IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON MOBILE EDGE COMPUTING FOR WIRELESS NETWORKS

Received April 19, 2017, accepted May 8, 2017, date of current version November 28, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2713818

Analysis of Vector Code Offloading Framework in
Heterogeneous Cloud and Edge Architectures

JUNAID SHUJA!, SAAD MUSTAFA', RAJA WASIM AHMAD!, SAJJIAD A. MADANI',
ABDULLAH GANI2, AND MUHAMMAD KHURRAM KHAN?3, (Senior Member, IEEE)

! Department of Computer Science, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
2Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia
3Center of Excellence in Information Assurance, King Saud University, Riyadh 12372, Saudi Arabia

Corresponding author: Muhammad Khurram Khan (mkhurram @ksu.edu.sa)

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through

Research Group Number (RG-288).

ABSTRACT Smartphones are computationally constrained compared with server devices due to their size
and limited battery-based power. Compute-intensive tasks are often offloaded from smartphones to high-
performance computing opportunities provided by nearby high-end cloud and edge servers. ARM architec-
tures dominate smartphones, while x86 dominate server devices. The difference in architectures requires
dynamic binary translation (DBT) of compiled code migration, which increases the task execution time on
the cloud servers. Multimedia applications contain a large number of vector instructions (single instruction
multiple data) that are compute and resource intensive. Vector instructions optimize application execution by
parallel processing multiple data points in a single instruction. However, DBT of vector instructions losses
the parallelism and optimization due to vector—scalar translations. We present and analyze a framework
for pre-compiled vector instruction translation and offloading in heterogeneous compute architectures that
avoids the execution overhead of compiled code offloading. The framework maps and translates ARM
vector intrinsics to x86 vector intrinsics such that an application programmed for ARM architecture can
be executed on the x86 architecture without any modification. We analyze the code offloading framework
with static code analysis to determine the optimal compilers and corresponding compilation parameters.
Moreover, we analyze the overhead of the vector instruction translator and application profiler. Furthermore,
the comparative analysis based on increasing computational sizes reveals that our framework provides

78.8% energy efficiency as compared with existing code translation and offloading frameworks.

INDEX TERMS SIMD, code offloading, cloud, edge computing.

I. INTRODUCTION

Smartphones are commonly brought into service for basic
computational and infotainment requirements. The expedi-
tious increase in the power, performance, and utilization of
smartphone devices has been observed in recent years [1].
Compute and resource-intensive application such as multi-
media applications, voice, and image recognition, are widely
utilized in smartphones. However, smartphones are relatively
resource-constrained with respect to high-end devices func-
tioning in edge and cloud networks due to their size and
power limitations. The practice of computation and code
offloading is often practiced in smartphone devices with the
help of nearby cloud, cloudlet, edge and similar technologies.
The computation and code offloading enable smartphones to
function longer on limited battery power. The augmentation
smartphones with server and edge network devices are called

Mobile Cloud Computing (MCC) and Fog or Edge Comput-
ing respectively [2], [3].

Smartphone and high-end server Instruction Set Archi-
tectures (ISA) are heterogeneous. ARM based devices are
dominantly utilized in smartphones while x86 architectures
dominate the high-end server market [4], [5]. Therefore, we
focus on ARM to x86 translations for mobile-cloud offload
which can be further applied to other heterogeneous archi-
tecture. The techniques enabling offloading of a task from
the mobile device to a high-end server while accommodat-
ing heterogeneity of architectures are: (a) system virtualiza-
tion for Virtual Machine (VM) migrations, (b) application
virtualization for platform independence, and (¢) Dynamic
Binary Translation (DBT) for native code migration [6].
We evaluated the overheads of offload enabling techniques in
heterogeneous compute architectures in our earlier study [5].

2169-3536 © 2017 IEEE. Translations and content mining are permitted for academic research only.

24542

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 5, 2017

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

J. Shuja et al.: Analysis of Vector Code Offloading Framework in Heterogeneous Cloud and Edge Architectures

IEEE Access

Smartphones

?§

\

network

Edge Network

Cellular and WiFi

FIGURE 1. A generic scenario edge server and high-end cloud server offload.

VM migration based offloading leads to extraordinary net-
work delay due to the size of migration load [7], [8].
Application virtualization results in high computational over-
head as compared to native codes due to intermediate byte-
code compilation. For native compiled code offloading,
DBT is required. The overhead of DBT is very high as
compared to the actual instance of instruction execution [5].
Moreover, existing DBT techniques perform vector-to-scalar
translations that degrade the performance of vectorized appli-
cations [2], [9]. Figure 1 illustrates a generic scenario for a
smartphone to edge and cloud offloading.

Data-level parallelism or vectorization techniques such
as Single Instruction Multiple Data (SIMD) are applied to
increase the performance of smartphone applications. Multi-
media applications are specifically coded with SIMD instruc-
tions for fast performance. A single operation is executed
on multiple data points in parallel in SIMD instructions.
Multiple instruction fetch and decode cycles are reduced with
the help of SIMD instructions resulting in both power and
time efficiency. Changing the brightness of an image is an
example of SIMD instructions where the same operation is
performed on all N pixels. The performance of vectorized
applications with respect to scalar counterparts can be up to
four times better. Up to 25% of the code in smartphone multi-
media based applications can be SIMD instructions [5], [10].
SIMD intrinsics/functions are platform specific. Therefore,
it is not possible to write a vectorized smartphone based
application that can be offloaded to heterogeneous compute
platforms [11].

In this article, we extend our work on the SIMDOM
framework while analyzing various modules of the frame-
work for optimal execution parameters [12]. In our previous
effort, we focused on the comparison of the SIMDOM frame-
work with the state-of-the-art code offloading frameworks.
In this article, we focus on the analysis of the modules of
SIMDOM framework for execution parameters. The
SIMDOM framework deviates from conventional smart-
phone offload enabling techniques for optimization and
acceleration of pre-compiled SIMD instructions. The SIMD
instruction translation and offloading framework for hetero-
geneous compute architectures enables a smartphone appli-
cation to offload to a high-end server. As a result, execution
of hardware accelerated SIMD instructions leads to

VOLUME 5, 2017

smartphone energy and execution time economy. We provide
the necessary details of vector instruction translation, appli-
cation profiling, and network profiling modules of the code
offloading framework while focusing on the module analysis
and data collection methodology. The main contributions of
this article are as follows:

o We analyze a vector instruction translator algorithm
for heterogeneous compute architectures. The SIMD
translator algorithm maps ARM SIMD instructions to
x86 SIMD instructions such that vector-to-scalar trans-
lations are minimized. The analysis of the SIMDOM
framework is performed while considering optimal
compilers and corresponding parameters for applica-
tion compilation, instruction translation, and application
profiling overhead.

« We evaluate the performance of SIMD instructions on
smartphones to demonstrate the effectiveness of SIMD
intrinsics through multimedia benchmarks. Moreover,
we evaluate computational overhead of DBT for com-
piled code offloading.

« We debate the network overhead for high-end cloud
server and edge server devices to deliberate on the choice
of edge and cloud paradigms for increasing computa-
tional workloads.

The rest of the paper is structured as follows. Section II
lists the related work corresponding to code offloading frame-
works and SIMD translation techniques in heterogeneous
compute architectures. In Section III, we present details of
a generic code offloading framework, its basic modules,
and a preliminary data collection for the framework mod-
ules. Section IV details the evaluation methodology for the
SIMDOM framework including details of benchmarks and
devices. The analysis of SIMDOM framework in terms of
application translation and profiling overhead is presented in
Section V. In Section VI, we provide a detailed discussion on
the outcomes of the analysis of vector instruction translation
and offloading framework and highlight the future research
directions.

