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ABSTRACT Adaptive linear equalizer, whose coefficients are designed to be adjustable to the channel
impulse response, has emerged as a simple and efficient technique to adaptively compensate for the channel
fading. However, conventional adaptive linear equalizers suffer from performance degradation and slow
convergence in the underwater acoustic channel with large delay spread. To solve this problem, in this paper,
we propose a novel adaptive decision-feedback equalizer (DFE) based on the minimum symbol-error rate
(MSER) criterion. Specifically, by taking the sample-by-sample adaptation into account, the problem is
first formulated as minimizing the norm between two consecutive adaptations under the constraint that the
latest adaptation will provide correct detection for both the current and past symbols. Then we solve the
optimization problem by using the Lagrange multiplier method to obtain the adaptive DFE that minimizes
the sequential symbol detection error with a fast convergence rate. Simulation results show that the proposed
MSER-based adaptive DFE significantly outperforms the existing equalizers in terms of convergence speed
and steady-state performance for underwater acoustic channels.

INDEX TERMS Minimum symbol-error rate (MSER), decision-feedback equalizer, channel equalization,
underwater acoustic channel, Lagrange multiplier.

I. INTRODUCTION
Underwater acoustic communications have shown broad
prospects and received great interest in many fields,
such as ocean image transmission, marine disasters detec-
tion, underwater navigation, and marine environmental
monitoring [1]–[3]. However, underwater acoustic channel is
one of the most challenging wireless communication media.
Underwater acoustic channel is highly selective and has
large multipath delay spread of tens or hundreds of mil-
liseconds, resulting in severe frequency-selective signal dis-
tortion. Specifically, due to the low propagation speed at
1500m/s of acoustic waves, multipath spread leads to long-
time delay characteristic of the underwater acoustic channels
and severe inter-symbol interference (ISI) when received sig-
nals from different delay paths are superimposed with each
other [4]–[6].

Linear finite impulse response (FIR) equalizers are widely
applied in many scenarios owing its simple structure and

low computational complexity. It is worth pointing out that
the length of the linear equalizer is typically larger than
the maximum delay spread of the channel [7], [8]. There-
fore, for channels with large delay spread, linear equalizer
of high order should be applied to compensate the channel
effect appropriately. However, linear equalizer of extremely
high order, e.g. more than 100, becomes less impressive in
practical system as it suffers from slow convergence and
poor error performance [9]. One kind of simple but efficient
nonlinear equalizer, namely the adaptive decision-feedback
equalizer (DFE), has been considered as a promising tech-
nique to tackle the above-mentioned difficulty. The adaptive
DFE consists of a feedforward filter and a feedback filter,
whose coefficients will adjust recursively to track the CIR
and compensate the channel effect. The basic idea lied in
DFE is that once the symbols are successfully detected, the
residual ISI at the output of the forward equalizer can be esti-
mated and subtracted by using those past detected symbols.
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The DFE has been applied in various channels with large
delay spread, such as ADSL channels [10], underwater acous-
tic channel [11], [12], and terrestrial wireless channels [13],
which has been shown to be more efficient than conventional
linear adaptive equalizers. Moreover, for coded systems, the
system performance can be improved by using the decoded
symbols as the feedback to the DFE [14], [15].

Usually the DFEs are designed based on the minimum
mean-square-error (MMSE) principle, as this leads to the
effective adaptive implementation in the form of the LMS
algorithm. The MMSE criterion intends to minimize the
mean-square-error between the equalizer output and the
target signal. However, it has been illustrated by various
simulations that minimizing the mean-square-error does not
necessarily achieve the minimum symbol-error rate (MSER)
performance [16]–[18]. Designing channel equalizer directly
based on the MSER criterion has attracted significant atten-
tion [16]–[22]. In the existing work, the MSER criterion
has been applied to design the DFE [20]–[22]. However, the
existing MSER-based DFEs are derived from the symbol-
error rate (SER) objective function, which is non-convex and
has an extremely complicated expression. As a consequence,
the resulting equalizers usually have complicated structure,
which are not suitable to apply in practical communication
systems. Moreover, those DFEs in [20]–[22] involve a prior
knowledge of the CIR and noise variance. In practical com-
munication systems, however, such information is difficult to
obtain or even unavailable, especially for underwater acoustic
channels. Moreover, existing MSER-based equalizers only
work well with low order (less than 10) and often lose
their advantages with high order. Therefore, theMSER-based
equalizer applied for underwater acoustic channels remains
an open as well as challenging research problem.

