
SPECIAL SECTION ON NEW DEVELOPMENTS ON RELIABLE CONTROL AND FILTERING
OF COMPLEX NONLINEAR SYSTEMS

Received September 26, 2017, accepted November 7, 2017, date of publication November 13, 2017,
date of current version December 22, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2773144

Structural Properties and t/s-Diagnosis for
Star Networks Based on the PMC Model
JIARONG LIANG 1,2, QIAN ZHANG 1,2, AND HONGYI LI3
1School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China
2Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning 530004, China
3School of Automation, Guangdong University of Technology, Guangzhou 510006, China

Corresponding author: Jiarong Liang (13977106752@163.com)

This work was supported in part by the Natural Science Foundation of China under Grant 61363002 and in part by the Natural Science
Foundation of the Guangxi Zhuang Autonomous Region of China under Grant 2016GXNSFAA380134.

ABSTRACT Diagnosability is a key factor in the analysis of reliability for a network system.
t/s-diagnosability is a novel measurement for evaluating the reliability of a system. In this paper, we derive
some properties, which have not been reported by previous literatures, for a star network. By using these
properties, we prove that an n-dimensional star graph (denoted by Sn) is bln − (((l + 2)2)/3)c/(bln −
(((l + 2)2)/3)c + l − 2)-diagnosable, where (n > 5), 2 6 l 6 n − 2. Furthermore, we prove that
given an integer n(n > 5), and another integer l(2 6 l 6 n − 2), for some positive integer β ∈
(b(l − 1)n − (((l + 1)2)/3)c, bln − (((l + 2)2)/3)c], Sn is β/(β + l − 2)-diagnosable. In the last part of
this paper, we propose an isolation-fast algorithm for Sn(n > 5), and its time complexity is onlyO(N log2N ),
where N = n!.

INDEX TERMS t/s-diagnosable system, t/s-diagnosability, n-dimensional star network, isolation-fast
algorithm, PMC model.

I. INTRODUCTION
The reliability of multiprocessor system is a key index to
reflect the service quality of the system. Nowadays, the scale
of processors(units, nodes or vertices) in a multiprocessor
system is often very large. Sometimes, a multiprocessor sys-
tem has thousands of units. It is very possible that such a
system produces some faulty units in working. Hence, the
identification of faults in a system is necessary and significant
in consideration of reliable computing. In general, there are
two methods to identify faulty processors: logic-circuit-level
and system-level [1]–[4]. Because of the potentially large
number of interconnected units in a network, solutions to the
fault identification have tended to emphasize a system-level
rather than a logic-circuit-level approach [1].

In 1967, a called Preparata, Metze, and Chien model (in
brief, the PMC model), a system-level diagnosis model [6],
was presented by [5]. In the PMC model, a graph G =
(V ,E) is used to denote a multiprocessor system, where each
element ofV (G) represents a processor, each element ofE(G)
represents a link between two processors . For x, y ∈ V (G),
(x, y) ∈ E(G) denotes that x tests y. After performing a round
testing of the system, each link (x, y) ∈ E(G) will be given a
testing outcome 1 or 0, the collection of outcomes of all edges

in the system is called a syndrome, denoted by ω. ω(x, y)
can be employed to represent the outcome of x testing y. The
PMC model thinks that if unit x judges unit y to be faulty
(respectively, fault-free), then ω(x, y) = 1(respectively, 0),
and thinks that if the tester x is free-fault, then the outcome
of x testing the tested unit y is reliable, otherwise unreliable.
There are a lot of the studied results being relative to the
PMC model (see [4], [7]–[17]).

Under the PMC model, [5] proposed two fault diagnos-
able systems. One of them is called one-step t-diagnosable
system. the merit of such a system is that by one-off diag-
nosis the system can determinate the set of faulty units, but
its shortcoming is that it has a small diagnosability. The
results being relative to the t-diagnosable system have been
proverbially reported (see [7], [8], [12], [13], [19]–[24]).
Another one of them is called a sequentially t-diagnosable
system. It is possible that a sequentially t-diagnosable sys-
tem can not determinate all faulty units by one-off diagno-
sis, but its diagnosability is usually more than that of the
t-diagnosable system. Reference [18] extended the concept
of sequentially t-diagnosable system by introducing the two
concepts: the t/t-diagnosable system and the t/s-diagnosable
system(t 6 s). It is worth mentioning that for the same sys-

VOLUME 5, 2017
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

26175

https://orcid.org/0000-0002-1990-6780
https://orcid.org/0000-0002-8191-1417


J. Liang et al.: Structural Properties and t/s-Diagnosis for Star Networks Based on the PMC Model

tem, the diagnosability of the later is usually larger than that
of the former. The reason is that if a system is t/t-diagnosable,
then it must be t/s-diagnosable (t 6 s). It is a pity that few
results on t/s-diagnosable systems have been obtained so far
as far as we know.