Il. RELATED WORK

Code and computation offloading techniques formulated for
cloud technologies are now common to edge and fog comput-
ing paradigms [13]. The resource-constraint of smartphone

24543

IEEE Access

J. Shuja et al.: Analysis of Vector Code Offloading Framework in Heterogeneous Cloud and Edge Architectures

devices and heterogeneity of computing architectures is
a routine in the aforementioned distributed computing
paradigms. Therefore, code and computation offloading
are practiced whenever possible in ubiquitous computing
scenarios [14]. Smartphone application offload frameworks
are mostly enabled by system and application level virtual-
ization techniques which result in high communication and
computational overhead. CloneCloud [15] and ThinkAir [16]
are examples application and system virtualization based
code offloading frameworks. System virtualization is not
supported by traditional smartphone OS’s such as Android.
Moreover, application virtualization restricts the application
programmer development domain and leads to almost 50%
performance loss as compared to non-virtualizable native
C code [5], [17]. Researchers [18] proposed an architecture-
aware compiled code offloading framework for smartphones.
The framework avoids the overhead of virtualization tech-
niques while offloading native code. The framework relies
on LLVM compiler for intermediate code generation to
support heterogeneous smartphone and high-end server archi-
tectures. The intermediate code binaries are compiled to the
native hardware by LLVM back-end compilers at runtime.
As intermediate codes are machine independent, cross-
platform execution of the application is enabled.

Most of the compiled code offloading frameworks are
dependent on DBT techniques for execution of instructions
on heterogeneous compute platforms. Qemu is the most com-
monly utilized cross-platform translation and execution tool
for heterogeneous architectures. While translating a vector
instruction from guest ISA to host ISA, Qemu ignores the
support for vector instructions in the host. Hence, a vec-
tor instruction is translated to multiple scalar instructions
that consume more instruction cycles. Therefore, the basic
design of DBT can be further enhanced for performance [19].
Most of DBT optimization efforts work towards parallelizing
the execution of DBT process [2]. HQEMU [20] enhances
Qemu performance with the help of LLVM optimizations
that are applied to the code generation process for multi-
threaded code. Fu et al. [21] added two methods to enhance
the vector instruction translations in HQEMU. The first
method enhanced the Qemu helper functions while allow-
ing them to emit vectorized intermediate code. The second
method utilized vector optimizations in code generation pro-
cess. The LLVM optimizer in the HQEMU is modified
to convert single level vector-to-scalar translations to two
level vector-to-vector translations. Similar machine-code-to-
low-level-virtual-machine (MC2LLVM) approach based on
LLVM DBT optimizations were proposed in [22] and [23].
Intel Atom-based Android devices include a translation layer
named Houdini that performs the vector-to-vector translation
of ARM ISA based applications [24]. As Houdini is limited
to Intel Atom based devices and closed-source, we can not
compare it further with our framework.

The SIMDOM framework is different from previous
vector code translation and offloading techniques in hetero-
geneous environments as it works on the non-compiled code.

24544

The SIMD translator utilizes a custom header file to map
ARM vector instructions to x86 vector instructions enabling
a multimedia application to offload seamlessly to the high-
end server. In this article, we analyze each profiler module
of SIMDOM framework and describe the data collection
methodology. After deliberating on the basic modules of the
SIMDOM framework, we analyze the SIMDOM framework
from various aspects. First, we debate the effect of vector
code on smartphone applications. Afterward, the LLVM and
GCC compilers are compared for vector instruction gen-
eration. The overhead of vector instruction translation and
application profiling overhead is debated in edge network and
high-end server scenarios. The edge network and high-end
servers are utilized in the evaluation to deliberate on the trade-
off of resource proximity and network overhead. This work
extends our previous efforts of surveying the MCC offloading
frameworks [2], analyzing the problem of SIMD instruction
translation in existing MCC offload enabling techniques [5],
and comparing the SIMDOM framework with state-of-the-art
code offloading frameworks [12].

Ill. SIMDOM FRAMEWORK
In this section, we detail the overall algorithm of the
SIMDOM framework and the corresponding flow diagram.
Furthermore, the modules of the SIMDOM framework are
detailed along with the preliminary data collection for the
framework analysis. The experimental setup utilized for the
data collection is detailed in Section I'V. We skip the details of
SIMD translator as it was presented in previous article [12].
The SIMDOM framework starts by checking the
cloud/edge server connectivity. Afterward, the application is
offloaded to the cloud if it is already not available at the cloud
server for analysis. The SIMD translator takes the application,
the host (ARM based mobile device) and the target (cloud
server, x86 SSE version) hardware profile as inputs. The
SIMD translator translates the SIMD intrinsics of the ARM
application to the corresponding x86 intrinsics. After transla-
tion, the SIMD translator generates two executable files of the
application through re-compilation. One executable is for the
ARM architecture (mobile device) and the other executable
is for x86 architecture (cloud server). The x86 executable
is generated through re-compilation of application with the
help of an x86 compiler and the SIMD translator. These
executable files are provided to the application profiler for
calculation of respective SIMD instructions. The application
profiler also defines the application partitions for local and
remote execution. Meanwhile, the network profiler sends
data packets to the local and remote cloud server to measure
the RTT and throughput. The energy profiler executes tasks
on the system to measure the base values of energy while
the device is in idle, compute, and offload (Wi-Fi send and
receive) state. The measurements of the application, network,
and energy profiler are used by the offload module to decide
the feasibility of offload decision. The flow diagram of the
proposed SIMDOM framework is presented in Figure 2.

VOLUME 5, 2017

J. Shuja et al.: Analysis of Vector Code Offloading Framework in Heterogeneous Cloud and Edge Architectures

IEEE Access

TR
[start multimedia

(
\ app J
. _
d AN
// \\
N0 " Offload enabled/ ™.

< ik,
“.server con nectwniyy
p

P
. S

Y

AN
N

Yes

N

/ N

e AN
N

-
- . N
" App available on N

<
~)
N cloud/edge -~

AN
N
Offload app to the \/
cloud/edge E Yes
0y
N Translate and Hardware
P —

recompile app profiles

4

A
Profile app for SIMD Measure energy and
instructions network parameters

Application
artitions
P Energy and
network
A 4 A 4
paramters / — A
Load variables to [Network and [\
s { g
system model | energy profile | |
\ \/
H
X
///// \\\\\
No i o Yes
-
preeseeeaa—aa < E_local >E_offload rmmremeeeensseass '
AN / '
. - H
AN H
v i
Execute locally, send Execute x86
-9 ARM executable to exuctable on the
mobile cloud/edge
: . ~
: Vs \\\
eemeenanaanaasd] > End |3 (CEEEEEETERTEER e,
" B /

FIGURE 2. Flow diagram of SIMDOM: A framework for pre-compiled
multimedia application offload.

A. APPLICATION PROFILER

The application profiler is the basic component of a code
offloading framework in heterogeneous compute architec-
tures. The basic task of an application profiler is to determine
the optimal execution parameters of the application in both
local and remote execution scenarios. The optimal execution
parameters generally define the compiler parameters that lead
to the most vectorized profile of the application. Further, if the
application is to be partitioned, the application profiler deter-
mines the vector part of the application to be executed on the
cloud, and the scalar part of the application to be executed on
the local device. The application profiler decides on optimal
offload parameters through two steps. First, the application
profiler utilizes application code binaries obtained through

VOLUME 5, 2017

TABLE 1. ARMv-7 active NEON instructions.