To fill the aforementioned gap, in this paper we investigate
the fast convergent equalization based on the MSER criterion
under channels with the maximum delay spread more than
100 symbol periods. Specifically, we consider the sample-
by-sample adaptive equalizer in the single-carrier system,
where the coefficients of the equalizer are updated when-
ever a new sample arrives. The problem for the adaptive
MSER-based equalization is then formulated as minimizing
the norm between two consecutive adaptations under the con-
straint that the new adaptation would provide correct symbol
detection. By applying the Lagrange multiplier method to
the constrained optimization problem, we then derive a novel
adaptive DFE with recursive structure, tailored to underwa-
ter acoustic channels. Simulations over typical underwater
acoustic channels show that the proposed adaptive DFE con-
verges significantly faster and achieves much better steady-
state error performance than the existing equalizers with
linear or decision feedback structure .

The rest of this paper is organized as follows. Section II
describes the signal models for the channel and equalizer.
In Section III, we propose the adaptive DFE based on the
MSER criterion with recursive structure. Section IV presents
the simulation results for different equalizers over underwater

FIGURE 1. Block diagram of channel, DFE, and memoryless decision
device.

acoustic channels. Finally, we summarize our results and
draw conclusion in Section V.

II. SYSTEM MODEL AND EQUALIZATION
The block diagram of the discrete-time system is shown
in Fig. 1. After the multi-path channel with different delay
spreads, the received signal at the k-th time slot is given by

rk =
L−1∑
i=0

hisk−i + nk (1)

where sk denotes the modulation symbol independently
drawn from a complex alphabet, {hi}

L−1
i=0 denote the CIR with

L being the maximum delay spread of the channel, nk repre-
sents the additive white Gaussian noise (AWGN) with zero
mean and variance σ 2. It can be observed from (1) that the
channel with delay spread gives rise to ISI, which implies that
the received signal over a given symbol period experiences
interference from other symbols that have been delayed by
multipath.

To mitigate the ISI due to the delay spread of the channel,
a class of simple and nonlinear equalizers termed as the
adaptive DFE, which consists of a feedforward filter and a
feedback filter, can be implemented at the receiver to reverse
the channel dispersion effect effectively. Specifically, the
output of the DFE at the k-th time slot can be represented by a
linear combination of the received samples and past detected
symbols:

yk = fTk rk + bTk ŝk (2)

where fk = [fk,0, fk,1, · · · , fk,Nf−1]
T is an Nf × 1 vector

that represents the feedforward filter, bk = [bk,0, bk,1, · · · ,
bk,Nb−1]

T is an Nb × 1 vector that represents the feedback
filter, rk = [rk , rk−1, · · · , rk−Nf−1]

T represents an Nf × 1
received signal vector consisting of Nf consecutive received
samples, ŝk = [ŝk−D−1, ŝk−D−2, · · · , ŝk−D−Nb ]

T is an Nb×1
vector consisted ofNb past detected symbols withD being the
delay of the equalizer.

Here we consider an uncoded system, where hard decision
principle is applied to the output of the DFE. For instance,
the estimation of BPSK modulation symbol with delay D is
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detected from the output of the DFE, i.e.,

ŝk−D = fdec(yk ) = sgn(yk ) =
{
+1, yk ≥ 0
−1, yk < 0.

(3)

According to the MSER principle, we intend to design a
MSER-based algorithm that minimizes the symbol error
probability directly, i.e., min {Prob{sk−D 6= fdec(yk )}}. Under
the sample-by-sample adaptive equalization, the current filter
coefficients, i.e., fk and bk , are updated from the previous
filter coefficients fk−1 and bk−1 whenever the new data
symbol arrives. In order to achieve fast convergence speed
for the training of the equalizer, we formulate the objective
function by minimizing the Euclidean distance of the filter
coefficients between two consecutive adaptations [19], which
can be expressed as

min
fk ,bk

{
‖fk − fk−1‖2 + ‖bk − bk−1‖2

}
. (4)

At the same time, the feedforward filter coupled with the
feedback filter is forced to provide the correct symbol detec-
tion, so as to minimize the SER. In the following section, we
will put forth an effective adaptive DFE with recursive struc-
ture to provide correct symbol detection for both the current
and the past symbols, in which the constraint is formulated as
{si−D = fdec(yi)} for i = k, k − 1, . . . ,D.

III. MSER-BASED ADAPTIVE DFE
Existing adaptive linear equalizers and DFEs that are based
on MSER criterion suffer from slow convergence, especially
in the underwater acoustic channel with large delay spread.
To accelerate the convergence rate, we explore an adaptive
DFE with recursive structure that minimizes the sequential
symbol detection error, which tries to provide correct symbol
detection not only in the current time slot, but also in the
past time slots. For simplicity, we combine the feedforward
and feedback filters into a uniform filter vector as ck =
[fTk ,b

T
k ]
T such that the equalizer output can be represented as

yk = cTk vk , where vk = [rTk , ŝ
T
k ]
T .

