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ABSTRACT The performance of evolutionary algorithms (EAs), suitable for optimization on static func-
tional landscapes, usually degrade in presence of noises with different statistical features. In this paper, we
present a simple variant of the differential evolution (DE) algorithm, one of the most competitive EAs of
recent interest, to tackle complex optimization problems in the presence of additive noise. The proposed
DE variant is equipped with three new algorithmic components. A new population central tendency-based
mutation scheme is proposed and it is switched in a probabilistic manner with the difference mean-based
perturbation strategy in the mutation step. Instead of the regular binomial or exponential crossover of DE,
we adopt a blending crossover during the recombination stage. Finally, a novel distance-based selection
mechanism is incorporated to enable the occasional inclusion of a few inferior solutions to future generations,
thus making the usual DE selection less greedy. Five different additive noise models namely Gaussian,
Poisson, Rayleigh, Exponential, and Random are considered with a variety of noise amplitudes to simulate
the noisy behavior of the objective functions. In total, 79 benchmark functions from traditional, as well as
modern (IEEE CEC 2013 and 2017) test-suites, are used to extensively compare and contrast the proposed
method with the other state-of-art evolutionary optimization algorithms, tailor-made for noisy function
optimization. Experimental results, supported with the non-parametric statistical tests, indicate that our
proposed method is very competitive against the noise-resilient variants of classical as well as very recent
evolutionary optimizers, including the winners of the recent IEEE CEC competitions of real parameter
optimization on the complex fitness landscapes.

INDEX TERMS Differential evolution, noisy optimization, selection, gaussian noise, poisson noise.

I. INTRODUCTION
Noise can be a disruptive factor for the real world and
non-convex optimization problems for which Evolutionary
Algorithms (EAs) are employed. Noise can be generated
from the output of sensors, numerical simulators, actuators,
and other measuring equipment of the decision variables
and the objective (cost) function [1], [2]. Optimization under
noisy scenarios occurs frequently in power systems [3], direct
search policies in reinforcement learning [2], game theory [4]
and so on.

For almost last two decades, researchers have been prefer-
ring EAs as a promising tool to tackle the noisy optimization
problems due to their derivative-free nature and population-
based search mechanism, see, for example, the recent survey
by Rakshit et al. [2] and the references therein for a detailed
account. If the objective function value is corrupted with
noise, the normal evolutionary process can easily become
unstable and successful search for the global optimum can
be adversely affected [1]. This is more specifically true for
EAs that employ a greedy selection operator which always
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prefer a fitter individual according to the cost function value,
as due to additive noise in the cost function, an actually
fitter individual may present a worse cost and get discarded.
The reverse also can happen, i.e. a worse individual may be
admitted to subsequent generations due to deceivingly better
fitness appearance caused by noise.

In current EA literature, Differential Evolution (DE)
[5]–[7] stands at a very competitive position among other
state-of-the-art algorithms for optimization in continuous
parameter (decision variable) spaces. Many DE variants
have been proposed over the past decade for moderate to
high dimensional function optimization. Some of the well
known DE variants involve clever mutation and recombi-
nation strategies for offspring generation (like Pro-DE [8],
MDE-pBX [9], DE with eigenvector based crossover [45],
DE with multiple exponential crossover [48]) success-
history based strategy and parameter adaption strategies
(e.g., SaDE [10], JADE [11], SHADE [41], L-SHADE [42]),
and combination of multiple offspring generation techniques
(CoDE [12], EPSDE [13], DE with multiple variant coor-
dination [50] etc.). DE has also been modified for solving
continuous optimization problems corrupted with additive
noise. A deterministic choice of the scale factor and the
usual greedy selection method of DE adversely affect its
performance on the noisy optimization problems [14]. Das
and Konar [15] suggested two modifications to improve the
performance of DE on noisy optimization problems, firstly
by sampling the scale factor uniform at random between
0.5 and 1 and secondly by incorporating two not-so-
greedy selection mechanisms (threshold-based selection and
stochastic selection) in DE. Rahnamayan et al. [16] proposed
a DE variant based on the concept of opposite numbers for
superior search over noisy functions. A hybrid algorithm
involving DE and Simulated Annealing (SA) was proposed
as DEOSA [17] for solving noisy optimization problems.
Mininno and Neri [18] presented a DE variant based on
the noise analysis principle. This scheme comprised of three
algorithmic tweaks to cope up with the uncertainties induced
due to noise. The modifications included a controlled ran-
domization of the scale factor and crossover rate, local search
procedures to determine the scale factor, and an online statis-
tical test that can ensure sampling at only the most important
points of the feasible search region.

Resampling tries to estimate the ’true’ fitness value of an
individual by evaluating it repeatedly a number of times [2].
Resampling incurs higher computational burden, especially
if the evaluation of the candidate solutions is expensive,
which is typical for real-world applications. Iacca et al. [19]
presented a compact DE with the mechanism of storing only
a probabilistic representation of the population instead of the
entire population and an automatic resampling process to
optimize under noisy environments. A noise intensity esti-
mation based Rolling Tide Evolutionary Algorithm (RTEA)
was proposed in [20] for noisy multi-objective optimiza-
tion problems. A biogeography-based optimization along
with blended migration strategy was proposed in [21] for

noisy constrained optimization problems. Noise compensa-
tion via sequential dynamic resampling based Genetic Algo-
rithm (GA) for multi-objective optimization problems was
presented in [22]. Chiu et al. [23] presented a DE with
the 1.01n resampling, targeting noisy problems where the
standard deviation of noise is as large as the variation of the
fitness value. Rakshit and Konar [24] proposed a DE variant
with local neighborhood based adaptive sample size selection
for noisy multi-objective optimization.

It can be seen that to handle growing hardship of the real-
world problems, DE has been modified in many different
ways, but in most of the cases, the resulting DE variants
have lost their simplicity, which is one of the main reasons
for DE’s popularity among the practitioners. The present
work is driven by the quest to improve DE for noisy, mul-
tivariate, and multi-modal search problems by using simple
parameter control techniques along with very simple and
intuitively appealing modifications to the basic DE steps
without necessitating serious computational overhead (likely
to be caused by external achieves, rank-based parent selec-
tion schemes, additional local search schemes, statistical test
on sampled points, keeping the long records of successful
individuals etc.).

