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ABSTRACT We present a new regularizer for image smoothing which is particularly effective for dimin-
ishing insignificant details, while preserving salient edges. The proposed regularizer relates in spirit to
total variation which penalizes all the gradients, while our method just penalizes part of the gradients and
leaves the significant edges unchanged. Though the proposed regularizer is a piecewise function, which is
hard to optimize, we can unify it to a mathematically sound penalty. The unified penalty term is easy to
optimize using recent fast solvers and hard thresholding operation. We show some potential applications of
the proposed regularizer, including texture removal and compression artifact restoration. The results show
the efficiency of the proposed regularizer.

INDEX TERMS Image smoothing, total variation model, truncated total variation, split Bregman iteration.

I. INTRODUCTION
EDGE preserving image smoothing, which has been a funda-
mental tool for variety of applications in computer vision and
image processing, aims to smooth the details of the image
while preserves the significant edges. The image is decom-
posed into two layers via image smoothing: the piecewise
smooth base layer and a detail layer. Such decomposition
then can be used for HDR tone mapping [1], [2], texture
manipulating [3], flash/no-flash image fusion [4], transfer of
photographic look [5], and for other tasks.

Traditionally, smoothing images are done using varieties of
filters. The earliest Gaussian smoothing is known to produce
halo artifacts near edges. These artifacts may be eliminated
by using non-linear edge-preserving smoothing filters such as
bilateral filter [6], anisotropic diffusion [12], weighted least
squares [7], total variation (TV) [8] and guided filter [9].
Bilateral filtering is widely used due to its simplicity and
effectiveness in removing uninterested textures. This filter
trades off between details removal and edge preservation [6].
A 1D example is shown in Fig. 1(a). Anisotropic diffu-
sion [12] also aims at suppressing noise while preserving
significant structures by introducing an edge-stopping dif-
fusion coefficient. The edge-stopping diffusion coefficient
prevents smoothing from crossing strong structures. One
example is shown in Fig. 1(b). Farbman et al. [7] proposed an
edge preserving filter using the weighted least square (WLS)

framework. The proposed filter is more flexible compared
with previous local filters. Its result is shown in Fig. 1(c).
Xu et al. [10] proposed the L0 regularizer to control the
image smoothness by counting non-zero gradients. Their
framework not only eliminates the low-amplitude structures
but also slightly sharpens major edges. One example is shown
in Fig. 1(d). Later, Xu et al. [13] proposed the relative
total variation (RTV) to separate the texture patterns from
the textured images. Zhang et al. [14] proposed the rolling
guidance filter (RGF) framework to separate different scale
structures. Recently, many learning based filters [15]–[17]
appeared, while they require the large amount of data to learn,
which may be impossible for some applications, and many of
them are based on the fundamental filters such as bilateral
filters [16], [17].

TV, which is also an edge-preserving smoothing filter, is
widely used due to its simplicity and effectiveness in remov-
ing noise-like structures. However, as shown in Fig. 1(e),
it penalizes large gradient magnitudes, possibly degrading
contrast during smoothing. We try to rescue this problem by
establishing a mathematically sound penalty. In this paper,
we present a variant of TV, which is called truncated TV,
greatly helpful for smoothing the uninteresting structures of
the images and retaining the significant edges. Compared to
traditional TV, we try to penalize parts of the gradient of
the image, assuring that only salient structures in the image
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FIGURE 1. Signal captured from a real image, containing both significant edges and abundant details. (a) Result of bilateral filter; (b) Result of
anisotropic diffusion; (c) Result of WLS framework; (d) Result of L0 smoothing; (e) Result of TV; (f) Result of proposed truncated TV.

are preserved. The truncated TV is mathematically estab-
lished with the high-sparsity-pursuit regularization. Besides,
the proposed algorithm can take advantages of the recent
fast TV solvers without many modifications, resulting in the
same computational efficiency of TV. Although the proposed
method is simple, it surprisingly produces the comparable or
even better results compared with some specifically designed
filters such as RTV. The proposed regularizer is fundamental
hasmany applications, such as compression-artifact degraded
clip-art recovery, texture removal and so on.

The rest of the paper is organized as follows. In section II
we describe the truncated TV and give the optimization pro-
cedure based on the split Bregman framework. Section III
shows several applications and gives detailed comparisons
with other existing edge preserving smooth techniques.
Section IV concludes the paper.