A. BPSK SOURCE
We first consider the channel equalization under the premise
of BPSKmodulation. The constraint of correct symbol detec-
tion, including both current and past data symbols, can be
formulated as

fdec(yk ) = sgn(cTk vi) =
{
+1, when si−D = +1
−1, when si−D = −1

(5)

where i = k, k − 1, . . . ,D denote both the current and past
time slots. With the constraint given in (5), we formulate the
optimization problem as

min
ck
‖ck − ck−1‖2 (6)

s.t. sgn(cTk vi)− si−D = 0

i = k, k − 1, . . . ,D. (7)

To find the fast convergence solution, we apply the Lagrange
multiplier method to solve this optimization problem.Wefirst

approximate sgn(x) with tanh(βx) to make the objective func-
tion derivable and formulate the objective function as

J (ck ) = ‖ck − ck−1‖2 +
k∑

i=D

λi
(
tanh(βcTk vi)− si−D

)
(8)

where {λi}ki=D are the Lagrange multipliers.
Proposition 1: By setting the partial derivative of J (ck )

with respect to ck to zero, we obtain the following iterative
adaptation formula for the MSER-based adaptive DFE:

ck = ck−1 − ζkR−1k vk (9)

where

ζk =
(tanh(βcTk−1vk )− sk−D

β tanh′(β)
(10)

is the error indicator of symbol detection and the correlation
matrix Rk is given by

Rk =

k∑
j=D

wk−j(vjvTj ), (11)

with w denoting the forgetting factor.
Proof: See Appendix A.

In (11), Rk can be regarded as the weighted sum of
the (Nf + Nb) × (Nf + Nb) instant autocorrelation matrix
vjvTj . However, directly calculating R−1k at each iteration is
very inefficient, which will impose high computation to the
receiver. To avoid the explicit matrix inversion of Rk at each
iteration, we first calculate the recursive update of Rk as
follows:

Rk = wRk−1 + vkvTk . (12)

Then, based on the Sherman-Morrison formula [23], the
recursive update of R−1k can be calculated as

R−1k =
1
w

[
R−1k−1 −

R−1k−1vkv
T
k R
−1
k−1

w+ vTk R
−1
k−1vk

]
. (13)

To summarize, suppose we have ck−1 and R−1k−1 before-
hand. When a new data symbol is received, we have vk to be
utilized for the update of the filter vector ck and the inverse
of the correlation matrix R−1k according to (9) and (13),
respectively. Then the recursive computation for the update of
the equalizer ck and the inverse of the correlation matrix R−1k
can be carried out as follows:
• Step 1: compute the error indicator of symbol detection
ζk according to (10);

• Step 2: update the inverse of the correlation matrix R−1k
according to (13);

• Step 3: update the equalizer ck according to (9).
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B. QAM SOURCE
In this subsection, we extend the proposed MSER-based
adaptive DFE to QAM source. We assume that the real
and imaginary parts of the M -QAM symbols are inde-
pendently and uniformly drawn from the alphabet of{
±d,±3d, . . . ,±(

√
M − 1)d

}
, where d denotes half of

the distance between any two adjacent constellation points.
Moreover, as the real and imaginary parts of the modulation
symbols are independently generated, the real and imaginary
parts of the equalizer output can be separately detected. Here-
after we drop the time index for notational simplicity. Let us
take the real part of the equalizer output as an illustrative case,
which can be expressed as

<{yk} = <{cTk vk} = cTRvR − cTI vI = c̄Tk v̄k (14)

where cR, cI and vR, vI are the real and imaginary parts of
the filter ck and input signal vk , respectively, and we denote
c̄k = [cTR ,−c

T
I ]
T , v̄k = [vTR , v

T
I ]
T .

Based on the MSER criterion, c̄k is designed to minimize
Prob

{
<{si−D} 6= fdec(<{yi})

}
for i = k, k − 1, . . . ,D

regardless of the imaginary part. Considering the multiple
constraints, we formulate the optimization problem as

min
c̄k
‖c̄k − c̄k−1‖2 (15)

s.t.
∣∣∣<{c̄Tk v̄i} − <{si−D}∣∣∣ < d

i = k, k − 1, . . . ,D. (16)

The constraints in (16) imply that the currently updated equal-
izer coefficients, i.e., c̄k , should provide correct detection for
both the current and past symbols. The constraints in (16) can
be equivalently expressed as

sgn
(
c̄Tk v̄i−<{si−D}+d

)
+sgn

(
c̄Tk v̄i−<{si−D} − d

)
=0

(17)

where i = k, k − 1, . . . ,D. After replacing sgn(x) with
tanh(βx), we obtain the following objective function based
on the Lagrange multiplier method, which is formulated as

