
Received October 3, 2017, accepted November 9, 2017, date of publication November 15, 2017,
date of current version December 22, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2774001

Configurable Platform for Optimal-Setting
Control of Grinding Processes
WEI DAI 1,2, (Member, IEEE), GANG HUANG1, FEI CHU 1, (Member, IEEE),
AND TIANYOU CHAI2, (Fellow, IEEE)
1School of Information and Control Engineering, China University of Mining Technology, Xuzhou 221116, China
2State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China

Corresponding author: Wei Dai (daiwei_neu@126.com)

This work was supported in part by the Natural Science Foundation of China under Grant 61603393 and Grant 61503384, in part by the 
Nature Science Foundation of Jiangsu Province under Grant BK20160275 and Grant BK20150199, in part by the Postdoctoral Science 
Foundation of China under Grant 2015M581885, in part by the Open Project Foundation of State Key Laboratory of Synthetical 
Automation for Process Industries under Grant PAL-N201706.

ABSTRACT For grinding processes, optimal-setting control (OSC) is becoming a hot topic. However,
there is no configurable platform to assist researchers and engineers to design such a controller. This paper
proposes a novel software platform named OSC to address this problem. The major superiority is that
the platform not only provides a configurable environment by developing a powerful controller design
tool and a Petri net model to schedule algorithm modules for parallel computation but also integrates
several mainstream intelligent and data-driven algorithms (e.g., case based reasoning, fuzzy logic, and neural
network) within a unified framework. The overall framework and key technologies are introduced in detail.
Using a hardware-in-the-loop experiment system, the platform is verified and validated through a case of
application where an intelligent optimal-setting controller is developed for a classical grinding process.

INDEX TERMS Grinding process, optimal-setting control, configurable platform, Petri net.

I. INTRODUCTION
In the mineral processing industry, the grinding process (GP)
is used to reduce the particle size of the ore such that the valu-
able mineral constituent can be exposed and then recovered
in subsequent operations. Its product particle size directly
affects the performance of the whole concentrator in terms
of the product concentration grade and the production capac-
ity [1]. In addition, as a typical process with high energy
consumption and low efficiency, the GP accounts for 45-70%
of power consumption and 40-60% of production cost for
the whole concentrator. Therefore, the GP is a significant
procedure that substantially affects economic profit.

In the past half century, based on standard hardware plat-
forms including distributed control systems (DCS) and super-
visory control and data acquisition (SCADA), many popular
control technologies, such as multi-loop PID control, mul-
tivariable decoupling control, and model predictive control,
have been widely used to stabilize the process operation
by keeping the outputs of control loops following their set-
points [2], [3]. Unfortunately, these control systems are lim-
ited in improving grinding quality and production efficiency,
as well as in enhancing economic profit. These limitations lie

in the fact that ‘‘with respect to the economic performance,
the controller performance is most probably not as important
as the right selection of the set-points’’ [4]. The determination
of the optimum set-points for process control is known as
optimal-setting control (OSC). Owing to increasing demands
on product quality and economic benefit, the OSC issue has
attracted much attention of scholars and engineers [5]–[7].

Traditionally, the OSC systems are always deployed on
top of the existing process controllers. To develop a suit-
able OSC system, one always first designs and tests the
control methods in a simulation environment provided by
some scientific computation or simulation software such as
MATLAB and SCILAB. Then, those methods and their user
interfaces (UI) must be developed by using generic program-
ming languages (e.g., C++, C#, Visual Basic) according
to the specific process controllers. This is a case-by-case
development mode, which requires the developer to have
knowledge in both the control and software areas. It thus
results in a protracted development cycle.

To end this, by integrating some special advanced control
or intelligent control technologies, several commercial off-
the-shelf (COTS) control software packages, such as Smart

26722
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 5, 2017

https://orcid.org/0000-0003-3057-7225
https://orcid.org/0000-0002-0891-6748


W. Dai et al.: Configurable Platform for OSC of Grinding Processes

Grind, PROSCON ACT OCS
software, ECS/FuzzyExpert,
etc., are developed as design tools to assist people in
implementing their OSC system. Although these tools have
been successfully applied in many real plants, there are sev-
eral bottlenecks limiting their extensive application. First,
the control behaviors are built into the implementation and
hence, are not customizable or not modularized, although the
concept of component-based software integration has already
been adopted in the software development. Second, they can-
not share and reuse the existing software applications or com-
ponents containing control behaviors. In brief, the functional
capability of those tools only involves parameter adjustment
of control methods being used. Consequently, it still needs
to adopt case-by-case mode to develop the control system
when the process dynamic needs a different OSC strategy.
This makes the scholars with control knowledge but with-
out software knowledge hard to apply their effective control
strategies [8]–[12] into industrial systems.

To separate the control behaviors from software functions
at the code level, this paper proposes a configurable platform
for OSC, called OSControl. The goal is to enable control
engineers or scholars to work independently on the aspect of
control systems without software development technologies.
This paper presents the overall solution and key technologies.
The main innovations and advantages can be illustrated as
follows:

1) This platform is investigated and designed especially
for the development of GP OSC systems. The plat-
form integrates mainstream algorithms within a unified
framework, which makes the platform focused on and
expert in finding the optimum setpoints.