The proposed DE variant incorporates a population
centrality based mutation strategy and couples it with the dif-
ference mean based mutation [25] in a stochastically switch-
able manner. Alongside it uses a blending crossover as the
recombination strategy and a novel distance-based stochas-
tic selection mechanism to tackle the noisy nature of the
objective function by keeping the provision for occasionally
accepting poorer offspring for upcoming generations. Note
that a related work (by a group of the co-authors of this
paper) has recently appeared as the conference article in [26].
However, the current paper is significantly extended and dif-
ferent from the conference article from the following aspects.
In [26], two classical DE mutation strategies, namely the
explorative DE/rand/1 and the more exploitative DE/best/1
were combined in a uniform randomly switched manner
(with equal probabilities). However, in the current work, two
completely different and non-conventional mutation schemes
are used, of which the population centrality based scheme is
first proposed here. The non-conventional mutation strategies
are used to make the algorithm robust to noises of widely
different statistical characteristics. The work of [26] coupled
both blending and binomial crossovers in a switchingmanner,
but the algorithm, developed here, makes use of only the
blending crossover, owing to its greater flexibility towards
different kinds of noise distributions. Finally, while [26]
used an adaptive threshold-based selection, the current work
employs a novel distance-based selection with reduced greed-
iness. Moreover, the NRDE (Noise Resilient DE) algorithm
in [26] was tested only on the Gaussian noise. But the cur-
rent algorithm has been extensively tested on 21 standard
benchmarks using 5 different and practical noise models.
In addition, the algorithm is tested on the test-suites com-
prising of 28 and 30 functions respectively proposed for
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the IEEE CEC (Congress on Evolutionary Computation)
2013 and 2017 competitions on real parameter optimization.
These 58 functions are much more complex with a shift of
the optima, rotation of the search space coordinates (induc-
ing more non-separability among the decision variables) and
mixing of the properties of many basic functions (which are
included in the first set of 21 functions). Noisy versions of
these functions are simulated by adding standard Gaussian
noise with each evaluation of the functions. As will be evi-
dent from our experimental results, the proposed algorithm
performs significantly better than NRDE on a wide variety of
test functions.

Rest of the paper is organized in the following way.
Section II outlines the canonical DE algorithm in suffi-
cient details. Section III describes the proposed DE method.
Section IV presents and discusses the experimental results.
Finally, the paper is concluded in Section V.

II. THE CANONICAL DE ALGORITHM
A standard DE algorithm starts with a set of candidate
solutions, each of which is represented as a vector of real
numbers. Components of the solution vectors are also called
decision variables. The set of solutions is also called a popu-
lation and the initial population is generated through random
sampling from a uniform probability distribution within the
prescribed bounds for each decision variable. Subsequently,
the algorithm evolves this population by applying the varia-
tion (mutation followed by crossover or recombination) and
selection operators in each generation (iteration). The gener-
ations are terminated when some predefined condition (like
exhaustion of a prescribed maximum number of Function
Evaluations (FEs)) is met. In typical DE literature, the pop-
ulation size is denoted by Np. Each iteration of DE is called
a generation following the standard evolutionary computing
terminology. A standard way to represent the ith vector of
the current generation G is EXi,G= [x1,i,G, x2,i,G, . . . , xD,i,G]T

where D is the dimensionality of the search space under
consideration.

A. INITIALIZATION
From a coarse knowledge of the problem at hand,
we first determine the bounds for the solution space
as: vector of minimum bounds for each decision vari-
able EXmin = [x1,min, x2,min, . . . , xD,min]T and vector of
maximum bounds for each decision variable EXmax =[
x1,max , x2,max , . . . , xD,max

]T . Then, jth dimension of the
ith population member can be initialized as:

xi,j = xj,min + rand i,j ×
(
xj,max − xj,min

)
, (1)

where randi,j is a uniformly distributed random number from
the range [0, 1] and it is freshly drawn for each ordered
pair (i, j).

B. MUTATION
Any individual (say the ith) of the current population is known
as the target vector. The mutation in DE is not exactly nature

inspired and differs markedly from the same operation in
GA. During mutation, for each target vector, another vector
from the same population (known as the base vector) is
perturbed with the scaled difference vector(s) of the form(
EXr1,G − EXr2,G

)
(created from the current generation vectors)

to produce a new vector, known as the mutant or donor vector.
Usually, there is a scale factor F , lying between [0.4, 2],
which scales the difference vector(s), thus controlling the
perturbation step-size. The base vector can be a random one
from current population, the best one (yielding the smallest
objective function value for a minimization problem), a point
on the line joining the current target and the best vectors, and
so on. Depending on the nature of the base vector and number
of difference vectors used for perturbation, many mutation
strategies have been proposed in DE literature. Below we
show two of the most commonly used strategies [6].

DE/rand/1: EVi,G = EXr1,G + F .(EXr2,G − EXr3,G), (2a)

DE/best/1: EVi,G = EXbest,G + F .(EXr1,G − EXr2,G), (2b)

where r1, r2, r3 are randomly selected from {1,2,. . .,Np}, they
are mutually exclusive and all of them are different from the
current running index i. These indices are stochastically gen-
erated for each donor vector. EXbest,G is the best-performing
solution vector of the current generation and F is the scale
factor already mentioned. The DE/rand/1 scheme is usually
more explorative, which increases population diversity fast,
whereas DE/best/1 promotes exploitation or intensification of
the search around the best performing individual.

C. CROSSOVER/RECOMBINATION
The crossover step combines selected components of the
target and donor vectors into a single vector, commonly
known as the trial vector (final offspring) Ui,G =

[u1,i,G, u2,i,G, . . . , uD,i,G]T . Most commonly, DE uses the
binomial crossover strategy [6], [7].
Binomial crossover involves fixing the value of a parameter

called crossover rate (Cr) in the range [0, 1]. D independent
numbers between 0 and 1 are sampled uniform at random
and compared with Cr to decide which component is to be
a part of the trial vector. The method can be expressed in the
following way.

uj,i,G =

{
vj,i,G, if rand i,j ≤ Crorj = jr ,
xj,i,g, otherwise,

(3)

where jr is an integer index chosen randomly from
{1, 2, . . . ,D} and it makes sure that at least one component
from the mutant vector passes on to the trial vector produced.

D. SELECTION
The one-to-one competition based selection process between
the target and the trial vectors is performed as the final stage
of a DE generation to maintain the population size constant.
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The selection process can be outlined in the following way.