J (c̄k ) = ‖c̄k − c̄k−1‖2

+

k∑
i=D

λi

(
tanh

(
β(c̄Tk v̄i −<{si−D} + d)

)
+tanh

(
β(c̄Tk v̄i −<{si−D} − d)

) )
(18)

where {λi}ki=D denote the Lagrange multipliers.
Proposition 2: After setting the derivative of J (c̄k ) with

respect to c̄k to zero, we can obtain the following adaptive
equation:

c̄k = c̄k−1 −<{ζk}R̄−1k v̄k (19)

where

<{ζk} =
tanh (β(�R + d))+ tanh (β(�R − d))

2β tanh′(β)
(20)

with �R = c̄Tk−1v̄k − <{sk−D} denoting the real part of the
bias of the equalizer output.

Proof: See Appendix B.
Taking the imaginary part of the equalizer output into

account, we have

={yk} = ={cTk vk} = cTRvI + cTI vR = c̄Tk Pv̄k (21)

where P is a permutation matrix given by

P =
[

0 INf+Nb
−INf+Nb 0

]
with INf+Nb being an (Nf +Nb)× (Nf +Nb) identity matrix.
After the similar derivations to that for the real part in (19),
we obtain the following update equation for the imaginary
part of the equalizer output:

c̄k = c̄k−1 − ={ζk}R̄−1k Pv̄k (22)

where

={ζk} =
tanh (β(�I + d))+ tanh (β(�I − d))

2β tanh′(β)
(23)

with �I = c̄Tk−1Pv̄k − ={sk−D} representing the imaginary
part of the bias of the equalizer output. Combining the real
part with the imaginary part of the equalizer output leads to
the following complex version of the MSER-based adaptive
DFE:

ck = ck−1 − ζkR−1k v∗k . (24)

The recursive computation for the update of the equalizer ck
and the inverse of the correlation matrix R−1k can follow the
same steps as given in the previous subsection.

IV. SIMULATION RESULTS
In this section, simulation results are presented to demon-
strate the effectiveness of the proposed algorithm, where
underwater acoustic channels are considered. Both statistical
channel model and real-world communication channels are
considered in the simulations. The statistical channel model
is from [24], and the real communication channels are mea-
sured from experimental underwater acoustic communication
tests. The received signal-to-noise-ratio (SNR) is defined as
SNR = 10 log10

[
Es ·

∑L
i=0 h

2
i /σ

2
]
, where Es is the average

power of the transmitted symbols.
In the simulations, we compare the proposed MSER-based

adaptive DFE with some existing adaptive equalizers with
linear and decision feedback structures, which are briefly
reviewed as follows. The applied linear equalizers are the
normalized LMS (NLMS) equalizer in [25] and [26] and
the normalized adaptive minimum bit error rate (NAMBER)
equalizer in [19]. By providing the linear adaptive minimum
bit error rate (AMBER) equalizer proposed in [17] and [18]
with decision feedback structure, the AMBER-DFE is pro-
posed in [22] to achieve better performance. Note the
AMBER-DFE in [22] is only developed for BPSK modula-
tion. Its extension to QAM source can be readily written as

fk = fk−1 + µf Ikr∗k (25)
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FIGURE 2. The real-value CIR generated from the channel model in [24].

bk = bk−1 + µbIk ŝ∗k (26)

where the indicator function Ik is given by

Ik = sRk−DF(s
R
k−Dy

R
k )+ js

I
k−DF(s

I
k−Dy

I
k ) (27)

in which F(t) = (1− sgn(t−τ ))/2 with τ being a predefined
threshold. Since the AMBER-DFE has been shown to outper-
form the MMSE-based DFE, the result of MMSE-based DFE
is not presented in the simulations.

To make fair comparison, we set the same total number of
taps for all applied equalizers. For the equalizer with decision
feedback structure, the numbers of taps for the feedforward
and the feedback filters are set to be Nf = 50 and Nb =
100, respectively. For the equalizer with linear structure, the
number of taps is set to be N = Nf + Nb = 150. The delay
parameter is set to be D = 30 for all equalizers.

A. BPSK SOURCE
In this subsection, we consider a time-uncorrelated BPSK
input sequence sk ∈ {±1} for the two underwater acoustic
channel models. Fig. 2 shows the applied CIR generated
from the channel model in [24], where the sampling interval
is T = 0.4 ms. After that, we obtain the discrete channel
with the maximum delay spread of around 140 symbol peri-
ods. Fig. 3 shows the impulse response measured from an
underwater acoustic communication experiment, where the
receiver is at a distance of 5 km from the transmitter [27].
For the underwater acoustic communication experiment, the
sampling rate is 48 kHz, the data transmission rate is 2 kHz,
and the maximum delay spread of the channel is about 100
symbol periods. Moreover, we set w = 0.999, β = 1, and
R0 = 50I as the initial correlation matrix for the proposed
MSER-based adaptive DFE. We set µ = µf = µb = 0.8 for
the other equalizers and τ = 0.1 for the AMBER-DFE.