2) This platform is a graphic control configuration soft-
ware that adopts a module-based approach to build
controller. Each control algorithm can be encapsulated
in a unified control module for reuse.

3) A Python script engine is embedded to extend and cus-
tomize the control algorithm. In addition, an external
interface is provided to call existing external applica-
tions (including MATLAB and SCILAB) or compo-
nents in a type of dynamic link library (DLL).

4) A Petri net model is employed to enable control mod-
ules assembling the controller to be scheduled and
invoked adaptively in parallel environment.

The above features make the platform elegant and conve-
nient to use. With these efforts, we try to solve the aforemen-
tioned problems of existing tools and provide an excellent
software platform to design and develop a GP OSC system.

In the paper, the details of OSC approaches integrated by
the platform are not discussed. This paper mainly focuses
on the design and implementation of the platform frame-
work, which is the greatest contribution of this work.
More details of algorithms can be found from our earlier
works [3], [8], [12]–[15]. The paper is organized as follows.
An overview of this platform is given in Section II. The over-
all framework and key technologies are introduced in Sec-
tions III and IV, respectively. Section V validates and verifies

FIGURE 1. Flowsheet of grinding process.

FIGURE 2. Hierarchical control structure of grinding process.

the platform through a case of application in a hardware-
in-the-loop experiment system. Finally, conclusions with a
future perspective are presented in Section VI.

II. GRINDING PROCESS AND CONTROL PROBLEM
In concentration plants, the GP is a prerequisite procedure
for many kinds of metal beneficiations. Its raw material is the
lump ore generated from the crushing procedure. A classical
GP usually consists of a great mill and a grader as shown
in Fig. 1. The mill is a metal cylinder rotating around its
axis at a fixed speed with heavy media inside. Owing to the
combined effect of knocking, chipping, and tumbling caused
by the grinding media, the lump ore can be crushed to fine
particles. According to different grinding media, the mill is
classified as ball mill, rod mill and so on. The grader is a
classification unit used to filter powders grinded from themill
and transfer the coarse materials to the mill for re-grinding.
The grader usually employs hydrocyclone or spiral classifier.

During the GP operation, there are two important produc-
tion indices, namely, product particle size (PPS) and grinding
production rate (GPR), which define the process quality and
efficiency. The control objective is to control the PPS within
an optimal range specified by the mineralogical economics
while maximizing the GPR. To realize the above objective,
the hierarchical control structure shown in Fig. 2 has been
widely adopted for years. At the higher-level, using OSC, the
optimization is performed on the operating setpoints of the
control loops in response to the changes of environmental
conditions. At the lower-level, basic feedback control is in
charge of guaranteeing the loop tracking performance.

VOLUME 5, 2017 26723



W. Dai et al.: Configurable Platform for OSC of Grinding Processes

FIGURE 3. Overall solution of software platform for OSC.

As is well known, according to the IEC61131-3 stan-
dard [16], a great deal of mature configuration software such
as Step 7, Logix5000 and Control Builder are provided by
automation system vendors for design and development of
basic feedback control system. To the best of our knowl-
edge, however, there is no unified and effective tool for
the OSC system. In GP control field, although there exist
several COTS packages (e.g., Smart Grind, PROSCON ACT
OCS
software, ECS/FuzzyExpert), they have limited ability
in control strategy extension and user-defined algorithms
according to various industrial process dynamics. Therefore,
only a few plants have realized the set-points optimization,
and most of them are still under manual operation. However,
due to the subjectivity and arbitrariness of humans, it is diffi-
cult for the operator to obtain the proper operating point. Real
plants, consequently, always operate under a non-optimized
economic status and produce with high loss and low quality.
The increasingly fierce competition of the world market has
inevitably led to an urgent demand for a configurable plat-
form for the GP OSC.

III. OVERALL DESIGN
The developed platform is intended as a tool especially for
the algorithm configuration rather than algorithm parameter
adjustment of OSC. From an engineering point of view,
control algorithms must be designed in a modular way. That
is to say, a control method should be made up of several
inter-connected sub-modules or sub-control units (such as
filter, predictive model, feedback controller and feedfor-
ward controller) [7], [8], [12]. Hence, engineers often first
develop each sub-control unit one by one and then con-
nect them together to construct a controller. Accordingly,
this platform adopts a module-based architecture to build
the optimal-setting controller. In this architecture, each con-
trol unit is encapsulated into a unified module so that the

addition, removal and replacement of modules of controllers
can be realized conveniently. Our overall solution is presented
in Fig. 3.

From Fig. 3 it can be seen that the platform includes
two levels, i.e., infrastructure-level and control-level.
In the infrastructure-level, by designing four function
components, namely, Real-Time Database, User
Defined Graphic Views, Data Analyzer, and
Communicator, certain essential functions are realized.

1) Real-Time Database is similar to a data informa-
tion pool shared by all components.