Many regular network topologies are often employed to
model multiprocessor systems. Among them, star graph
of n dimension has been paid close attention for its merits
such as its regularity, its high recursiveness, and that its diam-
eter and degree are sub logarithmic. Many results on a star
graphs have been widely reported (see [14], [23], [30]–[33]).
However, there are few papers to report the results on the
t/s-diagnosability of star graph as far as we know. In this
article, a few new properties on Sn are proposed by us,
by means of them, the t/s-diagnosability of Sn is given
by us.

The follows are the arrangements on the remainder of
this article: In Section 2, the preliminaries are presented.
Section 3 introduces some new properties of star graph.
In Section 4, the t/s-diagnosability of star graph is discussed.
Section 5 gives a diagnosis algorithm for Sn (n > 5).
And Section 6 is a conclusion.

II. PRELIMINARIES
A multiprocessor system can be modeled by a graph
G = (V ,E), each node x ∈ V represents one processor,
each edge (x, y) ∈ E represents the communication link
between x and y. In this paper, all considered graphs are
undirected graphs without loops. For convenience, in this
paper, we doesn’t distinguish the four terminologies: unit,
node, vertex and processor. At the same time, the other
three terminologies: network, system and graph are also not
distinguished.

For a given graph G = (V ,E), we use V (G) to represent
the set of vertices of graph G, E(G) the set of edges of graph.
A connected subgraph of G, say X , is described as a compo-
nent of G if there doesn’t exist an edge (x, y) ∈ E(G) such
that either x ∈ V (X ) and y ∈ V (G) − V (X ) or y ∈ V (X )
and x ∈ V (G) − V (X ). We use Csub(G) to denote the set of
all components of G. If G has k components, then Csub(G) =
{Ci|Ci is a component of G, 1 6 i 6 k}. Particularly, for a
connected graph G we have that Csub(G) = {G}.
Let Y ⊂ V , the induced subgraph of Y can be repre-

sented by Ginduced (Y ,G) = (V1,E1), where V1 = Y and
E1 = {(v1, v2) ∈ E|v1, v2 ∈ Y }.
Let Cardk (Csub(G)) = {Z ∈ Csub(G) : |V (Z )| = k}.

To explain the two notations Ginduced (Y ,G) and Cardk
(Csub(G)), we consider a graph of 7-node G shown
by Figure 1. In Figure 1, we have that Csub(G) =

{C1,C2} where C1 = Ginduced ({v2, v3, v6},G) and C2 =

Ginduced ({v1, v4, v5, v7},G). Card3(Csub(G)) = {C1} and
Card4(Csub(G)) = {C2}.
Let v ∈ V , X ⊂ V . We call a node x ∈ V − X

to be an out-neighbor of X if X has such a node y ∈ X
satisfying (x, y) ∈ E . We employ NG(v) (in brief, N (v), when
no any confusion) to represent the collection of neighbors

FIGURE 1. A graph of 7-node.

of v, N (v) = {z ∈ V |(z, v) ∈ E or (v, z) ∈ E}, NG(X )
(in brief, N (X ), when no any confusion) to represent the
collection of out-neighbors of X , N (X ) = ∪v∈XN (v)− X .
we follow [34] for definitions and notations not mentioned

above.
Definition 1: Let G = (V ,E) represent a system, Y ⊂ V .

Y is said to be a fault-free link of the system if the following
conditions hold:

1. Each node in Y is fault-free; and
2. For any two nodes v1, v2 ∈ Y , there exists a path between

v1 and v2 satisfying each node of it belongs to Y .
Lemma 2: For a system G = (V ,E) and a syndrome ω,

assume that the number of faulty units in G is less than or
equal to t . For a subset X = {x1, x2, · · · , xk} ⊂ V with
|X | = k > t + 1, X is a fault-free link of the system if the
two conditions described as follows hold:

i) (xj, xj+1) ∈ E where 1 6 j 6 k − 1.
ii) ω(xj, xj+1) = ω(xj+1, xj) = 0, 1 6 j 6 k − 1.
Proof: By the definition of the PMC model and

Definition 1, the result is true.
Definition 3: Let G = (V ,E) represent a system, ω a

syndrome obtained after performing a test, X a subset of V .
For ω, X is called an allowable fault set (in brief, AFS) if the
following conditions are true,

i) For (u, v) ∈ E , if u, v ∈ V − X , then ω(u, v) = 0, and
ii) For (u, v) ∈ E , if u ∈ V − X and v ∈ X , then

ω(u, v) = 1.
Lemma 4: Let G = (V ,E) represent a system, ω a syn-

drome. If S1, S2 ⊆ V are AFSs for ω, then S1 ∪ S2 is also an
AFS for ω.

Proof: Assume that S1 ∪ S2 is not an AFS for ω,
then at least one of conditions of Definition 2.2 is not
true.

If i) of Definition 3 is not true, then V − (S1 ∪ S2) has two
nodes, say u and v, with (u, v) ∈ E such that ω(u, v) = 1,
which implies that each one of S1 and S2 is not an AFS for ω,
a contradiction.