II. TRUNCATED TV
We denote the input image by f and the smoothed result by u.
The truncated TV is expressed as

U (x) =
∫

(T (ux)+ T (uy))dxdy (1)

T (u) =

{
|u|| u(x)| < ε

ε otherwise
(2)

where (ux , uy) is the gradient of u. The truncated TV only
penalizes gradients whose magnitudes are smaller than the

FIGURE 2. Plots of TV and truncated TV.

threshold ε, while for those whose magnitudes are greater
than ε, the proposed penalty doesn’t penalize them. Fig 2
shows the shapes of TV and truncated TV. We see that
compared with TV, the shape of truncated TV looks like the
‘‘truncated’’ version of TV.

Truncated TV is non-convex and difficult to optimize due
to its ‘‘truncated’’ shape. However, (2) can be re-expressed
using L0 regularization. Taking ε as a parameter, T (x) defined
in (2) is equivalent to

φ(u, l) = min
l
{ε|l|0 + |u− l|}. (3)

Where | · |0 is zero power operator, i.e. |l|0 = 1 if l 6= 0, else
|l|0 = 0. We give the formal proof for the equivalence about
two functions.
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FIGURE 3. Noisy image created by Farman et al. (a) Noisy input; (b) Result of bilateral filter; (c) Result of anisotropic diffusion; (d) Result of
WLS framework; (e) Result of L0 smoothing; (f) Result of proposed method.

Theorem 1: The penalty function (3) is equivalent to the
function in (2) given the optimal l.
Proof: If |u| < ε, we compare the output of (3). If l 6= 0,

then

ε|l|0 + |u− l| ≥ ε. (4)

If l = 0,

ε|l|0 + |u− l| < ε. (5)

So the optimal l is 0.
If |u| ≥ ε, similarly, if l 6= 0, we have

min : ε|l|0 + |u− l| = ε (6)

when l = u. If l = 0,

ε|l|0 + |u− l| ≥ ε (7)

So the optimal l is u.
From the above discussion, the optimal l of (3) is con-

cluded as follows:

l =

{
u |u| ≥ ε
0 |u| < ε

(8)

With the optimal l, (3) becomes

φ(u, l) =

{
ε |u| ≥ ε
|u| |u| < ε

(9)

End the proof.

Theorem 1 helps us to transform the original non-convex
and difficult penalty into an algorithmically practical and
effective one. The final objective is

minE(u, l)

= min
u,l1,l2
{

∫
(f −u)2dxdy+α

∫
(φ(ux , l1)+φ(uy, l2))dxdy}

(10)

The first term of the right side of (10) is the data fidelity
term, and the second is truncated TV. Fig 1(f) shows
1D smoothing result using truncated TV. Compared with
the other state-of-the-art smoothing models, truncated TV
makes a good balance between the detail smoothing and the
strong edge preserving, while other filters either degrade the
strong edges (e.g. bilateral filter, anisotropic diffusion, WLS
framework, TV) or smooth the interesting details too much
(e.g. L0 smoothing). We further give a 2D example created
by Farbman et al. [7] to evaluate and compare smoothing
results. The color image showed in Fig. 3 is a piece-wise
constant image corrupted with intensive noise. (b) - (f) show
the results of four state-of-the-art methods and the pro-
posed model. While other models either corrupt strong edges
or leave isolate noise, our model generates the best result
shown in (f).

Directly minimizing functional (10) is difficult because it
involves L1 and L0 penalty terms. We adopt an alternating
optimization strategy with split Bregman framework [11].
The key idea is introducing auxiliary variables to expand the
original terms and update them alternately.
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FIGURE 4. Texture removal results comparisons. (a) Input image; (b) RTV; (c) TV; (d) RGF; (e) L0 smoothing; (f) Proposed method.

We introduce two dual variables b1 and b2, corresponding
to ux−l1 and uy−l2 respectively, and re-express the objective
function (10) as follows:

E(u, l1, l2, b1, b2)

= min {

∫
(f − u)2dxdy+ αε

∫
(|l1|0 + |l2|0)dxdy

+α

∫
(|b1| + |b2|)dxdy (11)

s.t. b1 = ux − l1, b2 = uy − l2. (12)

By using Lagrangian multipliers, (11) can be converted to
an unconstraint problem:

E(u, l1, l2, b1, b2)