2) User Defined Graphic Views is used to cus-
tomize some visual interfaces for monitoring the grinding
system operation conveniently.

3) Data Analyzer focuses on discovering and evalu-
ating the performance of the controller using statistical tech-
niques.

4) Communicator is in charge of accessing external
data from communication ports and updating the variables of
Real-Time Database.

The configurability of software is mainly realized by
the control-level, which includes five function components,
i.e., Algorithm Library, Algorithm Developer,
Controller Editor, Control Logic Driver,
and Computational Engine. Those novel components
and their combination make the building of a large scale,
complex controller easier.

1) Algorithm Library integrates several mainstream
control algorithms (e.g., case-based reasoning, fuzzy logic,
neural network, rule-based reasoning, and even PID), and
encapsulates them into algorithm modules for reuse in the
implementation phase.

2) Algorithm Developer is provided to customize
new algorithm modules and encapsulate them into the
Algorithm Library.

26724 VOLUME 5, 2017



W. Dai et al.: Configurable Platform for OSC of Grinding Processes

3) Controller Editor provides a graphical
configuration environment to build the controller by reusing
the algorithm modules from the Algorithm Library.
In addition, it will generate a profile of the controller in
EXtensible Markup Language (XML).

4) Control Logic Driver is in charge of scheduling
the invoking of a sequence of algorithm modules during
runtime according to the controller configuration.

5) Computational Engine provides basic solving
routines and acts as an agent to call the external solvers
specified by the algorithm modules.

The brief view of the work mechanism is as follows:
In the development phase, the special algorithm modules

can be built first by using the Algorithm Developer
when it cannot be found in the Algorithm Library.
Then, the controller is configured in drag-and-drop type
using the Controller Editor. After having finished the
controller configuration, an XML file containing controller
descriptions, algorithm module ID, labels, input/output vari-
ables, and the handle of the solving routine will be cre-
ated. In the running phase, the Control Logic Driver
will first parse this XML file and determine which of the
algorithm modules can be enabled. Then, the platform calls
the Computational Engine to solve the routine spec-
ified by the enabled algorithm module. The solve results
will update the Real-Time Database, and the User
Defined Graphic Views. The Communicator will
then access the updated data and provide OPC, ODBC and
DDE interfaces to communicate with various basic feedback
control systems. Thus, the control results can be monitored
conveniently and transmitted to the basic feedback control
systems to drive the control devices.

IV. IMPLEMENTATION OF KEY TECHNOLOGIES
The platform is a large and complicated system involving
not only process data monitoring and visualization but also
controller development and operation. For facilitating the
software development and maintenance, a plug-in framework
based on a managed extensibility framework (MEF) [17]
is adopted. In such framework, each function component
mentioned in Section III acts as a plug-in, and a messaging
manager based on a publish-subscribe pattern [18] is devel-
oped to solve the coupling among these plug-ins. This section
only focuses on showing the implementation of certain key
technologies.

A. CONTROLLER EDITOR
Due to the fact that one controller consists of several algo-
rithm modules, the Controller Editor should abstract
each module to a function block (FB). According to different
control functions, three types of FBs, i.e., input FB (IFB),
output FB (OFB) and algorithm FB (AFB), are abstracted.

a) IFB: represents the source of whole controller and only
generates output data. The purpose of IFB is to produce
the initial data to start a single solving process.

FIGURE 4. Pipeline of data and control algorithms.

FIGURE 5. Simplified class diagram of Real-Time Database.

b) AFB: represents control behavior, and it receives input
data and generates output data. Each control algorithm
module can be expressed as an AFB.

c) OFB: represents the end of whole controller and only
receives the final results. The purpose of OFB is to
update the control commands and end a single solving
process.

To construct the whole controller, an abstract class
Linker depicted by a line with arrow is employed to define
the connectivity of data among the FBs and receive the solv-
ing result of each AFB at runtime. Consequently, a series
of FBs can be connected by pipelines as shown in Fig. 4.
To expose data to other function components, the Linker
connects with the Real-Time Database and encapsu-
lates the operations of data exchange between the FBs’ inter-
nal data and the Real-Time Database.
As seen from Fig. 4, real-time database, function block and

linker are very important for the Controller Editor.

1) REAL-TIME DATABASE
RTData abstracts the properties and methods of the
Real-Time Database, and its class diagram in unified
modeling language (UML) [19] can be found in Fig. 5.
Owing to the existence of a great deal of system variables
containing data properties, such as data ID, name, type and
description, the platform employs a Variable class to
abstract the properties andmethods of system variables. In the
Real-Time Database, the variables can be divided into
two types. One type represents the variable used only for
algorithm computation, and the other represents the variable
used for communicating with external applications. Accord-
ing to the above two types of data, two concrete subclasses
of the Variable class, namely, MermryVarible and
IOVariable, are developed. In addition, to guarantee the
efficiency of search, insertion, and deletion operations, a

VOLUME 5, 2017 26725



W. Dai et al.: Configurable Platform for OSC of Grinding Processes

FIGURE 6. Simplified class diagram of function block.

red-black tree is employed to implement the RTData, and
the data of each tree node is modeled as an instance of
Variable.