Instruction Mathlib | Linpack | Speed FFT
vld 1163 705 380 7210
vstr 509 428 275 4391
vmov 670 96 56 638
vmul* 623 180 64 1311
vadd* 461 56 42 1372
vsub 218 6 1 942
vdiv 43 22 13 37
vabs 23 13 0 6
vpush 39 9 5 29
vpop 57 13 9 50
vdup 1 7 3 2
vneg 74 9 2 157
Total SIMD 3881 1544 850 163145

the translator module for static analysis. The static analysis of
the application binaries is performed with the object — dump
commands. As vectorizing capabilities of compilers differ,
a comparison of GCC and LLVM compilers is conducted.
The static analysis results in calculation of the percentage of
SIMD instructions in both ARM and x86 binaries for the cor-
responding compilers. The calculation of SIMD instructions
in the application binary is trivial for x86 architecture as the
SIMD instruction is marked with xmm register tags. There-
fore, a simple system command (grep -c ‘xmm’) can count
the number of SIMD instructions in x86 profile. However, the
same is not true for ARM binaries as SIMD instruction count
based on NEON register tagging results in incorrect findings.
Therefore, a profiling program is devised that takes the ARM
binary as input and calculates the SIMD instructions as the
sum of all ARM NEON instructions. We found out through
profiling of candidate benchmarks that only a subset of
20-30 SIMD instructions are utilized repeatedly. Therefore,
the profiling program was limited to the active subset to
reduce profiling overhead. Table 1 lists the set of active
NEON instructions for the ARMv-7 architecture collected
from the GCC compiler with optimization and vectorization
flags for the application benchmarks.

Our framework provides three simplistic application par-
tition options based on the multimedia application profile:
(a) the offloading does not save energy so no instruction
is offloaded, (b) the complete application is offloaded to
the server, or (¢) only the SIMD intrinsics are offloaded to
the server. Most of the SIMD instructions present in the
static binaries are due to intrinsic functions. Therefore, the
SIMD intrinsics are usually ideal candidate for the offload.
However, complete application can also be offloaded if it
is programmed with a focus on higher utilization of SIMD
intrinsics. Multimedia applications are usually candidate for
complete application offload. Therefore, application parti-
tioning is relatively simple task for SIMD based multimedia
applications.

24545

IEEE Access

J. Shuja et al.: Analysis of Vector Code Offloading Framework in Heterogeneous Cloud and Edge Architectures

B. ENERGY PROFILER

Energy profiler profiles the energy consumption of the
device corresponding to various instances of task execution.
Hardware, software, and hybrid energy profiling techniques
are used on the smartphone to measure the energy utiliza-
tion corresponding to executing application. Hardware based
energy profiling methods deploy a power meter with smart-
phone battery to measure the energy drain during application
execution. Software based methods model smartphone sub-
systems, their power ratings, and their energy consumption
behavior in various states to map an application profile for
power consumption calculations [25], [26]. We employed
PowerTutor [27] which is the most commonly utilized, accu-
rate, and open-source power estimation tool for Android
based smartphones. PowerTutor estimates the energy con-
sumption of an application for multiple system parameters
and subsystems such as, CPU and Wi-Fi in various power
states (idle, busy) to find subsystem baseline power ratings.
The energy profiler samples the device energy consumption
in idle state (p;) while limiting the number of background
processes in LCD off state. The energy profiler executes mul-
timedia applications to measure the power consumption of the
device while executing computational applications (p,,). The
energy profiler sends and receives data from the cloud/edge
server to estimate the network energy cost (p.) for the
Wi-Fi networks. The energy profiler provides these values as
input to the offload module for the offload decision process.
The SIMDOM framework does not consider the device bat-
tery levels in the decision of offloading. The results of data
collection for the energy profiler are presented in Table 2
while executing the vector benchmarks.

TABLE 2. Experimental evaluation for p; and pp.

Benchmark Input p; mean D Mean
MathlibSIMD all 28mW 585mW
SpeedSIMD all 27mW 578mW
LinpackSIMD 1200 27TmW 576mW
FFTSIMD all 25mW 571mW

The mean values in Table 2 are generated over a run of
five trails. We created a data transfer utility that sends data
to the remote servers to estimate the value of p. for Wi-Fi
subsystem. The utility sends ICMP packets of 100 KBytes
each with a delay interval of 0.2 seconds for total time interval
of 50 seconds to our remote server. The mean values for
the down-link and up-link p. were found to be 485mW and
461mW respectively.

C. NETWORK PROFILER

The network profiler determines up-link and down-link
throughput of the network that are fed to the offload mod-
ule. The network throughput depends on multiple param-
eters such as, wireless link bandwidth, latency, number of
hops, data transfer protocol, radio state, etc. The network
profiler periodically measures the throughput and Round Trip

24546

TABLE 3. Experimental evaluation for RTT and throughput.

Connection RTT mini- | RTT maxi- | RTT mean | Throughput
mum mum maximum
Edge-up 8.85ms 16.48ms 12.53ms 5.23Mbyte/sec
Edge-down 1.52ms 18.10ms 4.17ms 10.22Mbyte/sec
Cloud-up 7.90ms 20.03 ms 15.78ms 4.15Mbyte/sec
Cloud-down 2.43ms 28.01ms 14.94ms 4.38Mbyte/sec

Time (RTT) to the high-end cloud and edge servers using
Wi-Fi network and saves the historical results as future inputs
to offload module. Moreover, during an offload operation,
the network profiler measures the current state of network
and updates previous values (mean) through a simple sliding
window protocol.

A number of parameter are involved in the measurement of
the capability of a wireless connection based mobile device
to offload data to the cloud server. The end-to-end throughput
of the link depends on parameters such as wireless link band-
width, latency, number of hops, data transfer protocol, radio
state, etc. To measure the network parameters (up and down-
link throughput) we conducted experiments with client-server
data transfer programs similar to code and data offloading
programs. The program sends data of size 100KB from the
mobile device to the remote server and measures the delay.
The maximum throughput for the link can be calculated as,
RWIN 0

RTT

where RWIN is the window size of the data transfer
protocol. We conducted similar experiments to measure the
down-link and uplink capacity of the network for the edge and
cloud server. The values of minimum, maximum, average,
mean deviation of the RTT, and maximum throughput based

on the average RTT for cloud and edge server are listed in
table 3.

throughput <

D. OFFLOAD MANAGER

The offload manager decides upon the feasibility of code
offload for cloud and edge servers. The offload manager
decides the feasibility of application code offloading based on
the inputs from the energy profiler, application profiler, and
network profiler. The offload manager also selects the appli-
cation partition which is most suitable for offload. The offload
manager acquires the evaluation parameters and feeds them to
the system model detailed in [12]. The offload manager main-
tains a connection with the remote cloud and edge servers
to get the hardware profile for precise SIMD translations.
The server hardware profile is used to map ARM NEON
instruction to cloud server architecture. The server profiles
may differ between various versions of the SSE (SSE2, SSE3,
SSSE3, etc). The offload manager sends an offload request
to the cloud server after the determination of the offload
parameters.

IV. EVALUATION METHODOLOGY

The SIMDOM framework is designed to enable execu-
tion of multimedia applications on heterogeneous compute
architectures. A prototype system is developed and deployed

VOLUME 5, 2017

J. Shuja et al.: Analysis of Vector Code Offloading Framework in Heterogeneous Cloud and Edge Architectures

IEEE Access

TABLE 4. Experimental devices.