= min{
∫

(f − u)2dxdy+ αε
∫

(|l1|0 + |l2|0)dxdy

+α

∫
(|b1|+|b2|)dxdy+λ

∫
(b1−ux+l1)2dxdy

+λ

∫
(b2−uy+l2)2dxdy} (13)

By introducing Bregman distance, (13) becomes:

E(u, l1, l2, b1, b2, t1, t2)

= min{
∫

(f − u)2dxdy+ αε
∫

(|l1|0 + |l2|0)dxdy

+α

∫
(|b1| + |b2|)dxdy+ λ

∫
(b1 − ux + l1 − t1)2dxdy

+ λ

∫
(b2 − uy + l2 − t2)2dxdy} (14)

The above joint minimizing problem can be solved alter-
nately by decoupling it into several subproblems, described as
follows:

(1) Calculate u subproblem with fixed l1, l2, b1, b2, t1, t2

ui+1 = min
u
{

∫
(f − u)2dxdy+ λ

∫
((bi1 − ux + l

i
1 − t

i
1)

2

+(bi2 − uy + l
i
2 − t

i
2)

‘2)dxdy (15)

We derive the Euler-Lagrange equation as follows:

f − u+ λ(
∂(bi1 + l

i
1 − t

i
1)

∂x
+
∂(bi2 + l

i
2 − t

i
2)

∂y
−1u) = 0

(16)

where 1 is the Laplace operator. Equation (16) can be effi-
cient solved by using Gauss-Seidel iteration algorithm or FFT
operator.

(2) Calculate b1 and b2 with fixed u, l1, l2, t1, t2
The unique minimizer of this subproblem can be obtained

by applying the shrinkage operator:

bi+11 = shrink(ui+1x − l
i
1 + t

i
1,
α

λ
) (17)

bi+12 = shrink(ui+1y − l
i
2 + t

i
2,
α

λ
) (18)

where

shrink(x, α) =
x
|x|

max(x − α, 0) (19)

(3) Update t1, t2 with fixed u, l1, l2, b1, b2

t i+11 = ui+1x + t
i
1 − l

i
1 − b

i+1
1 (20)

t i+12 = ui+1y + t
i
2 − l

i
2 − b

i+1
2 (21)
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FIGURE 5. Texture removal results comparisons. (a) Input image; (b) RTV; (c) TV; (d) RGF; (e) L0 smoothing; (f) Proposed method.

(4) Update l1, l2 with fixed u, t1, t2, b1, b2

l i+11 , l i+12 = argmin
l1,l2
{αε

∫
(|l1|0+|l2|0)dxdy

+λ

∫
((l1−ui+1x +b

i+1
1 −t

i+1
1 )2

+ (l2 − ui+1y + b
i+1
2 − t

i+1
2 )2)dxdy} (22)

Similar to theorem 1, we see that the solution of this subprob-
lem is:

l i+11 =

t
i+1
1 −b

i+1
1 + vu

i+1
x if|t i+11 −b

i+1
1 +u

i+1
x |<

√
αε
λ

0 otherwise

(23)

l i+12 =

t
i+1
2 −b

i+1
2 +u

i+1
y if|t i+12 −b

i+1
2 +u

i+1
y |<

√
αε
λ

0 otherwise

(24)

Now we summarize the whole algorithm as algorithm 1.
From the algorithm 1, we can see that all the subproblems

have closed form solutions, making the algorithm very fast.

Algorithm 1 Algorithm 1
Input: u = f ; b1 = b2 = t1 = t2 = l1 = l2 = 0
For i from 1 to N:
Update u by solving (16);
Update b1, b2 using (17) and (18);
Update t1, t2 using (20) and (21);
Update l1, l2 using (24) and (24);

End
Output: u

Compared to recent fast TV solver, the proposed algorithm
only adds two dual variables, l1 and l2, and two hard threshold
operations. Table 1 lists the computation cost of different
algorithms. From table 1, we see that our algorithm is highly
competitive with the other state-of-the-arts. Note that the pro-
posed algorithm is easy to be parallelized, further improving
the performance of the algorithm.

III. APPLICATIONS
Due to its fundamentality, the truncated TV can be applied to
many applications. In this paper, we show four applications,
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FIGURE 6. Cartoon JPG artifact removal (a) A JPG compressed image with artifacts around edges; (b) Our restoration result; (c) Close-up of the input
image; (d) Close-up of RTV; (e) Close-up of TV; (f) Close-up of WLS framework; (g) Close-up of L0 smoothing; (h) Close-up of the proposed.