EXi,G+1 =

{
EUi, if f

(
EUi,G

)
≤ f

(
EXi,G

)
,

EXi,G, otherwise,
(4)

where f (.) is the cost or objective function to be minimized.
Therefore, if the trial vector gives equal or small objective
function value compared to that of the target vector, the trial
vector replaces the donor. The equality in ‘‘≤’’ of (4) helps the
DE population to navigate over the flat portions of a fitness
landscape and to reduce the possibility of the population
becoming stagnant. Note that the original DE selection, as
outlined in (4) is quite greedy in nature, as it always allows a
better or equivalent solution to enter into population, and does
not make room for a worse individual which may be close to
the boundary of an optimal basin of attraction (and this can
be a common scenario for noisy optimization problems).

III. THE PROPOSED METHOD
Let us refer to the DE variant, proposed in this paper, as
Modified DE with a Distance-based Selection (MDE-DS).
MDE-DS introduces a population centrality based mutation
strategy and couples it with the Difference Mean based
Perturbation (DMP) [25] in a probabilistically switchable
manner. It also uses the blending crossover as recombina-
tion strategy and a novel distance-based stochastic selection
mechanism to tackle noisy nature of the objective function.
MDE-DS does not contain any explicitly tuneable control
parameter, except for the population size Np, which is kept
constant in majority of the DE variants [7]. In what follows,
we discuss the modifications proposed at different stages of
the MDE-DS algorithm.

A. PARAMETER CONTROL
In MDE-DS there is no need to fix values for F and Cr,
as F is randomly switched between 0.5 and 2 for each muta-
tion operation and Cr is sampled uniform at random from the
continuous interval [0.3, 1] for each target vector. Switching
of F between two extreme corners of the feasible range is
conducive to attain a balance between diversification and
intensification of the search. The utility of such switching
scheme has been earlier discussed by us in a recent work in
the context of large scale static optimization [27]. In blending
crossover, there is a parameter b (the blending rate), whose
value is also randomly chosen from among three distinct
values: a low value of 0.1, a medium value of 0.5 and a high
value of 0.9.

B. MUTATION
In the population centrality based mutation, the entire pop-
ulation is sorted based on the objective function values and
50% best performing individuals are selected to design a
temporary subpopulation of size Np/2. Now, we compute
ẼXbest,G as the arithmetic mean (centroid) of the subpopulation
members. We mutate the ith population member using the

following expression:

EVi,G = EXr1,G + F
(
ẼXbest,G − EXr2,G

)
, (5)

where EXr1,G and EXr2,G are two individuals corresponding to
randomly chosen indices r1 and r2 and EVi,G is the newly gen-
erated mutant vector corresponding to current target vector
for present generation G.

In the DMP-based mutation scheme, the best performing
individual of the current generation (EXbest,G) is selected and
dimension-wise average is taken for both EXbest,G and the cur-
rent target member EXi,G. Now, aD-dimensional vector EMi,G is
generated having each element within the range [0, 1]. Using
the random directional vector EMi,G, the mutant is generated
in the following way:

EVi,G = EXi,G +1m.

 EMi,G∥∥∥ EMi,G

∥∥∥
 , (6)

where 1m =
(
Xbestdim,G − Xidim,G

)
, with Xbestdim,G =

1
D

D∑
k=1

xbestk ,G and Xidim,G =
1
D

D∑
k=1

xik ,G.

The significance of the population centrality based muta-
tion scheme is that it preserves greediness while still main-
taining some level of diversity, i.e. it is less greedy than the
DE/best/1 scheme and hence there is less chance of getting
stuck in the local optima. On the other hand, the DMP-based
mutation scheme prefers exploration (see [25] for a detailed
explanation), and thus, in absence of any feedback about
nature of the function, we use an unbiased combination of
these two methods. The population centrality based mutation
scheme is illustrated in Fig. 1, which shows the top 50% of
a sample DE population in 2-D decision space of the sphere
function and the formation of a possible donor (mutant) point.

Each individual is perturbed either with the population
centrality based mutation of with the DMP based mutation
with equal probability. Note that the difference mean 1m,
in (6) acts as a scaling coefficient for the randomized direction
and provides high degree of explorative power while still
maintaining attraction towards the currently best individual.

C. CROSSOVER
Crossover plays a crucial role in the generation of new
promising search point from two or more existing points
within the function landscape. We use a blending crossover
in MDE-LS and it can be described in the following way:

uj,i,G

=

{
b.xj,i,G + (1− b) .vj,i,G, if rand i,j ≤ 0.5 or j = jr ,
xj,i,G, otherwise

(7)

where uj,i,G and vj,i,G are the jth dimensions of the trial and
donor vectors respectively corresponding to current index i
in generation G and xj,i,G is the jth dimension of the current
population member EXi,G. Blending recombination has one
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FIGURE 1. Illustrating the population centrality based mutation scheme
on a 2-D decision space with iso-contours of the sphere function.

FIGURE 2. Effect of blending crossover on a 2-D decision space.

parameter b, which here can take three values: 0.1, 0.5,
and 0.9. Reasons behind such selection of values are, when
b = 0.1, the new point is generated near the donor vector,
whereas b = 0.9 gives new point near the target vector and
new point is at middle of the line joining the donor and the
target points when b is set to 0.5. In absence of any prior
knowledge or informative feedback from the functional land-
scape (and such feedback will obviously incur more compu-
tations), intuitively, a random switching of b over these three
values for each crossover operation can be very effective, as
was discussed by Das et al. in [28] for the two other crucial
parameters of DE (F and Cr).
Idea of the blending crossover is illustrated for a two-

dimensional decision variable space in Fig. 2, where we
show possible location of the offspring for blending crossover
as well as regular binomial crossover of DE. It is evident

that if both the components become a convex combination
of the corresponding components from EXi,G and EVi,G then
the resulting offspring are formed on the diagonal connect-
ing the target and the donor. These solutions are essentially
rotationally invariant as even when the reference coordinate
axes of the search space rotate, the principal diagonal of the
rectangle formed with EXi,G and EVi,G at two opposite corners
remain unchanged. However, Fig. 2 also shows that when one
component is formed as a convex combination and the other
is directly taken from EXi,G (i.e. for this one, rand i,j > 0.5),
the resulting offspring are axis-parallel for different values
of b. Such offspring simulate coordinate-wise search which
is effective for separable problems, whereas the rotationally
invariant offspring are more effective for the rotated multi-
modal landscapes. Thus, the blending crossover yields these
two types of offspring resulting in more diversified search
moves, instead of forming offspring only at the corners of the
simplex formed with EXi,G and EVi,G as two opposite points.
Note that Mukherjee et al. [29] recently showcased the effi-
cacy of blending crossover for dynamic optimization prob-
lems (which are, although, different from noisy optimization
dealt in the current context) and here the term ‘‘blending
crossover’’ has been used in a sense completely different
from the usual BLX crossover (see for example, the crossover
strategy of [28]).

