have been a variety of differ-
ent approaches and perspectives [1]–[3] presented in safety
evaluation, and the heterogeneity issue has been addressed
by various studies through finite mixture regression mod-
els [4] and random parameter model [5], [6], in which the
heterogeneity from the data or locations caused by unob-
served factors was accommodated, and the estimation results
and statistical inferences were improved [7]–[12]. However,
crashes occurring at the same arterial probably share common
unobserved factors. The distributional assumption required to
estimate the random parameters may not adequately address

this unobserved feature [3]. Most importantly, the models
mentioned above all belong to mean regression, in which the
model assumptions cannot be easily extended to non-central
distributions and are not always suitable with real-world data,
especially in the case of homoscedasticity [13], thus a more
appropriate and more complete view is required to capture
the distributional properties with a broader spectrum than
only mean and variance. Inspired by the statements above,
the purpose of this study is to introduce an innovative model
in road safety analysis to identify the influencing factors of
access management in urban arterials.

In recent years, quantile regression (QR), initially proposed
by Koenker and Bassett (1978) [14], has attracted increas-
ing attention in various fields, e.g. sociology, economics,
finance and medical science [13], [15]. Quantile regression
is a powerful tool for comparing, more thoroughly than
the mean alone, various aspects (location, scale, and shape)
of any kind of distribution of the outcome across different
covariate patterns [16]. The main merit of quantile regres-
sion is that quantile regression does not require the data to
follow a specific distribution, but estimate multiple varia-
tions from several regression curves for different percentage
points of the distribution, which may reflect different effects
at different quantiles of the response variable. Moreover,
quantile regression is more robust against outliers because
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the estimation results may be less sensitive to outliers and
multi-modality [17]. In particular, quantile regression can
handle the heterogeneity issue for the data collected from
different sources at different locations and different times
without many assumptions [13], [18], [19], which is helpful
to describe the relationship between safety and access man-
agement factors more clearly.

With thirty years’ progress, QR has been used in various
fields and areas, whereas the application in transportation
field remains sparse [13], [18]–[21]. The pioneering study by
Hewson (2008) [22] examined the potential role of quantile
regression for modeling the speed data, and demonstrated
the potential benefits of using quantile regression methods,
providing more interest than the conditional mean. From
the perspective of discrete variables, Qin et al. (2010) [18]
identified crash-prone locations with quantile regression.
The flexibility of estimating trends at different quantiles
was offered, and the data with heterogeneity was tackled.
The findings suggest that quantile regression yields a sen-
sible and much more refined subset of risk-prone loca-
tions. Next, Qin and Reyes (2011) [19] and Qin (2012) [13]
modeled crash frequencies with quantile regression. QR
tackles heterogeneous crash data and offers a complete
view of how the covariates affect the responsible variable
from the full range of the distribution, which is benefi-
cial for data with heavy tails, heteroscedasticity and multi-
modality. The results show that quantile regression estimates
are more informative than conditional means. Similarly,
Wu et al. (2014) [20] analyzed crash data using quantile
regression for counts. The results revealed more detailed
information on the marginal effect of covariates change
across the conditional distribution of the response variable,
and provided more robust and accurate predictions on crash
counts. After that, Liu et al. (2013) [17] analyzed the train
derailment severity using zero-truncated negative binomial
regression and quantile regression, and provided insights for
train derailment severity under various operational conditions
and by different accident causes. From the perspective of
identifying accident blackspots in a transportation network,
Washington et al. (2014) [21] applied quantile regression to
model equivalent property damage only (PDO) crashes. The
proposedmethod identified covariate effects on various quan-
tiles of the population and performed better than traditional
Negative Binomial (NB) model.