2) FUNCTION BLOCK
FunBlock is one of the kernel classes, and it abstracts the
properties and methods of FBs. The model structure of Fun-
Block is demonstrated in Fig. 6. FunBlock has three class
members, i.e., ShapeGroup, AlgorithmPropety, and
LocalVarMng. The ShapeGroup provides image data
to define algorithm features showing in the Controller
Editor. The LocalVarMng specifies the inner input and
output parameters of algorithms, and provides unified access
interfaces. The AlgorithmPropety provides the proper-
ties of algorithms, i.e.,AlgorithmName and SolverType.Algo-
rithmName acts as a handle of the algorithm routine. Using
this handle, the platform can determine which one of the
algorithm modules existing in the Algorithm Library
should be reused. The SolverType specifies which solver
should be employed to solve the algorithm routine at run-
time. It is noteworthy that the Algorithm Library has
a unique assigned name for the different algorithm modules.
Hence, two instances ofFunBlock can be distinguished eas-
ily when they use the same algorithm. The reason is that the
FunctionBlockID, Label and Description properties express
the uniqueness of each instance.

To access the linkers connected, FunBlock provides
fourmember functions.GetBlockStartLinksCount(FunBlock)
and GetStartLinkBlockAtIndex(FunBlock, int) are called suc-
cessively to find the linkers that denote the target of the
dataflow; meanwhile, GetBlockEndLinksCount(FunBlock)

and GetEndLinkBlockAtIndex(FunBlock, int) are called suc-
cessively to find the linkers that denote the source of dataflow.

According to the different types of FBs, we construct
three concrete subclasses: AFunBlock, IFunBlock and
OFunBlock. IFunBlock and OFunBlock are designed
with the purpose of the IFB and OFB, while AFunBlock is
the main control algorithm class whose instance implements
actual control behaviors.

Presently, the platform has implemented several basic
math algorithms, and classical control algorithms. New algo-
rithms can be created in the Algorithm Developer,
which provides an algorithm script editor to develop
algorithms by using an open-source implementation of
the Python programming language for the .NET Frame-
work, namely, IronPython. Additionally, two open source
libraries for scientific computing, namely, NumPy and
SciPym, are integrated in the Algorithm Developer,
which results in excellent ability of the platform in sci-
entific computing. Furthermore, owing to the fact that the
MATLAB is a popular software in process control filed, a
MATLAB script technology is also supported in this plat-
form. Besides, the Algorithm Developer can directly
load the dynamic link library (DLL) files that have encapsu-
lated the algorithm routines by using generic programming
languages (such as C++ and C#).

3) LINKER
Linker is another kernel class, and it provides the direction
of dataflow according to the two properties of startFB and
endFB. The model structure of Linker is shown in Fig. 7.
Its class members include DrawLinker, VarLink and

26726 VOLUME 5, 2017



W. Dai et al.: Configurable Platform for OSC of Grinding Processes

FIGURE 7. Simplified class diagram of Linker.

FunBlock. DrawLinker defines the image data shown
in the Controller Editor as ShapeGroup does.
VarLink provides the information of the dataflow, and its
instance contains a variable coming from the start block and
a variable coming from the end block. Linker maintains a
list of VarLinks and provides the interfaces for adding and
removing VarLink to and from the list, respectively.

B. PETRI NET MODEL FOR CONTROLLER
When the controller is more complicated than the one shown
in Fig. 4, it is necessary to employ another mathematical
model to reflect the behavior of the controller. Petri net,
as graphical and mathematical tools, provides a uniform
environment for modeling, formal analysis, and design of
industry control systems. In addition, the Petri net can be
used to perform a formal check of the properties related to
the behavior of the underlying system, e.g., precedence rela-
tions among events, concurrent operations, and appropriate
synchronization. In view of the features of Petri net, a simple
Petri net defined in Definition 1 is adopted for modeling the
controller.
Definition 1 (Petri Net Structure): A Petri net structure is a

tuple

NS = (P,T ,F,M0)

where

P is a finite set of places p;
T is a finite set of transitions t;
F ⊆ (P× T ) ∪ (T × P) is a set of flow arcs f ;
M0: P {1, 2, . . .} is an initial marker.

In this platform, each element defined under the Petri net
model has a special meaning explained in Definition 2.
Definition 2:

p denotes an available data resource that can be used
in algorithm calculations;

t denotes an FB, including IFB, OFB and AFB;
f denotes the dataflow direction defined in Linkers.

The normal control approach in industry systems is that
signals are free of backward effects on the generalized plant,
as shown in Fig. 8 (a). That means the behavior of the

FIGURE 8. Control loops: (a) Normal control loop. (b) Control loop with
Petri net model.

FIGURE 9. Basic mapping relationship between graphic controller and
Petri net model: (a) Serial structure. (b) Parallel structure. (c) Feedback
structure.

controller system which emits a control signal is not influ-
enced by the presence of measurement. In the Petri net model
for controllers, as shown in Fig. 8 (b), some places are added
at signal transmission channels (input and output channels).
And a token will be put on the input places when the mea-
surement is available, then stay here until it is consumed.