Device Processor Memory [0 BogoMIPS

Mobile device - Sam- | 1.2GHz*2 1GB 444 1194.54

sung Galaxy S2 (LE) (ARMV7)

Edge Server (ES) 2.3GHz*4 4GB Linux 14.04 | 4654.87
(x86)

Cloud Server (CS) 2.4GHz*8 32GB Linux 14.04 | 4788.05
(x86)

Qemu Edge Server | 1GHz max | 512MB linaro-nano 471.61

(QES) (ARMvV7) 3.0

Qemu Cloud Server | 1GHz max | 512MB linaro-nano 591.76

(QCS) (ARMvV7) 3.0

on a high-end OpenStack cloud server and an edge server to
evaluate the SIMDOM framework. A local network server
located in close proximity of the smartphone device within
the same LAN constituted as the edge server. A remote server
located far from the smartphone device within another net-
work acted as the high-end cloud server. Multiple application
benchmarks based on SIMD instructions were formulated to
analyze the performance of SIMDOM. In the subsections
below, we focus on the details of the experimental setup. The
details encompass the devices and application benchmarks
utilized in the experiments.

A. DEVICES

We utilized multiple communicate and compute scenarios
to test our framework rigorously in mobile cloud and edge
environments. The specification of the devices and their com-
putational resources is provided in Table 4.

The mobile device is equipped with a Li-lon 1650mAh
removable battery. We incorporated Wi-Fi network based
communications in our framework evaluation. The smart-
phone device that offloads data and computations to the
servers is equipped with Wi-Fi 802.11 a/b/g/n communication
interface. The local and remote servers are equipped with
wired Ethernet interfaces with maximum achievable speeds
of 100Mbps.

B. APPLICATION BENCHMARKS

We utilized four application benchmarks for our experimen-
tal evaluation. Several constraints restricted the selection
of application benchmarks for our framework evaluation.
These contraints were (a) presence of SIMD intrinsic func-
tions in application benchmarks, (b) preference for open-
source benchmarks for cross-validation of our results, and
(c) execution of benchmark on Qemu for comparison. We uti-
lized a set of multimedia benchmarks comprising of four
applications, namely, Mathlib, Speed, Linpack, and FFT in
the experiments. We utilized two versions of each benchmark;
(a) a simple version based on scalar instructions compiled
without compiler optimizations and (b) a SIMD version that
replaces scalar instructions in the original version with SIMD
intrinsics. Moreover, the SIMD version of benchmarks is
compiled with optimizing and auto-vectoring option.

V. RESULTS AND DISCUSSION
This section presents the empirical analysis of the SIMDOM
framework. The SIMDOM framework enables execution of

VOLUME 5, 2017

SIMD based applications in heterogeneous compute archi-
tectures. An application offloaded from mobile device is
recompiled, translated, and executed on cloud server while
the mobile device waits in low-power state. The empirical
analysis is conducted to determine the optimal application
execution parameter in both local and remote scenarios. The
five subsections below find answers to the following five
research questions through empirical analysis.

« How much the vector applications are efficient over their
scalar counterparts and how efficient are current native
code translation frameworks?

o Which compiler (GCC or LLVM) provides better code
vectorization for ARM and x86 architectures?

« Which compiler has higher code vectorization and trans-
lation overhead?

o What is the overhead of application profiling before the
offload decision?

o What is the impact of benchmark computation size on
the efficiency of SIMDOM framework in mobile edge
and cloud scenarios?

A. SIMD OPTIMIZATIONS

In this section, we present the case of SIMD instruction
optimization in heterogeneous MCC architectures by reveal-
ing the overhead of SIMD instruction translation in Qemu.
We utilize SIMD centric FFT and scientific computation
centric Mathlib benchmarks to implicate the application opti-
mizations of SIMD based benchmarks. This subsection has
two objectives towards its findings. Firstly, to assert the per-
formance gain obtained using SIMD instructions, we execute
the vectorized multimedia benchmarks. The performance
enhancement in the case of SIMD instructions has a theo-
retical upper-bound equal to the depth of the SIMD vector.
However, such theoretical bounds are impossible to achieve
due to dependencies in instruction cycles leading to in or out-
of-order execution of the instructions. The second objective
of the findings presented in this section is to evaluate the
overhead of DBT for native code offloading of multime-
dia benchmarks. Our assumption is that the current imple-
mentation of SIMD instructions in the ARM emulators is
not efficient and has high overhead. Hence, when a SIMD
based application is offloaded to the cloud server, the cross-
platform execution leads to higher instruction count and
lower performance due to non-optimal translations. We com-
pare and execute the benchmarks on the physical ARM based
mobile device (Samsung Galaxy S2) and emulated ARM
board (OMAP3 emulated in Qemu on Optiplex755 server).
GCC compiler was utilized in compilation of the application
benchmarks utilized in below subsections.

1) MATHLIB

We executed the Mathlib benchmark on the physical and
emulated devices. The physical device represents the normal
execution of the application benchmark while the emulated
device represents the ARM to x86 translations. The result

24547

IEEE Access

J. Shuja et al.: Analysis of Vector Code Offloading Framework in Heterogeneous Cloud and Edge Architectures

TABLE 5. Mathlib and MathlibSIMD comparison on ARM physical and
translated systems.

Benchmark SIMD ratio Execution Performance
time (sec) (MVIPS)
Mathlib (physical) 17.16% 7.28 19.31
MathlibSIMD (physical) 24.41% 5.53 57.73
Mathlib (emulated) 17.16% 34.21 9.33
MathlibSIMD (emulated) | 24.41% 29.95 11.94

of the Mathlib execution time and SIMD instruction is listed
in table 5.

As the target architecture is ARM in both physical and
emulated cases, the binaries contain same number of SIMD
instructions. Due to utilization of SIMD intrinsics and auto-
vectorization flags, the percentage of SIMD instructions is
higher in SIMD benchmarks than the basic benchmarks. The
SIMD version of the benchmark shows 24.12% and 12.45%
time efficiency on the physical and emulated system respec-
tively compared to basic scalar benchmark. Similarly, the
SIMD benchmark shows 66.55% and 21.85% performance
improvement on the physical and emulated respectively
compared to basic benchmarks. The time and performance
efficiency is the result of employment of SIMD intrinsics and
compiler optimization flags. The SIMD intrinsics result in
higher SIMD instruction count and lower application execu-
tion time. However, it must be noted that the time efficiency
provided by SIMD benchmark is approximately twice as high
for the physical systems than the emulated system due to inef-
ficient vector-to-scalar translations of Qemu. The emulated
ARM device executing on Qemu leads to 78.72% and 81.53%
overhead in terms of time and 51.68% and 79.31% over-
head in terms of performance for Mathlib and MathlibSIMD
benchmarks respectively compared to native execution.

2) FFT

To establish our case of multimedia application based SIMD
instruction optimization, we evaluated the performance of
FFT benchmark on physical and emulated devices. FFT is
also the backbone of many multimedia based applications,
such as JPEG and MPEG encoding. Similar to previous
experiments, we utilized two version of FFT benchmark,
i.e., FFT and FFTSIMD. The results of the performance
(MFLOPS) with different input sizes (64KB to 4096KB) on
ARM physical and ARM emulated devices are shown in
Figure 3.

The FFT and FFTSIMD benchmarks produce 1.05% and
11.02% SIMD instructions respectively when compiled by
the GCC-ARM compiler. The results show that for all
input sizes, the FFSIMD always performs better in terms
of MFLOPS performance than the FFT benchmark on the
physical device. Overall, the FFTSIMD performs 80.28% to
84.05% better than the FFT benchmark for different input
sizes on the physical device. On average, the FFTSIMD
performs 82.18% better than FFT benchmarks for all input
sizes on the physical device. However, the performance gain
on the ARM emulated system reduces to 48.5% on average.