Moreover, the studies of QR have been extended and
applied to other areas. Kniesner et al. (2010) [23] exam-
ined differences in the value of statistical life (VSL)
across potential wage levels using panel data quantile
regressions with intercept heterogeneity. The findings indi-
cated that VSL varies considerably across the labor force.
Delisi et al. (2011) [24] revisited the criminal specialization
with simultaneous quantile regression. The results implied
that age, sex and arrest onset had differential predictive
validity of specialization at different quantiles. Recently,
Arunraj and Ahrens (2015) [25] combined seasonal autore-
gressive integrated moving average (SARIMA) with quantile

regression for daily food sales forecasting. The results
showed that SARIMA-QR model yielded better forecasts at
out-sample data and provided a deep insight into the effects of
demand influencing factors for different quantiles compared
to traditional SARIMA.

However, when some continuous outcome variables take
on values within a bounded interval, the conventional sta-
tistical methods, such as least squares regression, mixed-
effects models, may be inadequate, and frequentist methods
of bounded outcomes cannot be used to handle it appropri-
ately. Literally, logistic quantile regressionmodel can provide
an effective method to fill this gap and deal with contin-
uous bounded outcomes with consequences. In accordance
with this, Bottai et al. (2010) [26] firstly described the
use logistic quantile regression with bounded outcome in
the biomedical and epidemiological areas. Recently, it was
extended to other areas: Feizi et al. (2012) [27] investi-
gated the association between perceived stress and major
life events stressors in Iranian general population. Logistic
quantile regression was used for modeling as the bounded
outcome, and the results showed that family conflicts and
social problems were more correlated with level of perceived
stress. Siao et al. (2016) [28] predicted recovery rates using
logistic quantile regression with bounded outcomes and the
empirical results confirmed that the method was more robust
in the accuracy performance. Notably, there is no application
of logistic quantile regression model in transportation field,
thus this study would be the initial attempt to employ logistic
quantile regression model to predict crash rate.

II. METHODOLOGY
Consider a sample of n observations on continuous out-
come variable yi, i = 1, . . . n, and a set of covariates
xi = {x1, x2, . . . xs}, where yi is bounded within a known
interval ymin and ymax. Here ymin and ymax. do not denote the
smallest and the largest observed sample values, but the limits
of the feasible interval of the outcome variable. The quantile
regression model can be expressed as

yi = xiβp + εi (1)

where the βp = {βp1, βp2, . . . , βps} represents the unknown
regression parameters. Let p be a number between zero
and one, assume P(εi ≤ 0 |xi ) = p or equivalently
P(yi ≤ xiβp |xi ) = p. The p quantile of the conditional
distribution of yi given xi can be described as

Qy(p) = xiβp (2)

If p = 0.5, Qy(0.5) is the conditional median, the value that
splits the conditional distribution of the outcome variable into
two parts with equal probability. Besides this, the regression
residual εi does not require other assumptions.

Contrary to the mean regression, QR estimation is invari-
ant to monotonic transformations of the outcome, that is,
Qh(y)(p) = h{Qy(p)} for any non-decreasing function h, while
E{h(y)} 6= h{E(y)} where E(y) represents the mean of y. It is
assumed that for any quantile p there exists a fixed set of
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parameters βp and the non-decreasing function h from the
interval (ymin, ymax) to the real line (often referred to as a
link), such that

h{Qy(p)} = xiβp (3)

Because a continuous outcome bounded within the unit
interval resembles a probability, similar to a most popular
regression method for binary outcomes, among a variety of
suitable options for the link function h, here the logistic
transformation is selected:

h(yi) = log(
yi − ymin

ymax − yi
) = log it(yi) (4)

By integrating Equation (3) and Equation (4), the inverse
function can be expressed as follows:

Qy(p) =
exp(xiβp)ymax + ymin

1+ exp(xiβp)
(5)

By regression the transformed outcome h(yi) on x, the esti-
mated regression coefficients can be achieved via quantile
regression. When the estimation for the regression coeffi-
cients βp is obtained, inference onQy(p) can be made through
the inverse transform in Equation (5),

Qh(yi)(p) = Qlog it(yi)(p) = xiβp (6)

which is analogous to logistic regression, utilizing the
same transform to model a probability. Regarding inference
about βp, it has been indicated that in quantile regression
bootstrap standard errors outperform asymptotic ones [16].
Therefore, in Stata software bootstrap is considered as the
default method for estimating the standard errors. More
details can be referred to [16] and [26].