In the platform, the control strategy must be mapped into a
Petri net model and then be checked whether it is available
before calling the computational engine. Specific steps of
mapping an optimal-setting controller into a Petri net model
are as follows: First, some virtual places and virtual arcs
are added in order to complete an entire Petri net model.
Second, IFB and OFB will be separately mapping into input
and output transitions t . In addition, there must be only
one output place, while the input place can be instantiated
more than one meet the demands of a multi-sampling control
system. Then, AFB and linker will be separately mapped into

VOLUME 5, 2017 26727



W. Dai et al.: Configurable Platform for OSC of Grinding Processes

FIGURE 10. Flow chart of Petri net model mapping.

transition t and place p. Some arcs are added between tran-
sition and places, and the direction of the arcs are in accord
with the corresponding linkers. Fig. 9 reveals the way of basic
mapping. Fig. 10 presents the flow chart of mapping from the
graphic controller model to the Petri net model.

In such Petri net model, the places represent pre-conditions
or post-conditions, which denote the availability of data
resources. Output place represents the computing result of the
overall controller. By using the Petri net model, the enabled
and execution states of FBs can be easily separated. Distribu-
tion changing of tokens on places will reflect the execution
of FBs. For instance, in Fig. 9 (a), moving the token to place
p3 from p2 means that the algorithm in transition t2 has been
executed and the output data can be used in the next enabled
transition t3.
A Petri net engine is designed to generate an incident

matrix to check the net properties and to provide essential
feedback information for users when the net anomalies or has
error. To distinguish the enabling and implementation of
activity FBs, the FB trigger events have been converted to
two trigger conditions, i.e., a manual trigger condition and
an automatic trigger condition. In the automatic trigger con-
dition, the FB will be fired immediately when the FB is
enabling, while the FB will be fired until a mouse event
occurs in the manual trigger condition. When the controller is
running, the Petri net engine will take charge of the condition
of FBs under the Petri net model, whichmeans that the engine
will control the token migration and constantly update the
net marker. When there are no new migrations to be dealt
with, or no token will generate, the engine will reset the initial
marker in order to prepare for the next control period.

FIGURE 11. Construct of Petri net controller.

As shown in Fig. 11, the Petri net model is abstracted to a
PetrinetModel class, which maintains three class mem-
bers of Transition, Place and Arc. Transition
abstracts the properties and methods of a transition.
IOTransition and ATransition are concrete classes
from Transition to represent IFB/ OFB transition and
AFB transition, respectively. The virtual function Fire() is
called to activate transition. The two concrete classes of
Transition implement the virtual function Fire() to exe-
cute the algorithm or specified function.PetrinetEngine
maintains an instance of PetrinetModel, and pro-
vides the interfaces for analyzing and operating the model.
The switch of the trigger condition is controlled by two
member functions, AutomaticRun() and ArtificialRun(). The
properties, m_incidentMatrix and m_incidentMatrixminus
provide the information of incidence matrix for analyzing
and controlling the dynamic behavior of Petri net. Dur-
ing the running, when a Transition instance calls the
member function Fire() and returns true, its preset will
call the TockenPushOut() and set the property Token false,
while its postset will call the TockenPushIn() and set the
property Token true; then, the places in postset call the
MarkerChanged function to change property m_Marker that
represents the current net marker. PetrinetEngine is
a listener for m_Marker, and it immediately updates the
property Enabled of all Transaction instances after
the m_Marker is changed. Only when property Enabled
is true can corresponding Transaction instances call

26728 VOLUME 5, 2017



W. Dai et al.: Configurable Platform for OSC of Grinding Processes

FIGURE 12. Diagram of computational framework.

member function Fire() later. In IOTransition class,
the Fire() will read or write variables through the communi-
cation interface; in the ATransition class, the Fire() will
parse the algorithm through the interfaces provided by the
Computational Engine.

C. COMPUTATIONAL ENGINE
Computational Engine provides a uniform computa-
tional framework to produce a scalable computational inter-
face for dynamically loading different types of algorithms.
The framework is illustrated in Fig. 12. From Fig. 12,
we can see that the platform provides support for not
only type of DLL but also types of Python script and
MATLAB script by calling the Python engine and the
MATLAB engine. The computational framework has used
the abstract factory design pattern to manage computa-
tional interface in a flexible and graceful manner. As shown
in Fig. 13, Calculator declares an interface for the
engine object. MatlabEngine, DLLCalculator and
PythonEngine define distinct engine objects that should
be created by EngineFactory responding to the differ-
ent algorithm types. ComputationalEngine is a client,
where function CreateEngine() can get an engine object
through EngineFactory; function Calculate() can parse
the algorithm provided by the corresponding FB.