In Figs. 4 and 5, we compare the convergence performance
of different equalizers over the channels shown in Figs. 2 and
3, where we show the SER versus the number of symbol iter-
ations under SNR = 14 dB and SNR = 12 dB, respectively.
It can be observed from Figs. 4 and 5 that the performance of

FIGURE 3. The real-value CIR measured from the underwater acoustic
communication test [27].

FIGURE 4. Convergence performance comparison of different equalizers
with BPSK source under channel of [24], SNR = 14 dB.

FIGURE 5. Convergence performance comparison of different equalizers
with BPSK source under the experimental channel, SNR = 12 dB.

the equalizers with decision feedback structure is much better
than that of the equalizers with linear structure. This can be
explained by the fact that for the DFEs, the residual ISI at the
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FIGURE 6. Convergence performance comparison of different equalizers
with BPSK source under the channel of [24], SNR = 14 dB.

output of the forward equalizer can be effectively mitigated
by the feedback filter. Since the feedback filter is applied to
remove the part of the ISI from the present estimated symbol,
those DFEs can achieve much better SER performance and
faster convergence rate over the underwater acoustic chan-
nels. Moreover, the proposed MSER-based adaptive DFE
outperforms the other equalizers in terms of the steady-state
SER performance and the convergence rate, which verifies
the effectiveness of the proposed equalizer. Specifically, the
proposed MSER-based adaptive DFE converges with only
2000 iterations, which is much faster than the others.

To investigate the ability of equalizers in tracking the
CIR, we apply two iteration modes in Fig. 6: the training
(TR) mode and the decision-directed (DD) mode. In the TR
mode, the transmitted symbols are known to the receiver
as training sequence. While in the DD mode, without any
priori knowledge of the transmitted symbols at the receiver,
those estimated symbols after the equalization are applied as
referred signals for coefficient adjustment. Fig. 6 shows the
comparison results of the convergence performance over the
CIR of Fig. 2 at SNR = 14 dB, where all the equalizers first
operate under the TR mode with 500 symbol iterations and
then switch to the DDmode. As shown in Fig. 6, the proposed
MSER-based adaptive DFE achieves excellent convergence
performance in both TR and DD modes. As the outputs of
the proposed DFE may be incorrectly estimated as referred
signals, the convergence speed in the DD mode is lower than
that in the TR mode. However, the convergence performance
in the DD mode is satisfactory as the proposed DFE can still
converge to a rather low steady-state SER at the order of
10−4 after around 2000 iterations in the DD mode. On the
other hand, the convergence performance of the other equal-
izers are less impressive as they converge slowly in the TR
mode and thus give rise to the error propagation in the DD
mode. Therefore, the proposedMSER-based adaptive DFE is
more robust and effective in tracking the CIR, which is more
desirable for the underwater acoustic channel.

FIGURE 7. BER performance comparison of different equalizers with
BPSK source under the channel of [24].

FIGURE 8. The complex CIR from [24].

In Fig. 7, we compare the steady-state SER performance of
all the equalizers under different values of SNR.Monte-Carlo
simulations are conducted to examine the SER performance
of all the equalizers, which are carried out with 10000 itera-
tions to ensure the steady-state SER. Due to low convergence
speed shown in the above results, the linear equalizers and the
AMBER-DFE can not achieve a desirable steady-state SER
performance in the underwater acoustic channel. However,
the steady-state SER of the proposed DFE decreases rapidly
as the SNR increases, exhibiting outstanding performance in
the underwater acoustic channel.

B. 4-QAM SOURCE
Here we consider a time-uncorrelated 4-QAM alphabet under
the complex CIR for the simulations. Fig. 8 shows the com-
plex CIR of the underwater acoustic channel with the sam-
pling interval of T = 0.4 ms obtained from [24]. Fig. 9
shows the complex CIR of the underwater acoustic channel,
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FIGURE 9. The complex CIR measured from the campus lake.

FIGURE 10. Convergence performance of the equalizers with QAM source
under the underwater acoustic channel of [24], SNR = 20 dB.

which corresponds to an underwater acoustic link that was
measured during the experiment in the campus lake. The
data transmission rate is 15 kHz, and the maximum delay
spread of the discrete channel is around 140 symbol periods.
In the following simulations, we set w = 0.99, β = 1, and
R0 = 50I as the initial correlation matrix for the proposed
MSER-based adaptive DFE. On the other hand, we set µ =
µf = µb = 0.2 for the other equalizers and τ = 0.1 for the
AMBER-DFE.