D. SELECTION
The general DE selection, as detailed in Section IVE, accepts
an offspring into the population if it is no worse than its
parent at the same population index. However, if the fitness
landscape gets corrupted with noise, such greedy selection
method suffers a lot because in this case the original fitness
of parent and offspring are unknown and it can be well nigh
impossible to infer when an offspring is absolutely superior
or absolutely inferior to its parent. To handle this situation,
a novel distance-based selection mechanism is introduced
without any extra parameter (like the threshold value in a
threshold-based selection [35]). There are three cases of the
proposed selection mechanism which are described subse-
quently.
Case 1: If the offspring cost is equal or less than the parent

cost, then offspring replaces the parent and survives to the
next generation as:

EXi,G+1 = EUi,G, if
f ( EUi,G)

f (EXi,G)
≤ 1.

Case 2: If the offspring cost is greater than parent cost,
then offspring can replace the parent based on a stochas-
tic principle. A probability is calculated by e−

1f
Dist where

1f is the absolute difference of objective function value
between parent (target) and offspring (trial) and Dist is the
Manhattan distance between those two vectors. We have
used the Manhattan distance because of its simplicity and
computational efficiency. The scheme can be outlined in the
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FIGURE 3. A sample fitness landscape before and after being affected by
noise.

following way:

EXi,G+1 = EUi,G, if
f ( EUi,G)

f (EXi,G)
> 1 and ps ≤ e−

1f
Dist ,

where 1f =

∣∣∣f ( EUi,G)− f (EXi,G)∣∣∣ and Dist =∑D
k=1

∣∣ui,k − xi,k ∣∣. Here, ps is a random number generated
in the range [0, 1].
Case 3: If the offspring cost is highly greater than the

parent cost, then offspring is removed and the parent persists
to next generation.

EXi,G+1 = EXi,G, otherwise.

This selection process is further illustrated in Fig. 3.
In Fig. 3, a sample function landscape scenario for any given
instant is shown where a is the position of target member and
b and c are the two donor members. Now selection among
a, b and c should give us c as it has better objective function
value than target member a. However, suppose this landscape
is affected by noise, as shown in Fig. 3 as dotted line. In this
noise affected scenario, if we use traditional greedy selection
mechanism, b′ will be selected for its decisive objective
function value. In order to overcome this kind of situation,
we propose the distance-based stochastic selection scheme,
which gives us some probabilistic flexibility to select worse
solutions as in noise affected landscapes; the original objec-
tive function value may become masked.

This selection mechanism is controlled in probabilistic
manner otherwise it would affect convergence of the pro-
posed algorithm. Maintaining diversity throughout entire
search process is one of the most crucial aspects of any
population-based optimization algorithm.Mutation is the key
step to introduce diversity in the population during the search
process. DE/rand/1 is one of the most popular DE mutation
strategies, and it is well appreciated in the literature for its
capability of making diverse solutions [6]. MDE-DS switches
between two mutation strategies randomly to achieve a good
balance between population diversity and convergence so that
it can avoid local optima but does not overshoot and finds

FIGURE 4. Population diversity comparison of MDE-DS and
DE/rand/1/bin for Gaussian noise with amplitude 0.2, on
function f3 of set Bench I in Table AI (Appendix).

global optima successfully. Fig. 4 shows diversity compari-
son between MDE-DS and DE/rand./1/bin. Standard way to
measure the diversity of a population PG at generation G, is
the average distance of the population from the mean vector,
as proposed in [30], in the following way:

diversity(PG) =
1

Np× L

Np∑
i=1

√√√√√ D∑
j=1

(xj,i − x̄j)2,

where L is the length of the longest diagonal in the search
space of dimension D and x j = 1

Np

∑Np
i=1 xi. is the average

value of jth dimension of the population members. Variation
of population diversity with respect to the number of gener-
ations, for the population of MDE-LS (indicated by the blue
line) and DE/rand/1/bin (shown by the red line and F = 0.8,
Cr = 0.9) are plotted in Fig. 4. A complete pseudo-code of
the proposal is provided as Algorithm 1.

IV. EXPERIMENTS & RESULTS
A. BENCHMARK SUITE & COMPUTATIONAL PROTOCOLS
The testing of any optimization algorithm on some well-
known benchmark suites is an acceptable way to showcase
the efficiency of the algorithm. These benchmark functions
should have diverse characteristics, like multi-modality, non-
separability, lack of global structure etc. In order to compare
the performance of MDE-DS, a benchmark suite comprising
of 21 well-known functions is used. Following the recom-
mendations from existing literature [18], [37], 13 functions
are grouped in a sub-suite called Bench-1 and the remaining
8 functions are grouped as Bench-2, based on the nature of
the peer algorithms against which we made the compara-
tive study. A summary of the 21 standard functions, divided
into Bench-I and Bench-II sets, can be found in Table AI
at the Appendix. Further to evaluate the capability of the
proposed algorithm on more complex fitness landscapes, we
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Algorithm 1 Pseudo Code of mde-ds
ProcedureMDE-DS
Create initial population by generating Np individuals uniform at random within given bounds for the decision variables;
Initialize FEs to 0, generation counter G to 1; Set value of maximum number of generations Gmax as MAXFEs/Np
where MAXFEs is the maximum budget of Function Evaluations (FEs).

for i = 1:Np do
compute f

(
EXi,0
)
;

end for
while G ≤ Gmax do

for i = 1:Np do
generate a random number randm between 0 and 1; %Mutation%
if randm ≤ 0.5
sort current population based on objective function values f