24548

700 4 S FFT (phy) A FFTSIMD (phy) S FFT (emu) A FFTSIMD (emu)

Performance - MFLOPS

T
64 128 256 512 1024 2048 4096
Size - Kbytes

FIGURE 3. FFT and FFTSIMD comparison on ARM physical and translated
systems.

The results show that on average 41.05% of performance
lost is witnessed by the emulated systems due to non-optimal
vector-to-scalar translation of SIMD instructions.

The physical system performs 68.92% and 89.62% better
than the emulated system on average for FFT and FFTSIMD
benchmarks. As the benchmark is optimized, the perfor-
mance of the emulated system further decreases. This result
also points out to the fact that the SIMD instructions are non-
optimally translated by the translation engine of Qemu. If we
compare the physical and emulated system on the BogoMIPS
values, the physical system performs 27.24% and 35.42%
better than the emulated system for the FFT and FFTSIMD
benchmarks respectively.

All of the results listed in this subsection show that the
SIMD based applications lead to considerable performance
optimizations as compared to basic versions of the same
applications. In most of the cases, the performance gain was
more than 70%. The performance gain is due to SIMD intrin-
sics and auto-vectorizing options utilized in SIMD bench-
marks. On mobile and embedded devices, performance and
time optimizations are particularly important due to several
resource constraints, such as battery lifetime. The mobile
battery life can be increased if the application utilizes lesser
time and the hardware supports execution of vector instruc-
tions. Moreover, the aforementioned results show consider-
able performance overhead in the translation of compiled
code offloading. The SIMD benchmarks do not achieve the
same performance gain on the emulated systems as compared
to the physical systems. Therefore, optimization is required
in the heterogeneous cross-platform execution of multimedia
applications.

B. COMPARISON OF COMPILERS FOR

SIMD INSTRUCTION

Static code analysis of the candidate offload application helps
the application profiler to collect data for optimal generation
of SIMD instructions. The parameters considered by the
application profiler can be the selection of compiler, compi-
lation flags, and target architectures. The application profiler
investigates these parameters to find an ideal combination of
the compiler and corresponding compilation flags that lead to
the highest percentage of SIMD instructions in the program
binary. Our application profiler provides three possibilities of

VOLUME 5, 2017

J. Shuja et al.: Analysis of Vector Code Offloading Framework in Heterogeneous Cloud and Edge Architectures

IEEE Access

SLUVM ®mGCC

Percentage of SIMD instructions

SpeedSIMD FFT FFTSIMD

Mathlib D Linpack L D Speed

FIGURE 4. Analysis of ARM GCC and LLVM\clang compilers for
application benchmarks.

sLLWVM BGCC

Percentage of SIMD instructions

Mathlib D Linpack Li D Speed D FFT FFTSIMD

FIGURE 5. Analysis of x86 GCC and LLVM\Clang compilers for application
benchmarks.

application partition to the offload manager: (a) zero applica-
tion partition if offloading does not lead to energy efficiency,
(b) full application partition where complete application is
offloaded, and (c¢) partial application partition where only
SIMD instructions are offloaded. The static code analysis
provides the compiler parameters such that the program
binary has the highest percentage of SIMD instructions for
the two latter cases of application partition. The static code
analysis results in the identification of partial application
partition that only comprises of SIMD instructions. The static
code analysis is based on the source dumps of the program
binaries. Figure 4 and 5 provide the comparison of ARM and
x86 compilers for the production of SIMD instructions for
multimedia benchmarks.

The static code analysis provides comparative analysis
of the vectorizing capabilities of ARM and x86 compil-
ers. There are multiple implications of the aforementioned
results. Based on these implications, recommendations are
forwarded to the SIMDOM framework regarding parame-
ters for efficient remote and local execution of multimedia
applications.

Firstly, the x86 compilers fare far better than the
ARM compilers in the generation of SIMD instructions.
The x86 compilers produce an average of 26.80% SIMD
instructions as compared to 15.49% for ARM compilers for
all benchmarks. This observation points to the fact that the
support for vector instruction generation in ARM compil-
ers is not as efficient as the x86 compilers. Several recent
studies carried out on vectorizing compilers support this
finding [23], [28].

Secondly, the major deficiency in the case of ARM com-
pilers comes from the GCC compiler. LLVM produces more

VOLUME 5, 2017

efficient vectorizing code than the GCC compiler for the
ARM architecture. GCC produces 10.86% of SIMD instruc-
tions as compared to 20.11% for the LLVM compiler on
average for all benchmarks on ARM architectures. Hence,
the LLVM compiler is 45.99% efficient in the production of
SIMD instructions than the GCC compiler for ARM ISA.
On the contrary, GCC performs marginally better than LLVM
compiler for x86 architectures. GCC produces 28.12% SIMD
instructions for x86 architecture as compared to 25.48%
SIMD instruction produced by the LLVM compiler on aver-
age for all benchmarks. The GCC compiler is 9.38% efficient
than the LLVM compiler for the production of SIMD instruc-
tion for x86 ISA.

Thirdly, FFT, Linpack, and Mathlib benchmarks produce
better SIMD instruction count on optimization and vector-
izing flags. However, the Speed benchmark produces lower
SIMD instruction count with vectorizing flags for both x86
and ARM ISAs. Forcing a compiler to produce vectorized
assembly code for a program that already contains vector
intrinsics can lead to such unusual performance. However,
there are performance gains in case of the optimized versions
due to overall optimization of the program binary.

Fourthly, the Mathlib benchmark provides the highest
percentage of SIMD instructions for both ARM and x86
binaries. The Mathlib is comprehensively programmed with
NEON intrinsics such that the transcendental function cal-
culations are exclusively performed by vector instructions.
On the contrary, the remaining benchmark applications insert
NEON intrinsics wherever possible. Moreover, the Mathlib
benchmark produces the least SIMD instruction increase on
optimization flags due to native vectorized code that does not
require optimization flags for vector generation.

The static analysis reveals that for local execution, the
supporting compiler should be LLVM\Clang for the ARM
ISA for a higher percentage of SIMD instructions. In case
the code is offloaded to the x86 cloud or edge server, GCC
compilers should be used. However, this use of LLVM\Clang
is contradictory to our previous findings of the SIMD trans-
lator overhead. The SIMD translator overhead revealed that
the LLVM\Clang has approximately 80% higher compila-
tion overhead than the GCC for the x86 ISA. In case lower
translation overhead is desired, the GCC compiler should
be utilized for both x86 and ARM ISAs in the SIMDOM
framework. On the contrary, for long term optimizations
where the translation overhead can be ignored, LLVM com-
piler for the ARM ISA and GCC compiler for the x86 ISA
should be utilized to produce highly optimized and vectorized
code.

C. SIMD TRANSLATOR OVERHEAD

In this subsection, we examine the overhead of SIMDOM
translator. SIMD translator is the most dynamic runtime
element in our offload framework along with application
profiler. The SIMD translator and application profiler have
to provide inputs to the offload manager for the offload
feasibility evaluation. The SIMD translator and application

24549

IEEE Access

J. Shuja et al.: Analysis of Vector Code Offloading Framework in Heterogeneous Cloud and Edge Architectures

profiling tasks that can lead to overhead include compilation
of application for the ARM and x86 ISA on multiple config-
urations and translation of SIMD instructions. The overheads
of compilation (for ARM ISA) and recompilation along with
translation (for x86) for GCC and LLVM compilers on edge
server are listed in Figure 6.

14 4 Hx86-GCC Ex86-LLVM EARM-GCC & ARM-LLVM

Time - seconds

Scalar Scalar Scalar Scalar

Mathlib Speed Linpack

FIGURE 6. SIMD translator overhead on edge server: comparison of
compilers.