D. COMMUNICATION INTERFACE
According to technical requirements, the platform provides
two interfaces for external data communication. The first
interface is developed based on OLE for process con-
trol (OPC) technology, which allows the platform to com-
municate with local basic feedback control systems such as
PLC/DCS systems. The other interface is developed based
on open database connectivity (ODBC) technology, which
guarantees the platform can communicate with other software
systems, such as data processing/analyzing system. There is
a distributed computing framework when this platform works
together with plant-wide optimization applications. Taking
into account the heterogeneity of different systems, amessage
orientedmiddleware interface is developed to achieve the data
exchange by usingmessage queuing technology and to ensure
the reliability and security of data transmission.

FIGURE 13. Simplified class diagram of Computational Engine.

FIGURE 14. Schematic diagram of mineral grinding circuit.

Currently, the OPC technology has already been widely
used in industry and performs excellently in the LAN (Local
Area Network). Thus, this technology could be regarded
as the bridge of the data between the low-level PLC/DCS
control systems and high-level OSC systems. When using
the OPC technology, there is no need to develop differ-
ent data communication channels for distinct PLC/DCS
systems. The OPC interface of platform is realized by
using Kepware’s OPC development kit. For achieving the
ability of data interaction with other data processing and
analyzing applications, relational database implementation
models such as Oracle, SQL Server, Sybase, DB2, and
MySQL in data communication between different systems
is a very popular solution. Therefore, the ODBC interface
is employed here to provide access to different database
systems such that the operation data can share with other
applications.

E. PARALLEL COMPUTATION
In response to demands for higher performance in par-
allel computation, multi-thread technology is used here.
To make the manager thread more efficient, the Task Parallel
Library (TPL) that takes an AFB computation process as a
task is employed. The TPL cooperates multi-thread by using
the task scheduler and automatically distributes tasks across
the computer’s available CPUs quickly and painlessly.

VOLUME 5, 2017 26729



W. Dai et al.: Configurable Platform for OSC of Grinding Processes

FIGURE 15. Snapshot of the controller editor.

FIGURE 16. Snapshot of controller model based on Petri net.

V. EXPERIMENT EXAMPLES
In this section, we discuss an application for a classical
closed-loop GP with a ball mill and a spiral classifier,
as shown in Fig. 14.

In this paper, an intelligence-based OSC method that
consists of a control loop pre-setting optimization module,
an artificial neural network (ANN) based soft-sensor module,
two fuzzy logic based dynamic adjustors and an expert-based

overload diagnosis and adjustment module are employed.

In keeping with the focus of this paper, the details of the
designed controller are not shown here but can be found
in [20]. Using the platform, it is convenient to design and
implement the controller mentioned above. Fig. 15 shows a
snapshot of the controller editor. The snapshot shows on the
left-hand side the algorithm toolbox and the construction tree
of the controller. In the main window, a canvas is used to
configure the controller, and the variable and shape properties
of FB are shown on the bottom and right side, respectively.

26730 VOLUME 5, 2017



W. Dai et al.: Configurable Platform for OSC of Grinding Processes

FIGURE 17. Structure of hardware-in-the-loop OSC experiment system.

Fig. 16 shows the Petri net mapping from the graphical
controller and all markings.

This application was tested at a hardware-in-the-loop
(HIL) experiment system [21] for grinding processes.
Fig. 17 shows the actual HIL experiment system and its
architecture. From Fig. 17, it can be seen that the HIL exper-
iment system consists of an OSC subsystem, a human super-
vision subsystem and a DCS subsystem, a virtual actuator
and sensors subsystem, and a virtual process subsystem to
be controlled. These subsystems are linked via industrial
Ethernet and Devicenet. In this experiment system, a widely
used DCS, the Controllogix 5000 control system, is applied
to realize the lower level basic feedback control. By utilizing
RSView32 software, a human–computer interaction monitor-
ing platform is developed in the human supervision subsys-
tem. The hardware components of the virtual actuator and
sensors subsystem includes an industry computer equipped
with several data acquisition cards and industrial terminal
boards fromAdvanTech. The user interface is designed based
on RSView32 which supports visual VBA script to collect
data from the data acquisition cards. In the virtual process
subsystem, simulation is implemented by using theMATLAB
engine. Additionally, MultiGen Creator, VTree and Visual
C++ are employed to display the operational devices and to
realize data exchange with the virtual actuator and sensors
subsystem.

The OSC subsystem is run on a Windows-PC with an Intel
Pentium 4 2.8GHz processor and 1GBphysicalmemory. The
experiment system has spent 600 minutes on a test, and the
OSC subsystem has totally calculated 60 times. Fig. 18 shows
the main operation interface displaying the autoregulation

FIGURE 18. Snapshot of main operation interface.

curves of the set points. Fig. 19 shows the control effect
and statistical analysis of operational indexes. The operation
results show that OSC subsystem enhances the average of
PPS from 59.5%< 200 mesh to 62.12%< 200 mesh, and the
root mean square error (RMSE) of PPS decreases to 0.8764.
In this experiment study, approximately 90.17% of PPS are
fully qualified for production, while approximately 6.61%
and approximately 3.22% of PPS exceed the maximum and
are less than the minimum, respectively. The estimated error
and control error in Fig. 19 can also show the control effect
from another point of view.