In Figs. 10 and 11, we compare the convergence rates
of different equalizers under the complex CIRs shown in
Figs. 8 and 9, where we plot SER versus the number of
symbol iterations at SNR = 20 dB and SNR = 19 dB, respec-
tively. Similar to the simulation results for the BPSK source,
the performance of the equalizers with decision feedback
structure is much better than that of the equalizers with linear
structure. The equalizers with linear structure suffer from
SER performance degradation and slow convergence when
the channel encounters a large delay spread. On the other
hand, since the DFEs apply the feedback filter to remove part
of the ISI from the present estimated symbol, they achieve

FIGURE 11. Convergence performance of the equalizers with QAM source
under the underwater acoustic channel of the campus lake, SNR = 19 dB.

FIGURE 12. Convergence performance of the equalizers with QAM source
under the underwater acoustic channel of the campus lake, SNR = 18 dB.

much better SER performance and achieves higher conver-
gence rate in the underwater acoustic channel. Moreover, as
shown in Figs. 10 and 11, our proposedMSER-based adaptive
DFE not only achieves the best SER performance but also
the fastest convergence rate, which is much desirable for the
complex underwater acoustic channel.

In Fig. 12, we apply two adaptive modes for each algo-
rithm, namely, the TR mode in which the transmitted symbol
sk−D is available at the receiver for the adjustment of the
coefficients and the DD mode in which the estimated symbol
ŝk−D is used to adjust the coefficients of the equalizers.
Fig. 12 shows the learning curves of the four equalizers
operating under the two modes, given SNR = 18 dB under
the channel of Fig. 9. All the equalizers first operate under
the TR mode with 500 symbol iterations and then switch
to the DDmode. As shown in Fig. 12, except for the proposed
MSER-based adaptive DFE, other equalizers fail to converge
due to the error propagation. Specifically, as those equalizers
suffer from slow convergence and poor SER performance in
the TR mode, they also fail to converge in the DD mode even

VOLUME 5, 2017 25153



F. Chen et al.: MSER Based Adaptive DFE in Underwater Acoustic Channels

with a large number of iterations. However, the proposedDFE
achieves excellent convergence performance and SER perfor-
mance in both TR and DD modes. Although the convergence
speed of the proposed DFE in the DD mode is slightly lower
than that in the TR mode, the convergence performance in
the DD mode is satisfactory as it still can converge quickly
to a rather low steady-state SER at the order of 10−4 after
only 500 iterations in the DD mode. Therefore, the proposed
MSER-based adaptive DFE can be regarded as a robust and
effective equalization technique for tracking the underwater
acoustic channel.

FIGURE 13. SER performance of the equalizers, QAM in the underwater
acoustic channel of the campus lake.

The steady-state SER performance with respect to the SNR
is depicted in Fig. 13.Monte-Carlo simulations are conducted
to examine the SER performance of all the equalizers, where
each equalizer is carried out 10 000 iterations to achieve its
steady-state SER. As seen from the figure, the steady-state
SERs of the linear equalizers and the AMBER-DFE decrease
slowly as the SNR increases, nearly creating an error floor.
This can be explained by the fact that as the underwater acous-
tic channel has a large delay spread, the linear equalizers and
the AMBER-DFE suffer from the slow convergence perfor-
mance while the convergence rate of these equalizers do not
improve much as the SNR increases. Therefore, limited by
the low convergence rate in the underwater acoustic channel
with large delay spread, these equalizers cannot converge
to the desirable steady-state SER performance. In contrast,
the steady-state SER and convergence performance of the
proposedMSER-based adaptiveDFE ismuchmore desirable.
As shown in Fig. 13, the steady-state SER of the proposed
DFE decreases rapidly as the SNR increases, verifying the
superiority of this equalization algorithm in compensating for
the underwater acoustic channel with large delay spread.

V. CONCLUSION
In this paper, we have developed a novel equalization algo-
rithms based on MSER criterion with decision feedback

structure to accelerate the convergence speed and achieve
rather low steady-state SER. In particular, the superior per-
formance of the proposed MSER-based adaptive DFE comes
at the expense of higher computational complexity. However,
in many communication systems with large delay spread and
fast fading, such as underwater acoustic communications,
the transmission rate of signals is much slower than that
in terrestrial communications and thus is tolerant to higher
computational complexity. Therefore, it can be a smart choice
for this type of communication systems to enhance the con-
vergence rate of equalizer at the cost of higher computational
complexity.