The compilation time of FFTSIMD benchmark for
LLVM\Clang compiler has been factored by five to pro-
vide equivalent perspective to the rest of the results. There
are several repercussions of the preceding result. The most
important implication of the result is that the compilation time
for the LLVM\Clang compiler is 83.23% and 81.91% higher
than the GCC compiler for x86 and ARM ISAs respectively
on average. The GCC compiler can be the choice of the
SIMDOM framework for lower translation and compilation
overhead of both ARM and x86 ISA.

The compilation time for the SIMD benchmarks is higher
than basic benchmarks. As the percentage of SIMD instruc-
tions is high with auto-vectorization and optimization flags,
it is necessary to utilize the extra compilation flags for inves-
tigation of application vectorization properties. The over-
head of simple benchmarks without optimization flags can
be ignored in the overall profiling overhead as it does not
lead to the optimal case of SIMD instruction generation. For
the auto-vectorized benchmarks, the overall overhead is the
sum of ARM and x86 compilation times and the ARM to
x86 SIMD translation time. The application compilation time
is highest for FFT as the application is in the form of a library
consisting of multiple source files. For Linpack and Speed
benchmarks, the compilation overhead for both ARM and
x86 platforms is low. Moreover, the compilation time for
the x86 ISA is higher than ARM for all benchmarks as it
also includes the SIMD intrinsic translation from NEON to
SSE ISA.

We found that the application translation overhead is
approximately 10% lower on the cloud server than edge
server for most of the benchmarks due to its higher com-
putational capability. We also investigated the variance in
compilation overhead for the Linpack benchmark based on
variable inputs. We found that the input matrix size does not
affect the compilation overhead of the Linpack benchmark
significantly.

24550

D. APPLICATION PROFILER OVERHEAD

The overhead of application profiler occurs in two main
tasks. Firstly, the overhead occurs during compilation and
translation of the application as listed in previous subsection.
Secondly, the overhead occurs while profiling the application
for the percentage of SIMD instructions. The application
profiler provides inputs to the offload manager for the offload
feasibility evaluation in the form of optimal application par-
tition with the highest percentage of SIMD instructions and
the corresponding profiling overhead. The overhead of appli-
cation profiler for edge server is illustrated in Figure 8.

The high percentage of SIMD instructions is achieved with
auto-vectorization flags. Therefore, the overhead of profiling
the SIMD benchmark is high compared to basic counterparts.
The application profiling overhead can be used to infer the
number of instructions executed by the server while profiling
the application. The equation is provided as [29],

T x MIPS x 10°
]=—o——— 2)
CPI
As an example, consider the FFT benchmark for local
Server,

I = 3.26sec x 4654.87 x 10° = 11672981692]

We will utilize the aforementioned formulation to validate
our mathematical model. The network and energy profiler
modules do not incur overhead in terms of time on the
SIMDOM framework as they execute in parallel to collect
the required data on the mobile device.

E. IMPACT OF COMPUTATIONAL SIZE

In this section we present the operational and experimen-
tal results of the SIMDOM framework while comparing it
with the state-of-the-art MCC code offloading frameworks.
The results of this section aim to quantify the of applica-
tion benchmark (computational) size on the efficiency of
the MCC offloading frameworks. Five execution scenarios
were created with the help of a smartphone, a remote cloud
and an edge server. The smartphone represented local exe-
cution (LE) when code is not offloaded. Two of the sce-
narios represented SIMDOM prototype of edge and cloud
server (ES and CS respectively). Two scenarios represented
compiled code translation and offloading based on Qemu
framework for edge and cloud servers (QES and QCS respec-
tively). Qemu provides the state-of-the art comparison as
most widely utilized heterogeneous architecture translation
framework [30].

1) ENERGY

We investigated the energy efficiency of the SIMDOM
framework for variable size inputs. We utilized the Linpack
benchmark as its input matrices can be varied. The Linpack
benchmark was compiled to operate on 200 x 200, 400 x 400,
600 x 600, 800 x 800, 1000 x 1000, 1200 x 1200, and
1400 x 1400 matrices. As a result, N x N basic operations
are performed in each benchmark instance. The matrix size
of 1400 x 1400 and greater lead to negative results in terms

VOLUME 5, 2017

J. Shuja et al.: Analysis of Vector Code Offloading Framework in Heterogeneous Cloud and Edge Architectures

IEEE Access

Energy - Joules
= = = = =
foa} o2} o N > fea} o]
o o o o o o o
L L ! L L L y

N
o
1

N
o
1

BELE BES EHCS BEQES BEQCS =

o

Scalar ‘ SIMD | Scalar ‘ SIMD | Scalar | SIMD

Linpack200 Linpack400 Linpack600

Scalar | SIMD

Linpack800

Scalar | SIMD Scalar| SIMD | Scalar ’ SIMD

Linpack1000 Linpack1200 Linpack1400

FIGURE 7. Energy consumption: linpack benchmark on variable input matrices of size N = N.

0.25 Hx86 BARM

0.2

I
o
&

Time -seconds
o
-

0.05

FIGURE 8. Application profiler overhead on edge server.

of performance. The result of the energy consumption of
the Linpack benchmark for different execution scenarios are
depicted in Figure 7.

The energy was measured with the mobile device con-
figuration of sleep mode after 15 seconds of inactivity. The
energy consumption in various scenarios does not increase
significantly until the matrix size of 600 x 600. Afterward,
the energy spent on local execution increases exponentially
with the increase in the size of the input. The energy con-
sumption of the Qemu framework also increases linearly
with the increase in matrix size. On the contrary, the energy
consumption of SIMDOM framework remains linearly stable
and does not increase significantly with the increase in the
size of the input matrix. Both pre-compiled code SIMDOM
and compiled code Qemu offloading frameworks lead to the
energy efficiency for larger input sizes. However, for smaller
inputs, the energy gains are marginal. The energy efficiency
of the edge server based SIMDOM framework as compared to
local execution increases from 26.63% for 200 x 200 matrix
to 92.21% for 1400 x 1400 matrix. Similarly, the energy
efficiency of the SIMDOM framework as compared to Qemu
increases 22.75% for 200 x 200 matrix to 78.80% for 1400 x
1400 matrix. On average, SIMDOM edge server provides
59.17% and 48.51% energy efficiency than local execution
and Qemu edge server execution.

VOLUME 5, 2017

The comparison of cloud and edge servers for SIMDOM
framework depicts that for lower computations (200 x 200),
the edge server provides 17.57% energy efficiency. On the
contrary, for higher computations (1400 x 1400), the cloud
server provides 8.50% energy efficiency. Hence, edge and
fog technologies are proffered for lower computations while
cloud technologies are preferred for large computations.

The SIMD version of the benchmarks leads to consid-
erable energy efficiency as compared to basic benchmarks.
The SIMD version efficiency for the local execution on a
mobile device is 6.69%. However, the translated code by the
SIMDOM framework provides better SIMD to basic version
energy efficiency ratio of 8.58%. On the contrary, Qemu
provides only 2.21% energy efficiency while providing inef-
ficient vector-to-scalar translation for the SIMD benchmarks.
These ratios also quantitatively assert the efficiency of SIMD
translations in the SIMDOM framework.

2) TIME

We investigate the application execution time for variable size
inputs. We utilize the Linpack benchmark as its input matrices
can be varied. The result of the execution times of the Linpack
benchmark are depicted in Figure 9.

The Qemu inputs are scaled to fit the figurative bounds of
graph and provide a better illustration for all input sizes. The
execution time of Qemu for matrix sizes 800 x 800 and 1000 x
1000 has been scaled by a factor of five while that for matrix
sizes 1200 x 1200 and 1400 x 1400 has been scaled by a
factor of six.