Although this application is an HIL simulation, we believe
these results could hold promise that a complete indus-
trial application on this software platform can also work
effectively.

VOLUME 5, 2017 26731



W. Dai et al.: Configurable Platform for OSC of Grinding Processes

FIGURE 19. Snapshot of operational index statistics interface.

VI. CONCLUSION AND FUTURE PERSPECTIVE
This paper presents a configurable platform called
OSControl, which offers a graphical tool for the algorithm
designers and engineers to handily design and develop their
optimal-setting controllers. After the design of the controller,
the software can be automatically modeled by means of the
Petri net engine and checked whether the controller is all
right. Thus, OSControl can ensure the designed controller
fulfill the expected properties before it is implemented by
computational engine. By taking a classical closed-loop
grinding process as a benchmark, the platform is tested at a
hardware-in-the-loop experiment system. The experimental
results have clearly shown that the proposed platform can
provide a new graphical tool to aid users in easily and rapidly
designing and implementing optimal-setting controllers for
the GPs. Meanwhile, the Petri net model for optimal-setting
controllers is shown for the user to analyze the controller
performance. Although the proposed Petri net model shows
similarities to a normal simple Petri net, each element in the
Petri net has special meanings. We come to the conclusion
that such Petri net model are suited for controller verifi-
cation. The current version of the platform does not allow
subnets (hierarchical extension AFB). One of the projected
extensions of the controller editor is to allow the reuse of
subnets. This will also permit the verification of these subnets
before they are used in the controller editor. We believe the
prospects of this platform will be very broad in future.

REFERENCES
[1] D. H.Wei and I. K. Craig, ‘‘Grindingmill circuits—A survey of control and

economic concerns,’’ Int. J. Mineral Process., vol. 90, nos. 1–4, pp. 56–66,
Feb. 2009.

[2] A. Pomerleau, D. Hodouin, A. Desbiens, and É. Gagnon, ‘‘A sur-
vey of grinding circuit control methods: from decentralized PID con-
trollers to multivariable predictive controllers,’’ Powder Technol., vol. 108,
nos. 2–3, pp. 103–115, Mar. 2000.

[3] P. Zhou, W. Dai, and T.-Y. Chai, ‘‘Multivariable disturbance observer
based advanced feedback control design and its application to a grinding
circuit,’’ IEEE Trans. Control Syst. Technol., vol. 22, no. 4, pp. 1474–1485,
Jul. 2014.

[4] D. Hodouin, ‘‘Methods for automatic control, observation, and optimiza-
tion in mineral processing plants,’’ J. Process Control, vol. 21, no. 2,
pp. 211–225, Feb. 2011.

[5] C. Bouché, C. Brandt, A. Broussaud, and W. I. van Drunick, ‘‘Advanced
control of gold ore grinding plants in South Africa,’’Mineral Eng., vol. 18,
no. 8, pp. 866–876, Jul. 2005.

[6] X. S. Chen, Q. Li, and S. M. Fei, ‘‘Supervisory expert control for ball
mill grinding circuits,’’ Expert Syst. Appl., vol. 34, no. 3, pp. 1877–1885,
Apr. 2008.

[7] P. Zhou, T. Y. Chai, and J. Sun, ‘‘Intelligence-based supervisory control
for optimal operation of a DCS-controlled grinding system,’’ IEEE Trans.
Control Syst. Technol., vol. 21, no. 1, pp. 162–175, Jan. 2013.

[8] W. Dai, T. Chai, and S. X. Yang, ‘‘Data-driven optimization control for
safety operation of hematite grinding process,’’ IEEE Trans. Ind. Electron.,
vol. 62, no. 5, pp. 2930–2941, May 2015.

[9] H.-X. Li and S. Guan, ‘‘Hybrid intelligent control strategy. Supervising
a DCS-controlled batch process,’’ IEEE Control Syst., vol. 21, no. 3,
pp. 36–48, Jun. 2001.

[10] Z. J. Wang, Q. D. Wu, and T. Y. Chai, ‘‘Optimal-setting control for
complicated industrial processes and its application study,’’ Control Eng.
Pract., vol. 12, no. 1, pp. 65–74, 2004.

[11] R. Lestage, A. Pomerleau, and D. Hodouin, ‘‘Constrained real-time opti-
mization of a grinding circuit using steady-state linear programming super-
visory control,’’ Powder Technol., vol. 124, no. 3, pp. 254–263, 2002.

[12] T.-Y. Chai, ‘‘Optimal operational control for complex industrial pro-
cesses,’’ in Proc. 8th IFAC Int. Symp. Adv. Control Chem. Process.,
Singapore, 2012, pp. 722–731.

[13] W. Dai and T.-Y. Chai, ‘‘Data-driven optimal operational control
of complex grinding process,’’ Acta Autom. Sinica, vol. 40, no. 9,
pp. 2005–2014, Sep. 2014.