III. DATA DESCRIPTION
The crash geo-dataset from 2003 to 2005 was collected
from Nevada Department of Transportation, while the access
management and roadway characteristics, annual average
daily traffic (AADT) and geometric features were integrated
from Google Earth correspondingly. The target population is
located in Las Vegas metropolitan area. A total of 400 road-
way segments with 27 major and minor arterials were sam-
pled as shown in Fig.1. QR serves as the desirable option for
modeling crash rate (expressed as crashes permillion vehicles
miles travelled (MVMT)) because the distribution of crash
rate is skewed as shown in Fig. 2. The way that crash rate
is considered is because incorporates the effect of volume
and segment length, it is more adequate to measure the crash
risk faced and perceived by individual drivers than crash fre-
quency, which is highly related to the traffic volume. Another
reason is that QR model requires the dependent variable
be continuous, which can’t be replaced by crash frequency
because it’s discrete. Furthermore, due to the data collection
process, substantial heterogeneity exists in the crash data.

The major variables included are mostly related to access
management techniques, such as signal spacing, drive-
way density, median types, median opening density, etc.
Moreover, the roadway characteristics and other features are

FIGURE 1. Selected segment in las vegas.

FIGURE 2. Histogram of crash rate.

also involved, e.g. AADT, number of lanes, and land use
types. Table 1 summarizes the statistics of main variables.
More detailed information on data collection and processing
can be found in [29] and [30].

IV. RESULTS AND DISCUSSION
As stated in the modeling, bootstrap estimation method is
employed to predict crash rate, and confidence intervals are
calculated for each estimated coefficient with STATA 14.
After all the variables were input into the model, the final
form is as follows:

Qlog it(CRMVMT )(p) = βp,0 + βp,1AVGSP+ βp,2SGSPACING

+βp,3DWDEN + βp,4AADTLN
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TABLE 1. Summary statistics for main variables.

TABLE 2. Estimation results for logistic quantile and logistic regression models.

The model was firstly estimated with all the variables and
then eliminated the most insignificant ones step by step at the
5% level of significance until all of the variables remaining
were significant. Table 2 reports the estimated coefficients
and 95% confidence intervals for statistically significant vari-
ables at the 25th, 50th, 75th, 90th, and 95th percentile of
crash rate distribution. Consequently, it presents a broader
and complete view of the variables with different crash rates,
that is to say, rather than assuming the coefficient are fixed
across all the arterials, some or all of them are allowed to vary
to account for heterogeneity attributed to unobserved factors.

The variables total median opening density, two-
directional median opening density, residential land density,
posted speed limit and median type are neglected from the
table because they are not statistically significant, while the
variable commercial land density is omitted because it is
highly correlated with driveway density from correlation test.

As shown from Table 2, although the logistic regression
and logistic quantile regression model share the same sig-
nificant variables, a closer examination of the magnitude
of the estimated coefficients reveals some similarities and
differences among quantiles. First, all the covariates in the
final model appear to influence the crash rate, and they are
all significant in nearly every quantile considered. With only
the exception of the 0.95 quantile, there is increasing trend
of similar magnitudes for average travel speed percentiles,
while there is decreasing trend for the other three significant
variables.

Secondly, AADT on each lane and signal spacing are two
of the most important variables, which are of significance
from the 0.25 to the 0.95 quantile. But the average travel
speed and driveway density are not statistically significant
at the 0.95 quantile. As shown from Figure 1, the distribu-
tion of crash rate concentrates before 90%; correspondingly,
the impact of driveway density and travel speed on crash
rate begins to weaken till the 95th percentile. The reason
that the two variables are not statistically significant at the
95th percentile is not only due to the shortage of crash data,
but also because of other influencing factors besides the listed
variables, such as vehicle problems, drivers’ issues, and even
environmental conditions, etc. This suggests that the diversity
of data sets may need to be considered when evaluating the
safety impact at the mid-block segments.