APPENDIX A
DERIVATION OF (9)
The derivative of J (ck ) in (8) with respect to ck is given by

∂J (ck )
∂ck

= 2(ck − ck−1)+ β
k∑

i=D

λi tanh′(βcTk vi)vi. (28)

Setting the derivative in (28) to zero yields

ck = ck−1 −
1
2
β

k∑
i=D

λi tanh′(βcTk vi)vi. (29)

By multiplying vector vTj to both sides of (7), we have(
sgn(βcTk vj)− sj−D

)
vTj = 0, j = k, k − 1, . . . ,D. (30)

Substituting (29) into the constraint of (30) with sgn(x)
replaced by tanh(βx) yields

tanh

(
βcTk−1vj −

1
2
β2

k∑
i=D

λi tanh′
(
βcTk vi

)
vTi vj

)
vTj

= sj−DvTj (31)

where j = k, k − 1, . . . ,D. The second item inside of tanh(·)
would take a small value when the channel distortion can
be well compensated for by the equalizer. By resorting to
the first-order Taylor series, we make an approximation of
tanh(x + 1) with 1 being a tiny value, i.e., tanh(x + 1) ≈
tanh(x) + tanh′(x)1. Therefore, (31) can be well approxi-
mated by

sj−DvTj = tanh(βcTk−1vj)v
T
j −

1
2
β2 tanh′(βcTk−1vj)

×

k∑
i=D

λi tanh′(βcTk vi)v
T
i vjv

T
j (32)

where j = k, k−1, . . . ,D. Note that when the channel is well
compensated for, we have β tanh′(βcTk−1vj) ≈ β tanh′(β).
Then we obtain

1
2
β

k∑
i=D

λi tanh′
(
βcTk vi

)
vTi
(
vjvTj

)
=

(
tanh

(
βcTk−1vj

)
− sj−D

)
vTj

β tanh′ (β)
(33)
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where j = k, k − 1, . . . ,D. Here we introduce a forgetting
factor w to combine multiple equations of (33)

−
1
2
β

k∑
i=D

λi tan h′(βcTk vi)v
T
i

k∑
j=D

wk−j(vjvTj )

= −

k∑
j=D

wk−j
(tanh(βcTk−1vj)− sj−D)v

T
j

β tan h′(β)
. (34)

Note that (34) can be regarded as the polynomial of w, which
is equivalent to equations of (33) [28, Ch. 15.1]. Then, we add

cTk−1
k∑

j=D
wk−j(vjvTj ) to both sides of (34) and obtain

(
cTk−1−

1
2
β

k∑
i=D

λi tan h′(βcTk vi)v
T
i

)
k∑

j=D

wk−j(vjvTj )

=

k∑
j=D

wk−j
(
−
(tanh(βcTk−1vj)−sj−D)v

T
j

β tanh′(β)
+cTk−1(vjv

T
j )

)
.

(35)

After substituting cTk of (29) into the left side of (35), we can
simplify (35) as follows:

cTk

k∑
j=D

wk−j(vjvTj )

=

k∑
j=D

wk−j
(
−
(tanh(βcTk−1vj)− sj−D)v

T
j

β tanh′(β)
+ cTk−1(vjv

T
j )

)

=w
k−1∑
j=D

wk−1−j
(
−
(tanh(βcTk−2vj)−sj−D)v

T
j

β tanh′(β)
+cTk−2(vjv

T
j )

)

−
(tanh(βcTk−1vk )− sk−D)v

T
k

β tanh′(β)
+ cTk−1(vkv

T
k )

= wcTk−1

k−1∑
j=D

wk−1−j(vjvTj )

−
(tanh(βcTk−1vk )− sk−D)v

T
k

β tanh′(β)
+ cTk−1(vkv

T
k )

= cTk−1

 k∑
j=D

wk−j(vjvTj )− vkvTk


−
(tanh(βcTk−1vk )− sk−D)v

T
k

β tanh′(β)
+ cTk−1(vkv

T
k )

= cTk−1

k∑
j=D

wk−j(vjvTj )−
(tanh(βcTk−1vk )− sk−D)v

T
k

β tanh′(β)
.

(36)

Define

Rk =

k∑
j=D

wk−j(vjvTj ), (37)

as the signal correlation matrix and

ζk =
(tanh(βcTk−1vk )− sk−D

β tanh′(β)
(38)

as the error indicator of symbol detection. By right multi-
plying the inverse of matrix Rk , i.e., R−1k and taking the
transpose operation of (36), we can obtain the following
adaptive algorithm:

ck = ck−1 − ζkR−1k vk (39)

completing the derivation.