[14] X. L. Lu, B. Kiumarsi, T.-Y. Chai, and F. L. Lewis, ‘‘Data-driven optimal
control of operational indices for a class of industrial processes,’’ IET
Control Theory Appl., vol. 10, no. 12, pp. 1348–1356, Aug. 2016.

[15] D. Zhao, T.-Y. Chai, H. Wang, and J. Fu, ‘‘Hybrid intelligent control for
regrinding process in hematite beneficiation,’’Control Eng. Pract., vol. 22,
no. 1, pp. 217–230, Jan. 2014.

[16] Programmable Controllers—Part 3: Programming Languages, 2nd ed.,
International Standard IEC 61131-3, 2003.

[17] C. Nagel, B. Evjen, J. Glynn, K. Watson, and M. Skinner, Professional C#
4.0 and .NET 4, 1st ed. Birmingham, U.K.: Wrox Press Ltd., 2010.

[18] P. T. Eugster, P. A. Felber, and R. Guerraoui, ‘‘The many faces of
publish/subscribe,’’ ACM Comput. Surv., vol. 35, no. 2, pp. 114–131,
Jun. 2003.

[19] K. Siau and Q. Cao, ‘‘Unified modeling language: A complexity analysis,’’
J. Database Manag., vol. 12, no. 1, pp. 26–34, 2001.

[20] P. Zhou, T. Chai, and H. Wang, ‘‘Intelligent optimal-setting control for
grinding circuits of mineral processing process,’’ IEEE Trans. Autom. Sci.
Eng., vol. 6, no. 4, pp. 730–743, Oct. 2009.

[21] W. Dai, P. Zhou, D. Y. Zhao, and T. Y. Chai, ‘‘Hardware-in-the-loop
simulation platform for supervisory control of mineral grinding process,’’
Powder Technol., vol. 288, pp. 422–434, Jan. 2016.

WEI DAI (M’16) received the M.S. and
Ph.D. degrees in control theory and control engi-
neering from Northeastern University, Shenyang,
China, in 2009 and 2015, respectively. From
2013 to 2015, he was a Teaching Assistant with the
State Key Laboratory of Synthetical Automation
for Process Industries, NortheasternUniversity. He
is currently with the China University of Mining
and Technology, Xuzhou, China. He received the
honorary title of the Young Backbone Teacher of

the China University of Mining and Technology in 2017.
His current research interests include modeling, optimization and control

of complex system, data mining and machine learning.

26732 VOLUME 5, 2017



W. Dai et al.: Configurable Platform for OSC of Grinding Processes

GANG HUANG received the B.S. degree in elec-
trical engineering and automation from the Xuhai
College, China University of Mining and Technol-
ogy, Xuzhou, China, in 2016, where he is currently
pursuing the M.S degree. His current research
includes machine learning, data-driven optimal-
setting control, and software technology.

FEI CHU (M’17) received the B.Sc. degree in
electrical and automation from Qingdao Uni-
versity, China, in 2007, the M.Sc. and Ph.D.
degrees in control theory and control engineering
from Northeastern University, China, in 2009 and
2014, respectively. He is currently a Post-Doctoral
Researcher and a Lecturer with the China Univer-
sity of Mining and Technology, Xuzhou, China.
He has authored over 20 papers in peer-reviewed
international journals and conferences. His current

research interests include modeling and optimization of complex industrial
process, statistical process monitoring, and optimality assessment.

TIANYOU CHAI (M’90–SM’97–F’08) received
the Ph.D. degree from Northeastern University,
Shenyang, China, in 1985.

He is the Founder and the Director of the State
Key Laboratory of Synthetical Automation for
Process Industries and the National Engineering
and Technology Research Center of Metallurgical
Automation. He is also the Director of the Depart-
ment of Information and Science, National Natural
Science Foundation, China. He has authored three

monographs and over 120 peer-reviewed international journal papers. His
current research interests include adaptive control and intelligent decoupling
control.

Prof. Chai received three prestigious awards of the National Science and
Technology Progress, the 2002 Technological Science Progress Award from
the Ho Leung Ho Lee Foundation, the 2007 Industry Award for Excellence
in Transitional Control Research from the IEEE Control Systems Society,
and the 2010 Yang Jia-Chi Science and Technology Award from the Chinese
Association of Automation. He is a member of the Chinese Academy of
Engineering, an Academician of the International Eurasian Academy of
Sciences, and a fellow of the IFAC.

VOLUME 5, 2017 26733


	INTRODUCTION
	GRINDING PROCESS AND CONTROL PROBLEM
	OVERALL DESIGN
	IMPLEMENTATION OF KEY TECHNOLOGIES
	CONTROLLER EDITOR
	REAL-TIME DATABASE
	FUNCTION BLOCK
	LINKER

	PETRI NET MODEL FOR CONTROLLER
	COMPUTATIONAL ENGINE
	COMMUNICATION INTERFACE
	PARALLEL COMPUTATION

	EXPERIMENT EXAMPLES
	CONCLUSION AND FUTURE PERSPECTIVE
	REFERENCES
	Biographies
	WEI DAI
	GANG HUANG
	FEI CHU
	TIANYOU CHAI