There are multiple ramifications of the aforementioned
result. The execution time in local MCC-disabled does not
increase until the input size of 600 x 600. Afterward, the
increase in matrix size leads to exponential increase in the
execution time. Similarly, the SIMDOM framework does
not show any significant increase in execution time with
the increase of matrix size. The only significant increase
in execution time of the SIMDOM framework occurs for

24551

IEEE Access

J. Shuja et al.: Analysis of Vector Code Offloading Framework in Heterogeneous Cloud and Edge Architectures

350 4

300

250

[N)
o
]

[N

u

o
L

Execution time - seconds

N
o
]

50 4

BILE MES £HCS EQES =QCS 6')(

)

Scalar | SIMD Scalar | SIMD Scalar | SIMD

Linpack200 Linpack400 Linpack600

Scalar | SIMD

Linpack800

Scalar | SIMD Scalar | SIMD Scalar | SIMD

Linpack1000 Linpack1200 Linpack1400

FIGURE 9. Execution time of linpack benchmark on variable input matrices of size N = N.

the input matrix of 1200 x 1200 and 1400 x 1400. The
stable performance of the SIMDOM framework is due to the
computational power of the edge and cloud servers that can
sustain the input increase gracefully to provide efficient exe-
cution. On the contrary, Qemu does not sustain performance
on the increase in the size of input matrix as the execution
time of Qemu scenarios increases exponentially.

The SIMDOM framework does not provide time efficiency
for the small matrix inputs. The SIMDOM framework pro-
vides time efficiency as compared to local execution after
the input size is increased to 800 x 800 and beyond. For
the input matrices 800 x 800 to 1400 x 1400, the SIMDOM
framework on edge provides 66.24% efficiency than the local
execution. For the input matrices 200 x 200, 400 x 400, and
600 x 600, the SIMDOM framework on edge server leads to
0.54% time overhead as compared to local execution. There-
fore, the time efficiency of SIMDOM framework increases
with the increase in the size of the input.

After comparing edge and cloud servers for time efficiency
for SIMDOM framework, we find that for lower computa-
tions (200 x 200), the edge server provides 17.76% time
efficiency. On the contrary, for higher computations
(1400 x 1400), the cloud server provides 66.50% time effi-
ciency. Therefore, for low computations, nearby edge servers
can be more feasible than the cloud servers in terms of execu-
tion time. There are two reasons behind the higher feasibility
of edge network for lower computations. Firstly, for smaller
workloads, the network overhead of reaching the distant
cloud dominates the computational power. Secondly, the edge
and cloud servers utilized in our experimental setup have
similar computational power (BogoMIPS). Any increase in
the computational power of the cloud server will result in
higher time and energy efficiency than the edge server.

The SIMD versions of the benchmarks show significantly
lower execution times than the basic versions. The efficiency
of the SIMD versions increases with the increase in the size

24552

of the benchmark. However, the efficiency is more significant
for the SIMDOM framework than the Qemu as SIMDOM
efficiently translates the SIMD instructions. The SIMD ver-
sions of the benchmarks provide 14.32% time efficiency
than the scalar version for the SIMDOM framework on the
edge server. On the contrary, the Qemu provides 9.63% time
efficiency for the SIMD versions on the edge server.

VI. CONCLUSION

In this article, we presented and analyzed a vector instruction
offloading framework (SIMDOM) in heterogeneous compute
architectures. The analysis of the SIMDOM framework was
conducted on subjects of vector instruction generation, the
overhead of vector instruction generation, compilation, active
vector instructions in multimedia applications, and applica-
tion profiling. We found that the application benchmarks
produce a set of active instructions that occur frequently
in the application binary. The overhead of the application
profiler can be reduced while profiling only for the set of
active instructions. The LLVM\Clang compiler produced
approximately 46% higher number of SIMD instructions
for the ARM ISA than the GCC compiler. However, the
LLVM\Clang compiler also led to 81%-83% higher compila-
tion overhead compared to the GCC compiler for both ARM
and x86 architectures. Therefore, for short-term optimization,
GCC compiler is preferred for the application execution on
both mobile and cloud devices. Further, the GCC compiler
is 9.38% efficient in the production of SIMD instructions
than the LLVM compiler for x86 ISA. Overall, the x86 com-
pilers produce an average of 26.80% SIMD instructions as
compared to 15.49% for ARM compilers for all benchmarks.
Therefore, in terms of vector instructions, pre-compiled code
offloading to high-end servers can be preferred. The experi-
mental results also revealed that for smaller workloads, the
edge server provided higher time and energy efficiency as
compared to the cloud server. However, for larger workloads,

VOLUME 5, 2017

J. Shuja et al.: Analysis of Vector Code Offloading Framework in Heterogeneous Cloud and Edge Architectures I E E E ACC@SS

the cloud server yields higher efficiencies. The SIMDOM
framework leads to higher SIMD instruction translation effi-
ciency compared to Qemu translator as revealed by SIMD to
scalar application benchmark energy and time ratios.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

E. Ahmed, A. Gani, M. Sookhak, S. H. Ab Hamid, and F. Xia, ““Application
optimization in mobile cloud computing: Motivation, taxonomies, and
open challenges,” J. Netw. Comput. Appl., vol. 52, pp. 52-68, Jun. 2015.
J. Shuja et al., “Towards native code offloading based mcc frameworks
for multimedia applications: A survey,” J. Netw. Comput. Appl., vol. 75,
pp- 335-354, Nov. 2016.

M. Peng, S. Yan, K. Zhang, and C. Wang, “‘Fog-computing-based radio
access networks: Issues and challenges,” IEEE Netw., vol. 30, no. 4,
pp. 46-53, Jul./Aug. 2016.

N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing:
A survey,” Future Generat. Comput. Syst., vol. 29, no. 1, pp. 84-106, 2013.
J. Shuja, A. Gani, A. Naveed, E. Ahmed, and C.-H. Hsu, ‘“Case
of arm emulation optimization for offloading mechanisms in mobile
cloud computing,” Future Generat. Comput. Syst., to be published, doi:
http://dx.doi.org/10.1016/j.future.2016.05.037

E. Ahmed, A. Gani, M. K. Khan, R. Buyya, and S. U. Khan, “Seamless
application execution in mobile cloud computing: Motivation, taxonomy,
and open challenges,” J. Netw. Comput. Appl., vol. 52, pp. 154-172,
Jun. 2015.

J. Shuja et al., ““A survey of mobile device virtualization: Taxonomy and
state-of-the-art,” ACM Comput. Surv., vol. 49, no. 1, p. 1, Apr. 2016.

J. Shuja et al., “Survey of techniques and architectures for designing
energy-efficient data centers,” IEEE Syst. J., vol. 10, no. 2, pp. 507-519,
Jun. 2016.

S. T. Nimmakayala, ‘“Exploring causes of performance overhead during
dynamic binary translation,” Ph.D. dissertation, Dept. Elect. Eng. Comput.
Sci., Univ. Kansas, Lawrence, KS, USA, 2015.

G. Mitra, B. Johnston, A. P. Rendell, E. McCreath, and J. Zhou, “Use
of SIMD vector operations to accelerate application code performance on
low-powered ARM and Intel platforms,” in Proc. IEEE 27th Int. Parallel
Distrib. Process. Symp. Workshops PhD Forum (IPDPSW), May 2013,
pp. 1107-1116.