APPENDIX B
DERIVATION OF (19)
The derivative of J (c̄k ) in (18) with respect to c̄k is given by

∂J (c̄k )
∂ c̄k

= 2(c̄k − c̄k−1)

+β

k∑
i=D

λi

(
tanh(β(c̄Tk v̄i −<{si−D} + d))

+tanh(β(c̄Tk v̄i −<{si−D} − d))
)
v̄i. (40)

Set the derivative in (40) to zero and we obtain

c̄k = c̄k−1 −
1
2
β

k∑
i=D

λi

(
tanh(β(c̄Tk v̄i −<{si−D} + d))

+tanh(β(c̄Tk v̄i −<{si−D} − d))
)
v̄i. (41)

Left multiplying v̄Tj to both sides of the equation (17) yields

sgn(c̄Tk v̄j −<{sj−D} + d)v
T
j

+ sgn(c̄Tk v̄j −<{sj−D} − d)v
T
j = 0 (42)

where j = k, k − 1, . . . ,D. Substituting (41) into the con-
straint of (42) with sgn(x) replaced by tanh(βx), and similarly
approximating tanh(x +1) with the first-order Taylor series
yields

1
2
β

k∑
i=D

λi

(
tanh

(
β
(
c̄Tk v̄j −<{sj−D} + d

))
+ tanh

(
β
(
c̄Tk v̄i −<{si−D} − d

)) )
v̄Ti v̄jv̄

T
j

=
tanh (β (�R + 1)) v̄Tj + tanh (β (�R − 1)) v̄Tj
β
(
tanh′ (β (�R + 1))+ tanh′ (β (�R − 1))

) (43)

where j = k, k − 1, . . . ,D, and �R = c̄Tk−1r̄k − <{sk−D}.
If the channel distortion can be well compensated for by
the equalizer, we have �R ≈ 0 and consequently β tanh′

(β(�R ± 1)) ≈ β tanh′(β) can be considered as a constant
in (43).
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We also introduce a forgetting factorw to combinemultiple
equations of (43), yielding

−
1
2
β

k∑
i=D

λi

(
tanh

(
β(c̄Tk v̄j −<{sj−D} + d)

)
+ tanh

(
β(c̄Tk v̄i −<{si−D} − d)

) )
v̄Ti

k∑
j=D

wk−j
(
v̄jv̄Tj

)

= −

k∑
j=D

wk−j
tanh(β(�R + 1))+ tanh(β(�R − 1))

2β tanh′(β)
v̄Tj .

(44)

Then we add c̄Tk−1
k∑

j=D
wk−j(v̄jv̄Tj ) to both sides of (44), and

substitute

c̄Tk = c̄Tk−1 −
1
2
β

k∑
i=D

λi

(
tanh(β(c̄Tk v̄i −<{si−D} + d))

+ tanh(β(c̄Tk v̄i −<{si−D} − d))
)
v̄Ti

into the left side of (44), yielding

c̄Tk

k∑
j=D

wk−j(vjvTj )

=

k∑
j=D

wk−j
(
−

tanh (β(�R + d))+ tanh (β(�R − d))
2β tanh′(β)

v̄Tj

+ c̄Tk−1(v̄jv̄
T
j )
)

=w
k−1∑
j=D

wk−1−j
(
−

tanh(β(�R+d))+tanh(β(�R−d))
2β tanh′(β)

v̄Tj

+ c̄Tk−2(v̄jv̄
T
j )
)

−
tanh(β(�R + d))+ tanh(β(�R − d))

2β tanh′(β)
v̄Tk + c̄Tk−1(v̄k v̄

T
k )

= wc̄Tk−1

k−1∑
j=D

wk−1−j(v̄jv̄Tj )+ c̄Tk−1(v̄k v̄
T
k )

−
tanh(β(�R + d))+ tanh(β(�R − d))

2β tanh′(β)
v̄Tk

= c̄Tk−1

 k∑
j=D

wk−j(v̄jv̄Tj )− v̄k v̄Tk

+ c̄Tk−1(v̄k v̄
T
k )

−
tanh(β(�R + d))+ tanh(β(�R − d))

2β tanh′(β)
v̄Tk

= c̄Tk−1

k∑
j=D

wk−j(v̄jv̄Tj )

−
tanh (β(�R + d))+ tanh (β(�R − d))

2β tanh′(β)
v̄Tk . (45)

Here the signal correlation matrix is defined by

R̄k =

k∑
j=D

wk−j(v̄jv̄Tj ) (46)

and the real part of ζk denotes the real part of the error
indicator of symbol detection, which is given by

<{ζk} =
tanh (β(�R + d))+ tanh (β(�R − d))

2β tanh′(β)
. (47)

After right multiplying the inverse of matrix R̄k , i.e., R̄−1k ,
and taking the transpose operation of (45), we obtain the
following adaptive algorithm for the real part:

c̄k = c̄k−1 −<{ζk}R̄−1k v̄k (48)

completing the derivation.
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