Fig. 3 gives the estimates (solid lines) and the 95 percent
confidence bands (shaded gray areas) for the regression coef-
ficients associated with the significant variables for a dense
set of quantiles. The horizontal line at zero is marked for ref-
erence. The figure depicts the information shown numerically
in Table 2 for five quantiles and extends it to a larger set of
quantiles. The confidence bands allow visual inspection of
the import of the sampling error.

Corresponding to Table 2, the coefficient of average travel
speed increases as p increase, and is significant for all quan-
tiles except 0.95, with confidence band far below zero as
shown in Figure 3(a). When average travel speed increases
by one unit, the 0.25 quantile of the logit of crash rate is
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FIGURE 3. Estimates for the regression coefficients.

estimated to decrease by 0.092 units whereas the 0.90 quan-
tile by 0.073 only, which can be inferred that the beneficial
effect of average travel speed is stronger in the lower quantile
of the population than it is in the upper. Therefore, the average
travel speed is more influential in lower quantile than in
those with high quantiles, though the whole trend is kept
increasing.

As shown in Figure 3(b), the effect of signal spacing on
crash rate is downward in the total trend, yet still significant
in all quantiles. It can be inferred that longer signal spac-
ing reduces the crash rate. However, from 90th quantile the
confidence band starts to increase a little, which implies that
the crash rate would not be reduced when the signal spacing
reaches certain limit.

The driveway density is significantly different from zero
for all quantiles except 95th quantile. It can be seen from
Figure 3(c) that before 25th quantile the effect of driveway
density is upward, meaning that the larger the driveway
density the higher crash rate, but the trend turns to down-
ward beyond 25th quantile, although the coefficients at the
50th quantile (estimate 0.014) and at the 90th quantile
(estimate 0.011) yields a difference less than 0.01.

The AADT on each lane is significant in all quantiles
considered, but the effect trend on crash rate is upward before
0.15 quantile and downward after that, implying that the
larger the AADT on each lane, the higher the crash rate
before 0.15 quantile whereas the lower the crash rate after
0.15 quantile. Usually if there is more traffic on each lane,
the chances of running into the crashes are higher, while when
the AADT per lane is large enough, the travel speed would
be lower, thus the possibility of running into conflicts may be
lower.

In order to compare the errors of logistic quantile and
logistic regression models, root-mean-square-error (RMSE)
is employed to measure the difference between values pre-
dicted and observed in the field. The RMSE is defined as

RMSE =
√

1
n

∑n
i=1 (Yi − Ŷ )

2, where Yi is the observed

value, Ŷi is the predicted value and n is the number of
observations. Table 3 gives the RMSEs of two models. The
results show that on average RMSE values of the logis-
tic quantile regression models are smaller than that of the
logistic regression model in this study, especially smaller at
0.5 quantile.
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TABLE 3. Comparison of RMSES for logistic quantile and logistic
regression model.

V. CONCLUSIONS
In this study the quantile regression with a logistic trans-
form was explored for the crash rate analysis of continuous
outcomes bounded from above and below by known values.
The crash dataset from 2003 to 2005 maintained by Nevada
Department of Transportation was employed to illustrate the
performance of proposed model. The results show that aver-
age travel speed, signal spacing, driveway density and AADT
on each lane are significantly influencing factors on crash
rate.

Two critical findings can be concluded from the results of
the study. First, Logistic quantile regression can be consid-
ered as a practical approach to inference about the conditional
distribution of bounded outcomes given a set of covariates.
Its inference is valid with any underlying distribution, and
it allows a deeper understanding than the mean regression
methods. Second, the confidence bands lie in its entirety,
instead of the mean. The estimates of all the regression coeffi-
cients reflect the whole trend variation, and reveal a complete
spectrum, which gives a full view of the significant variables.

However, one deficiency of this study is that the data col-
lected were mostly related to access management techniques,
and other parameters (e.g. weather conditions, signal phases,
and other attributes) may still play some role in the impact of
crash rate, which may influence the accuracy of the propose
model, and need to be supplemented in the future.
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