(
EXi,
)
;

select Np/2 best performing individuals from sorted population;

compute ẼXbest,G = 2
Np

Np
2∑

k=1

ẼXk,G;

select two other members EXr1,G and EX r2,G from current population where i 6= r1 6= r2;
set value of F either to 0.5 or to 2 randomly;
compute EVi,G = EXr1,G + F( ẼXbest,G − EXr2,G);

else
select EXbest,G which yields lowest objective function value for current iteration;
select current population member 1EXi,G;

compute Xbestdim,G =
1
D

D∑
k=1

xbestk ,G and Xidim,G =
1
D

D∑
k=1

xik ,G;

generate a D dimensional random vector, EMi,G with components in [0, 1];

compute EVi,G = EXi,G + (Xbestdim,G − Xidim,G)(
EMi,G∥∥∥ EMi,G

∥∥∥ );
end if
sample the value ofCr from the interval [0.3, 1] uniform at random; % Recombination %
select value for b randomly from the set from {0.1, 0.5, 0.9};
initialize jr to a random integer between 1 and D;
for j = 1:D do

uj,i,G =
{
b.xj,i,G + (1− b) .vj,i,G, if r and i,j ≤ CRorj = jr
xj,i,G,otherwise.

end for
compute f ( EUi,G); % Selection %
FEs = FEs + 1;
compute 1f i =

∣∣∣f ( EUi,G)− f (EXi,G)∣∣∣;
compute Dist =

D∑
k=1

∣∣ui,k − xi,k ∣∣;
generate a random number ps between 0 and 1;

EXi,G+1 =


EUi,G, if

f ( EUi,G)
f (EXi,G)

≤ 1,

EUi,G, if
f ( EUi,G)
f (EXi,G)

> 1andps ≤ e−
1f i
Dist ,

EXi,G, otherwise;
end for
G=G + 1
end while

used all functions from the IEEE Congress on Evolutionary
Computation (CEC) 2013 [38] and 2017 [39] test suites
for competition on real parameter optimization in 50D and
simulated their noisy behavior by adding Gaussian noise of

zero mean and variance of 0.2, this being a standard noise
model used in many of the previous works. Since these suites
comprise respectively 28 and 30 functions each, we test
MDE-DS extensively on 79 (28+30+21) functions in total.
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IEEE CEC 2005 [31] benchmark suite for real parameter
optimization contains a function (f17) with noise corruption
and the same is included in our tests also. For a detailed
description of the IEEE CEC benchmark functions, refer to
the respective technical reports [38], [39], [31].

Simulation is carried out in 30D and 100D for Bench-1
functions while for Bench-2, simulation is undertaken in 30D
except for f2, which is tested in 2D as it is non-scalable. For all
test-suites, the results are reported in terms of the mean best-
of-the-run error value over 30 independent runs over each
noise strength. The error is measured as |fbest − f ∗|, where
fbest is the best function value returned by the algorithm in
a run and f ∗ is the actual optimum value of the function.
In the simulation process, a result less than or equal to 10−16

is rounded to 0.0.
In order to judge the statistical significance of our results

with respect to the other competitors, the non-parametric
Wilcoxon’s rank sum test [32] is conducted for independent
samples at 5% significance level. Throughout all the result
tables, the statistical test results are summarized in the fol-
lowing way. If the set of errors yielded by an algorithm over
30 independent runs differ statistically significantly from that
of the best performing algorithm on a particular function,
then the mean error of the former is marked with a † symbol.
If the difference of the error values found by one algorithm
is not significant from the best algorithm, then the mean of
the algorithm is marked with the sign≈. The best performing
algorithm in each case is marked with boldface.

A workstation equipped with Intel Xeon E5-2630 V3 pro-
cessor running at 2.40 GHz and 32GB RAM is used to exe-
cute all simulations related to this work. The operating system
used is Microsoft Window 10 and all the codes are written
in MATLAB R2016a. Based on the mean error of functions
given by different algorithms, a ranking for each algorithm is
presented. In addition, for each group of problems (based on
number of dimensions), an average rank for each competing
algorithm is presented. Moreover, a Win/Tie/Loss analysis is
provided in the result tables, where a win depicts that the
algorithm is the sole best performer. If the best mean error
is achieved by more than one method, than the tie count
for all those methods is increased and the win count is kept
unaltered. For every other case, a loss is declared.

B. NOISE MODELS
The original optimization problem is reformulated to incor-
porate noise in the following way:

fnoisy
(
EX
)
= foriginal

(
EX
)
+ τ, (8)

where foriginal
(
EX
)
is the original cost is function value

corresponding to trial solution EX , fnoisy
(
EX
)

is the noisy

version of the cost function for the same trial solution EX
and τ represents the stochastic noise amplitude which is
injected into the original cost function to emulate noise. This
noise amplitude τ follows a certain Probability Distribution

Function (PDF). The following five distributions of τ are
considered here:

1) Poisson: τ follows a Poisson PDF, which is given by,

pdf (τ ) =
λτ × eτ

τ !
, (9)

where λ is the mean as well as variance of the Poisson
distribution.

2) Gaussian: τ follows a Gaussian PDF, which is given
by,

pdf (τ ) =
1

σ
√
2π

e−
(τ−m)2

2σ2 , (10)

where m and σ 2 are mean and variance of the
Gaussian PDF.
3) Rayleigh: τ follows a Rayleigh PDF, which is given
by,

pdf (τ ) =


τ

α2
.e
−τ2

2α2 if τ ≥ 0,

0 otherwise,
(11)

where m = α
√
π
2 is the mean and σ = α2(4 − π )/2

variance of the noise distribution.
3) Exponential: τ follows an exponential PDF, which is

given by,

pdf (τ ) =

{
ae(−aτ ) if τ ≥ 0,
0 otherwise,

(12)

where the mean of this distribution is m = 1
a and

variance is σ 2
=

1
a2
.

4) Random: In this case, τ is random noise which has
maximum amplitude of ±25% of the original cost
foriginal

(
EX
)
.

Different parameter settings for the noise PDFs are sum-
marized below. The parameters for Poisson, Rayleigh, and
Exponential noise have been set and the noises have been
injected into the objective function following [24] which,
however, focuses on multi-objective noisy optimization only.
Parameters of the Gaussian noise are standard and have been
recommended in works like [18], [19], [26]. Uniform random
noise, as such, has no parameter to set.

I. Poisson Noise: τ follows a Poisson PDF with mean and
variance equal to 0.25.

II. Gaussian Noise: In Bench-1 τ follows a Gaussian PDF
with zero mean and variance equal to 0.04, 0.1, and
0.2 and for Bench-2 τ follows a Gaussian PDF with
zero mean and variance equal to 0.2, 0.4, 0.6, 0.8, and
1 following existing works [18], [37].