FIGURE 7. Base-detail separation and boosting results. (a) Input image. (b), (d) The base layers using different parameters; (c), (e) The corresponding
detail boosting results of (b) and (d).

TABLE 1. Computation cost comparisons

including texture removal, compression artifact restoration,
detail boosting and non-photorealistic abstraction. Four state-
of-the-art methods, i.e. relative TV (RTV), TV, Rolling guid-
ance filter (RGF) and L0 smoothing, are compared.

A. TEXTURE REMOVAL
Many natural scenes and man-made arts contain texture.
Texture extraction by the computer is challenging and
required in the most of photo editing software when dealing
with textures. We compare our method with the other related
smoothing filters on texture removal. Figure 4(a) and 5(a)
show the mosaic fish and floor images, and Fig. 4(b-f)
and 5(b-f) show the results obtained by the state-of-the-art
methods and the proposed algorithm. We see that both RTV
and truncated TV can keep the good balance between tex-
ture removal and preserving the strong structures, while the
other methods either blur the consequential structures in the
image or leave textures. However, truncated TV leaves fewer
unwished textures and produces less halo effect than RTV.
These two examples validate the efficiency of the regularizer.

B. COMPRESSION ARTIFACT RESTORATION
Compression artifacts are inevitable in the image format
conversions. Our smoothing method also suits for this kind

TABLE 2. SNR Comparisons of different methods.

of artifact removal due to its structure preserving property.
We compare our method with the other four methods. One
comparison is shown in figure 6. From the close-ups in fig. 6,
we can see that while all the methods remove the compression
artifacts, our method leaves the most abundant structures,
e.g. the blush on the cheek of the rabbit and the details of
the ears. We further quantitatively validate our method using
simulation images. Three images, which are in png format
and not shown in the paper, are translated to jpg format
images using matlab function imwrite. Then we use the four
state-of-the-art methods and the proposed method to elimi-
nate compression artifacts and calculate SNR. Fig 6 shows
the SNR comparisons. We see that our method produces the
best results.

C. DETAIL BOOSTING
Detail boosting is widely used in recent image processing
software. Our method can separate the detail layer from the
base layer in controllable degrees by varying the parameter ε,
as shown in Fig. 7 (b) and (d). The boosting results are
obtained by directly magnifying the detail layer and adding
back to the base layer. Figure 7 (c) and (e) show the boosting
results of (b) and (d) respectively.
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FIGURE 8. Base-detail separation and detail amplification. (a) Input image; (b), (d), (f), (h), (g) are base layers obtained by RTV, TV, WLS framework,
L0 smoothing and proposed; (c), (e), (g), (i), (k) represent the corresponding detail amplification results.

FIGURE 9. Non-Photorealistic Abstraction. (a), (c) Input image; (b), (d) non-photorealistic abstraction using our method.

Figure 8 gives comparisons with the other four methods.
The painting has rich textures, which are hard to completely
separate from the base layer. Our base layer result contains
nearly no texture details, and strong edges are no blurred,
while other results either smooth the salient structures or
leave abundant details.

D. NON-PHOTOREALISTIC ABSTRACTION
The proposed truncated TV also fits non-photorealistic
abstraction with simultaneous detail eliminating and edge
emphasizing. Two main steps are involved, first, image
smoothing by the edge preserving filter, and then line extrac-
tion by edge detector. The extracted lines are enhanced and
are composed back to enhance the visual distinctiveness
of different regions. Fig. 9 shows two examples using our
method.

IV. CONCLUSIONS
We present a variant of TV, which is called truncated TV,
greatly helpful for smoothing the uninterested structures of
the image and retaining the significant edges. Compared to
traditional TV, the proposed truncated TV tries to penal-
ize parts of the gradient of the image, assuring that only
salient structures in the image is preserved. The truncated
TV ismathematically establishedwith a high-sparsity-pursuit

regularization. Besides, the proposed algorithm can take
advantages of the recent fast TV solvers without many mod-
ifications, resulting in the competitive computational effi-
ciency of TV. The framework is general, thus it can be applied
to many fields, such as compression-artifact recovery, texture
removal and manipulating and so on.

Though we show only four potential applications in this
paper, the proposed method can be applied in other fields,
such as HDR tone mapping, inpainting, restoration, seg-
mentation, blind deconvolution and so on. It can be further
designed as a scale related or learning based filter as well.
We leave these ideas as the future work.
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