S. Manilov, B. Franke, A. Magrath, and C. Andrieu, “‘Free rider: A tool for
retargeting platform-specific intrinsic functions,” in Proc. 16th ACM SIG-
PLAN/SIGBED Conf. Lang., Compil. Tools Embedded Syst. (CD-ROM),
2015, p. 5.

J. Shuja et al., “Simdom: A framework for SIMD instruction
translation and offloading in heterogeneous mobile architectures,”
Trans. Emerg. Telecommun. Technol., to be published, doi:
http://dx.doi.org/10.1002/ett.3174

Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J. Sel.
Areas Commun., vol. 34, no. 12, pp. 3590-3605, Dec. 2016.

X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795-2808, Oct. 2016.

B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:
Elastic execution between mobile device and cloud,” in Proc. 6th Conf.
Comput. Syst., 2011, pp. 301-314.

S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic resource allocation and parallel execution in the cloud for mobile
code offloading,” in Proc. IEEE INFOCOM, Mar. 2012, pp. 945-953.

C. Lichtenau, P. Oehler, and P. H. Roth, “Systems for a cloud, analytics,
mobile and social era,” in Proc. CHIPS, vol. 2. 2016, p. 125.

G. Lee, H. Park, S. Heo, K.-A. Chang, H. Lee, and H. Kim, “Architecture-
aware automatic computation offload for native applications,” in Proc.
48th Int. Symp. Microarchitecture, 2015, pp. 521-532.

L. Michel, N. Fournel, and F. Pétrot, “Speeding-up SIMD instructions
dynamic binary translation in embedded processor simulation,” in Proc.
Design, Autom. Test Eur. Conf. Exhibit. (DATE), 2011, pp. 1-4.

D.-Y. Hong et al., “HQEMU: A multi-threaded and retargetable dynamic
binary translator on multicores,” in Proc. 10th Int. Symp. Code Generat.
Optim., 2012, pp. 104-113.

S.-Y. Fu, J.-J. Wu, P. Liu, D.-Y. Hong, and W.-C. Hsu, “Simd code
translation in an enhanced HQEMU,” in Proc. IEEE Int. Conf. Parallel
Distrib. Syst. (ICPADS), Dec. 2015, pp. 507-514.

VOLUME 5, 2017

[22] Y.-C.Guo, W. Yang, J.-Y. Chen, and J.-K. Lee, ““Translating the ARM neon
and VFP instructions in a binary translator,” Softw. Pract. Exper., vol. 46,
no. 12, pp. 1591-1615, Dec. 2016.

[23] S.-Y. Fu, J.-J. Wu, and W.-C. Hsu, “Improving SIMD code generation
in QEMU,” in Proc. Design, Autom. Test Eur. Conf. Exhibit., 2015,
pp. 1233-1236.

[24] M. Choi and S.-H. Lim, “x86-android performance improvement for x86
smart mobile devices,” Concurrency Comput., Pract. Exper., vol. 28,
no. 10, pp. 2770-2780, 2016.

[25] R.W. Ahmad, A. Gani, S. H. A. Hamid, F. Xia, and M. Shiraz, ‘A review on
mobile application energy profiling: Taxonomy, state-of-the-art, and open
research issues,” J. Netw. Comput. Appl., vol. 58, pp. 42-59, Dec. 2015.

[26] M. A. Hoque, M. Siekkinen, K. N. Khan, Y. Xiao, and S. Tarkoma,
“Modeling, profiling, and debugging the energy consumption of mobile
devices,” ACM Comput. Surv., vol. 48, no. 3, p. 39, 2015.

[27] L. Zhang et al., “Accurate online power estimation and automatic bat-
tery behavior based power model generation for smartphones,” in Proc.
8th IEEE/ACM/IFIP Int. Conf. Hardw./Softw. Codesign Syst. Synth.,
Oct. 2010, pp. 105-114.

[28] S. Maleki, Y. Gao, M. J. Garzaran, T. Wong, and D. A. Padua,
“An evaluation of vectorizing compilers,” in Proc. Int. Conf. Parallel
Archit. Compil. Techn. (PACT), 2011, pp. 372-382.

[29] W. Stallings, Computer Organization and Architecture: Designing for
Performance. Hoboken, NJ, USA: Pearson Education India, 2000.

[30] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proc.
FREENIX Track, USENIX Annu. Tech. Conf., 2005, pp. 41-46.

JUNAID SHUJA received the M.S. degree from
the COMSATS Institute of Information Technol-
ogy (CIIT), Abbottabad, in 2012, and the Ph.D.
degree from the University of Malaya in 2017.
He was an Assistant Professor with CIIT. His
primary research interest is ARM emulation and
SIMD instruction cross-platform execution and
g other research interests encompass topics, such as
= data center energy efficiency, sustainable cloud
computing, ARM and GPU-based servers for

energy efficient cloud computing, and cloud computing in general.

SAAD MUSTAFA received the B.S. and M.S.
degrees in computer science from the COMSATS
Institute of Information Technology, Abbottabad,
Pakistan, in 2007 and 2010, respectively, where
he is currently pursuing the Ph.D. degree with
the Department of Computer Science. His current
research interests include resource management,
energy efficient systems, cloud computing, and
wireless networks.

RAJA WASIM AHMAD received the master’s

degree from the COMSATS Institute of Infor-

mation Technology, Abbottabad, Pakistan, under

- the COMSATS Merit Scholarship Program, and

5 the Ph.D. degree in computer science from the

= b University of Malaya, under the Bright Spark

= K) Scholarship Program. He is currently an Assistant

Professor with the COMSATS Institute of Infor-

v mation Technology. His current research inter-

K e ests include mobile application energy profiling,

energy efficient computational offloading, cloud resource allocation,

VM migration, network performance, application’s QoS on low bandwidth
networks, and energy efficient cloud data centers.

24553

IEEE Access

J. Shuja et al.: Analysis of Vector Code Offloading Framework in Heterogeneous Cloud and Edge Architectures

SAJJAD A. MADANI received the M.S. degree
in computer science from the Lahore University
of Management Sciences and the Ph.D. degree
from the Vienna University of Technology. He is
currently with the COMSATS Institute of Informa-
tion Technology as an Associate Professor. He has
authored or co-authored over 70 papers in peer-
reviewed international conferences and journals.
His areas of interest include low power wireless
sensor network and green computing.

ABDULLAH GANI received the bachelor’s and
master’s degrees from the University of Hull,
UK., and the Ph.D. degree from the Univer-
sity of Sheffield, U.K. He is currently a Full
Professor with the Department of Computer
System and Technology, University of Malaya.
He has vast teaching experience in various edu-
cational institutions locally and abroad, including
schools, teaching college, the Ministry of Edu-
cation, and universities. He has authored over

150 academic papers in conferences and respectable journals. He is currently
involved in mobile cloud computing with a High Impact Research Grant of
U.S. 1.5 million for the period of 2011-2016.

24554

MUHAMMAD KHURRAM KHAN (SM’12) is
currently a Full Professor with the Center of
Excellence in Information Assurance, King Saud
University, Saudi Arabia. He has edited seven
books and proceedings published by Springer-
Verlag and IEEE. He has authored or co-authored
over 300 papers in international journals and con-
ferences, and he is an Inventor of several patents.
His current research interests include cybersecu-
rity, biometrics, multimedia security, Internet of
Thmgs cloud computing security, and digital authentication. He is a fel-
low of the IET (U.K.), a fellow of the BCS (U.K.), a fellow of the
FTRA (South Korea), a member of the IEEE Technical Committee on
Security & Privacy, and a member of the IEEE Cybersecurity Community.
He was a recipient of several national and international awards for his
research contributions. In addition, he has been granted several national and
international funding projects in the field of Cybersecurity.

VOLUME 5, 2017