III. Rayleigh Noise: τ follows a Rayleigh PDF with mean
equal to 0.3 and variance equal to 0.025.

IV. Exponential Noise: τ follows an exponential PDF with
mean equal to 0.86 and variance equal to 0.75.
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TABLE 1. Cost ± standard deviation for 30D Bench-1 problems for Gaussian noise.
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TABLE 2A. Cost ± standard deviation for 100D Bench-1 problems for Gaussian noise.
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TABLE 2B. Cost ± standard deviation for 100D Bench-1 problems for
Poisson, Rayleigh, exponential and random noise.

C. COMPARED ALGORITHMS
The proposed MDE-DS is tested and compared with other
state-of-the-art algorithms present in literature. The peer
algorithms considered in this comparative study for the
benchmark suite shown in Table AI are mentioned below.

I. A standard DE/rand/1/bin algorithm with proposed
selection mechanism from Section III, here the scale
factor is F = 0.8 and the cross over rate Cr = 0.5.

II. An adaptive DE variant namely jDE with parameter
settings proposed in [33]

III. A Durations Sizing Genetic Algorithm (DSGA), a
Genetic Algorithm variant for noisy optimization pro-
posed in [34]. All the control parameters are set as
per [34].

IV. The DE with Randomized Scale Factor and Thresh-
old based Selection (DERSFTS) as presented in [35].
The scale factor used in this algorithm is randomized
and can vary between 0.5 and 1 and cross over rate
Cr = 0.3. This method employs a threshold based
selection mechanism which is depends on a constant
value.

V. The Opposition-Based DE (OBDE), with exact param-
eter settings as presented in [16]. The scale factor and
crossover rate are set to F = 0.7 and Cr = 0.3
respectively and the jump factor is taken as 0.3.

VI. The Noise Analysis DE (NADE) proposed in [36].
VII. The Memetic DE for Noisy Optimization (MUDE),

proposed in [18].
VIII. Different Particle Swarm Optimization (PSO) tech-

niques, namely Global Best PSO (PSOgbest), Local
Best PSO (PSOlbest), Bare Bone PSO (BBPSO), and
Fully Informed PSO (FIPS) equipped with a Chaotic
Jump (CJ) mechanism to handle noisy optimization
function, as proposed in [37]. All parameters are set
following [37].

IX. A Covariance Matrix Adaptation (CMA) based algo-
rithm namely, a Restart CMA Evolution Strategy with
Increasing Population Size (IPOP-CMA-ES) as pro-
posed in [38].

X. Noise Resilient DE proposed in [26] (compared only
on the 100D problems from the Bench - 1 set of
Table AI to save space).

Apart from these, for the noisy version of the CEC
2013 functions, we specifically use the Success History
based Adaptive DE (SHADE) [41] and a subsequent vari-
ant of SHADE with linear population size reduction, called
L-SHADE [42]. We also consider the variants of SHADE and
L-SHADE using the distance-based selection, proposed here
(Section III.D) and mark them as SHADE-DS and LSHADE-
DS in the respective result table. Note that SHADE was the
top ranking DE variant in the IEEE CEC 2013 competi-
tion on real parameter optimization whereas, L-SHADE was
the overall winner of the same competition organized under
IEEE CEC 2014 conference.
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TABLE 3. Cost ± standard deviation for Bench-2 problems.

Similarly for the IEEE CEC 2017 benchmarks with addi-
tive noise, we consider two top ranking DE-variants called
jSO (an improved version for the iL-SHADE [43] with a
weighted mutation strategy) [44] and L-SHADE-cnEpSin
(ensemble sinusoidal differential covariance matrix adapta-
tion with Euclidean neighborhood) [45] along with their
counterparts equipped with the distance-based selection pro-
cess. Note that jSO and L-SHADE-cnEpSin respectively
occupied the 1st and 2nd ranks in the IEEE CEC 2017 com-
petition on real parameter single-objective optimization.

TABLE 4. Cost ± standard deviation for 30D & 50D f17 from IEEE CEC 2005
suite.

D. SIMULATION RESULTS ON 30D BENCH-1 PROBLEMS
Bench-1 consists of thirteen well-known numerical func-
tions. Three different noise amplitudes (0.04, 0.1, and 0.2)
of Gaussian noise are introduced in this simulation, for the
13 benchmark problems in 30D. Results of the proposed
MDE-DS is compared with DE/rand/1/bin with proposed
distance based selection, jDE, GADS, DERSFTS, OBDE,
NADE, and MUDE for all the 3 noise amplitudes. The maxi-
mum number of Function Evaluations (FEs) for 30DBench-1
problems are limited to 105.
Table 1 summarizes the simulation results for 30DBench-1

problems. We can see that out of the total 39 test cases
(13 problems × 3 scenarios), MDE-DS statistically outper-
forms all other competitors in 36 cases and only for f13 (the
Tirronen function) it loses. GADS gives best result in f13 with
noise amplitude 0.04, and DERSFTS gives best result for the
said function in other two noise amplitudes. Tirronen function
is highlymulti-modal in nature and there exists very small gap
between two consequent peaks in the functional landscape of
this function. This may have led to selection of inappropriate
solutions (unable to enter into the narrow basin subsequently)
to next generation by the distance-based selection scheme of
MDE-DS. MUDE is the closest contender of MDE-DS as per
average ranking.

E. SIMULATION RESULTS ON 100D BENCH-1 PROBLEMS
To save space, we consider showing results with all the five
different distributions of the noise on 100D functions of
Bench-1. For the Gaussian noise model, three noise ampli-
tudes (0.04, 0.1, and 0.2) are introduced again. Other mod-
els are Poisson, Rayleigh, exponential, and random noise.
Total 50 runs of each problem for each noise model and
corresponding to all the algorithms are considered and mean
and standard deviation of the absolute best-of-the-run error
are reported. Maximum number of FEs for 100D Bench-1
problems are limited to 3e+05 following recommendations
from existing literature.

Table 2A reports the simulation results for 100D Bench-1
problems for the Gaussian noise model. Out of total 39 test
cases, MDE-DS gives the best result for 36 problems.
In f13 with noise amplitude 0.04 and 0.1, GADS outperform
others and for 0.2 noise amplitude of the same problem,
DERSFTS gives the best result. For all other problems,
MUDE is a close contender of MDE-DS after NRDE.
According to the average ranking, MDE-DS is the winner
among all other algorithms followed by MUDE and NADE.
Consistency of the results over different noise strengths
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TABLE 5. Cost ± standard deviation for 50D CEC 2013 problems for Gaussian noise with 0.2 noise strength.

remains an added advantage for MDE-DS. Also it is to be
noted that the gross performance of MDE-DS is better than
NRDEwhich however remains closes contender according to
average rank.

Table 2B summarizes simulation results for the four other
noise models on the 100D Bench-1 problems. MDE-DS per-
forms best in 49 test cases, a close contender of it being
MUDE, which outperforms all methods in exponential noise
model for f9 and DERSFTS, which gives the best result for
random noise model in f10 and f11. MDE-DS performs best
followed by MUDE and DERSFTS, based on the average
ranking, indicating its high degree of robustness across vari-
ous noise PDFs.

F. SIMULATION RESULTS ON BENCH-2 PROBLEMS
Bench-2 comprises of total 8well-known numerical functions
corrupted with zero mean Gaussian noise of 5 different noise
amplitudes (0.2, 0.4, 0.6, 0.8, and 1.0). Simulation results

of MDE-DS on Bench-2 are compared with PSOlbest+CJ,
PSOgbest+CJ, FIPS+CJ, and BBPSO+CJ [37].

30 runs for each problem corresponding to each noise level
and for all algorithms are considered and mean and standard
deviation of the absolute error is reported. Maximum FEs for
Bench-2 problems are limited to 3e+04.

Table 3 holds simulation results of Bench-2 problems.
We can see that MDE-DS outperforms other algorithms
in thirty-eight cases, only for two cases FIPS+CJ beats
MDE-DS.According to the average ranking,MDE-DS stands
first followed by PSOgbest+CJ and BBPSO+CJ.

G. SIMULATION RESULTS ON IEEE CEC 2005
FUNCTION f17
IEEE CEC 2005 is a well-accepted benchmark suite for
testing effectiveness of any single objective global optimiza-
tion algorithm. Among other functions in this suite f17 is a
hybrid function which is corrupted by noise. We compare
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TABLE 6. Cost ± standard deviation for 50D CEC 2017 problems for Gaussian noise with 0.2 noise strength.

performance of MDE-DS on f17 against IPOP-CMA-ES,
which was the winner of the competition on real parameter
optimization under IEEE CEC 2005. Table 4 summarizes the
results of comparison on 30D and 50D instances of f17.

We can see that for both 30D and 50D cases, MDE-DS
outperforms IPOP-CMA-ES in a statistically significant way.
Maximum number of FEs are limited to 3e+05 for
30D instance and 5e+05 for 50D following the competition
rules of CEC 2005.

H. SIMULATION RESULTS ON IEEE CEC 2013 FUNCTIONS
TABLE 5 shows the comparative performance of MDE-DS
with other previously discussed algorithms along with
two improved DE variants, namely, SHADE [41] and

L-SHADE [42] as well as their counterparts SHADE-DS and
LSHADE-DS, equipped with the proposed distance based
selection applied on the noisy versions of the 28 test functions
in 50D from the CEC 2013 test-suite [38]. Noise simula-
tion (by adding Gaussian noise of strength 0.2) for these
benchmark functions are done in same fashion like previous
Bench-1 and Bench-2 problems. A close scrutiny of Table 5
reveals that MDE-DS significantly outperforms all the peer
algorithms on 22 out of 28 test cases. The performance of
SHADE-DS and L-SHADE-DS remained consistently supe-
rior to that of SHADE and L-SHADE respectively on major-
ity of the test cases, thus, showcasing the efficiency of the
distance-based threshold scheme proposed as a component
of the MDE-DS algorithm. For functions F4, F16, F24,
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TABLE 7. Cost ± standard deviation for 50D CEC 2017 composite problems for Gaussian noise.

TABLE 8. Algorithm Complexity results.

and F26, L-SHDAE-DS is able to beat MDE-DS. NRDE
attains the best result only for function F15. Performance of
the other seven algorithms, including six DE-variants specif-
ically meant for noisy optimization, remains quite poor as
compared to MDE-DS, SHADE-DS, and L-SHADE-DS.

I. SIMULATION RESULTS ON IEEE CEC 2017 FUNCTIONS
TABLE 6 records the comparative performance of MDE-DS
with respect to other previously discussed methods as well as
two more algorithms, jSO [44] and LSHADE-cnEpSin [45]
and their counterparts jSO-DS and LSHADE-cnEpSin-DS
equipped with the distance-based threshold for handling
additive noise on the 50D IEEE CEC 2017 benchmark
suite [39] with simulatedGaussian noise of noise strength 0.2.
Table 6 indicates that MDE-DS is able to outperform all the
peer algorithms including the competition winner jSO and
the runner up LSHADE-cnEpSin on 22 out of 30 functions
in a statistically significant manner. On relatively simpler
unimodal functions F1 - F3 and multimodal F9, the perfor-
mance of MDE-DS remains statistically equivalent to jSO,
LSHADE-cnEpSin and their DS counterparts (on F1, F3 and
F9) and superior to all others. NRDE attains the best rank only
on function F10 (shifted and rotated Schwefel’s function).
It can be also seen that addition of the proposed distance
based selection scheme to jSO and LSHADE-cnEpSin algo-
rithms considerably improves their performance on most of
the noise added functions.

Table 7 shows a special scenario when the Gaussian noise
strength is made proportional to the original objective func-
tion value. In this simulation we took the proportionality
constant as 0.5 since if this constant exceeds 0.5, the objec-
tive function gets too much distorted and no algorithms

considered here, is able to estimate the optimal basin due
to severe random fluctuations of the fitness landscape.
Gaussian noise with the calculated strength is added to the
original objective function values to simulate the noisy behav-
ior. In this scenario of non-uniform Gaussian noise with
cost-proportionate strength, MDE-DS significantly outper-
forms all other competitor algorithms. For the sake of space
economy, we show results for the five composite functions
(F25 - F30) as they contain mixture of properties of several
basic functions and are quite hard to optimize. Also, the
results on all other functions follow the same trend, as our
experiments indicate.

The algorithm complexity ofMDE-DS is estimated follow-
ing the instructions prepared for the CEC 2017 competition
on real parameter optimization [39] and the same is recorded
in Table 8. The computational complexity is calculated as
described in [39]. In Table 8, T0 is the time needed to run
following test problem:
for i = 1 : 1000000

x = x + x; x = x/2; x = x ∗ x;
x = sqrt(x); x = log(x);
x = exp(x); x = x /(x + 2);

end
The computed complexities for 10, 30 and 50 dimensions

of the are shown. T1 is the time required to execute 200,000
evaluations of function F18 (as instructed in [39]) from the
CEC 2017 benchmark suite and T2 is the time to execute
corresponding algorithm with 200,000 evaluations of F18
in dimension D. (T2-T1)/T0 shows the time complexity for
each corresponding algorithm, lower value for this indica-
tor reflects less complexity. As can be seen, for all the
3 dimensions, the estimated complexity of MDE-DS is lower
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FIGURE 5. Sample convergence characteristics of MDE-DS and other competitors for Gaussian noise strength of 0.2 coupled with (a) function f3 from
Bench - I (b) CEC’17 function F16 (c) CEC’17 function F7 (d) CEC’13 function F10 (e) CEC’13 function F24.

compared to jSO and LSHADE-cnEpSin, due to the use of
simpler search operators.

However, the complexity of MDE-DS is higher than
DE/rand/1/bin, as a price of achieving significantly
better accuracy across a wide spectrum of objective
functions.

Fig. 5 shows sample and representative convergence char-
acteristics of MDE-DS and some of its prominent com-
petitors on five functions chosen from various test-suites
used. The characteristics are plotted for the median run of
each algorithm when the runs are ordered by the best-of-
the-run error values achieved. The plots clearly indicate the
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TABLE 9. Cost ± standard deviation for selected 100D bench-1 problems
with Gaussian noise.

TABLE 10. Cost ± standard deviation for selected 100D bench-1 problems
with Gaussian noise.

competitive convergence speed of MDE-DS on different
functional landscapes with respect to other DE-variants.

J. EFFECT OF DIFFERENT PARAMETER CONFIGURATIONS
MDE-DS has only one parameter b which is used in the
recombination step. Value for b is selected from among
3 distinct representative values and these are 0.1, 0.5 and 0.9.
In our proposal, if b is too small then the target vector gets
preference in offspring generation, and on the other hand,
if b is too high or close to 1, then the donor vector gets
preference. Thus, we proposed a scheme where value of b is
randomly selected from the set {0.1, 0.5, 0.9} corresponding
to high target preference, neutral and high donor preference
scenarios in offspring generation. In order to demonstrate
the effectiveness of proposed scheme over a fixed b value,
we compare performances of the MDE-DS variants with
4 different b value settings and contrast them against the
performance of the original MDE-DS. Table 9 summarizes
results on four different functions from Bench-1 with Gaus-
sian noise having 0.2 as noise amplitude.

K. EFFECT OF DIFFERENT MUTATION CONFIGURATIONS
MDE-DS uses two mutation strategies which we call
Population Centrality based Mutation strategy (PC_MS) and
Difference Mean based Mutation Strategy (DM_MS). These
two different strategies are coupled in a probabilistic switch-
able manner. PC_MS tends to a greedy search and DM_MS
makes room for a diversified search along the fitness land-
scape. To demonstrate the effect of invoking these two
schemes with equal probabilities (as is done in MDE_DS)
against using any one scheme for all individuals, we compare
original MDE_DS against two of its algorithmic variants:
one with PC_MS and the other with DM_DS only. Sam-
ple results are provided for four 100D Bench-1 problems

TABLE 11.A. Cost ± standard deviation for selected 100D bench-1
problems with Gaussian noise.

TABLE 11.B. Cost ± standard deviation for selected 50D CEC 2017
problems with Gaussian noise with strength 0.2.

in Table 10, which indicates the best performance of
MDE-DS and this trend is seen experimentally for all other
test functions as well. This indicates that whenwe do not have
specific feedback information about the fitness landscape, it
is always beneficial to uniformly mix up opposite natured
schemes so as to gain an overall better performance on a wide
variety of problems.

L. EFFECT OF DIFFERENT CROSSOVER OPERATIONS
In Table 11, two comparisons are presented between
MDE-DS with binomial crossover and with blending
crossover. In Table 11A four representative functions are
shown from Bench-1 and in Table 11B six composite func-
tions are selected from the IEEE CEC 2017 test-suite for this
comparison purpose. In both of the cases, Gaussian noise with
noise strength of 0.2 is considered. From Tables 11A and B
it can be seen that MDE-DS with blending crossover every
time outperforms its counterpart equipped with traditional
binomial crossover. This empirically shows that blending
crossover gets an edge over traditional binomial crossover for
all the problems tested here.

V. CONCLUSION
To tackle single-objective, noisy and continuous optimization
problems, we present a simple but very efficient DE variant
namely MDE-DS, which is equipped with simple switchable
mutation strategies based on population central tendency and
the difference mean based perturbation, a blending crossover,
and has a unique distance-based stochastic selection
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TABLE 12. Detailed description of the benchmark suites.
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mechanism. The proposed selection process only depends on
the cost value, there is no need of prior knowledge about noise
strength, noise type etc.

Exploring a multi-dimensional and multi-modal, noise-
corrupted search space with a fixed-sized population of
candidate solutions is challenging and it requires a great
balance between the exploitative and explorative tenden-
cies of an evolutionary search along with proper selec-
tion strategy so that the algorithm may not be deceived
by noisy cost value. This requirement is nicely fulfilled
by the random selection of the mutation strategy among
two proposed strategies of complementary nature and by
coupling with the proposed distance-based stochastic selec-
tion step. The gross performance of MDE-DS remains
surprisingly consistent and statistically significantly better
than majority of the state-of-the-art evolutionary methods
specifically tailored for noisy optimization from existing
literature.

The future works may also include a scrutinized study
of the dynamics and search procedure of MDE-DS, along-
side an analytical explanation of its success. Also, the
mutation strategy switching technique and distance based
selection may be further investigated in other optimiza-
tion scenarios like for, noisy multi-objective and noisy
constrained and niching optimization problems. Individ-
ual algorithmic components of MDE-DS can be integrated
with the recent and improved DE frameworks proposed in
works like [45]–[51] for noisy as well as static objective
functions.

APPENDIX
A summary description of the set of 21 conventional bench-
mark functions (divided into Bench-I and Bench-II sets)
collected from various literatures on single-objective noisy
optimization with evolutionary computing approaches can be
found in Table 12.
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