If ii) of Definition 3 is not true, there exists an edge (u, v) ∈
E satisfying u ∈ V − S1 ∪ S2, v ∈ S1 ∪ S2 and ω(u, v) = 0. If
v ∈ S1, then S1 is not an AFS for ω, a contradiction. If v ∈ S2,
then S2 is not an AFS for ω, a contradiction.
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FIGURE 2. A 4-dimensional star graph.

III. PROPERTIES OF STAR GRAPH
A star network of n dimension, denoted by Sn, is a
graph (V (Sn),E(Sn)), where V (Sn) = {s1s2s3 · · · sn|si ∈
{1, 2, 3, · · · , n}, si 6= sj(i 6= j)} and E(Sn) =

{(s1s2s3 · · · sn, sis2s3 · · · si−1s1si+1 · · · sn)|2 6 i 6 n}. Sup-
pose that x = x1x2 · · · xn, y = y1y2 · · · yn ∈ V (Sn), then
(x, y) ∈ E(Sn) if and only if ∃k ∈ {2, 3, · · · , n} such that
y1 = xk , yk = x1, yi = xi(2 6 i 6 n, i 6= k). For a node
x ∈ V (Sn), we use add(x) to denote it’s address.
Figure 2 is a star network of 4 dimension.
Lemma 5 [23]: In Sn, there are no odd cycles and there are

even cycles with length L(6 6 L 6 n!).
Lemma 6 [30]: In Sn, let u ∈ V (Sn), N (u) =

{u1, u2, · · · , un−1}. Then for each pair ui, uj there are exactly
three nodes, say x, y, z, in V (Sn) − N (u) − {u} such that
ui, uj, u, x, y, z form a 6-node loop.
Lemma 7: In Sn(n > 5), let S = {si ∈ V (Sn)|1 6 i 6

k, | ∩ki=1 N (si)| = 1, 1 6 k 6 n − 1}. Then |N (S)| =
(n− 2)k + 1.

Proof: Let u ∈ N (s1)∩N (s2)∩· · ·∩N (sk ). By Lemma 5,
it is true that for any two nodes si, sj ∈ S, u is their unique
common neighbor. Since the degree of each vertex in Sn is
exactly (n− 1), |N (S)| = (n− 2)k + 1.
Definition 8: Let G = (V ,E) denote a system, L ⊆ V ,

x ∈ L. y ∈ (V − L) ∩ N (x) is called a private neighbor of x
for L if L has no a node z such that y ∈ N (z).
For v ∈ L, we employ PNL(v) to represent the collection of

all private neighbors of v for L. Obviously, PNL(v) = N (v)−
N (L − {v})− L.
Lemma 9: In Sn(n > 5) , let S = {si ∈ V (Sn)|i = 1, 2, 3},

then following conditions hold:
i) If any two nodes of S are disconnected, then |PNS (s1)|+
|PNS (s2)| + |PNS (s3)| > 3n− 9.

ii) Otherwise, |PNS (s1)|+|PNS (s2)|+|PNS (s3)| > 3n−7.
Proof: Condition i): Since any two nodes of

n-dimensional star graph share at most one public neighbor,
|PNS (si)| > (n − 1) − 2 = n − 3 (i = 1, 2, 3). Hence
|PNS (s1)| + |PNS (s2)| + |PNS (s3)| > 3n− 9.

Condition ii): There always exist two nodes, say s1, s2 ∈ S
are adjacent, consider the following cases:
Case 1: There is exactly one of s1 and s2 being adjacent

to s3.
Without loss of generality, let (s1, s3) ∈ E(Sn), then
|PNS (s1)| + |PNS (s2)| + |PNS (s3)| = (n − 3) + (n − 2) +
(n− 2) = 3n− 7.
Case 2: None of s1 and s2 is adjacent to s3
Case 2.1: There is exactly one in {s1, s2} sharing one

common neighbor with s3.
Without loss of generality, suppose that s2 and s3 share

one public neighbor, then by Lemma 5 there is not a node
shared by s1 and s3. So, |PNS (s1)|+ |PNS (s2)|+ |PNS (s3)| =
(n− 2)+ (n− 3)+ (n− 2) = 3n− 7.
Case 2.2: Each one of {s1, s2} shares one common neigh-

bor with s3. By Lemma 5, we have that Sn doesn’t have odd
cycles. Hence, the case can not take place.
Case 2.3: None of s1 and s2 shares one common node

with s3. Then |PNS (s1)|+ |PNS (s2)|+ |PNS (s3)| = (n− 2)+
(n− 2)+ (n− 1) = 3n− 5.
Lemma 10 [23]: In Sn(n > 5) , let S = {si ∈ V (Sn)|i =

1, 2, 3, 4}, then |N (S)| > 4n− 10.
Lemma 11: In Sn(n > 5), there exists no such a subgraph

of Sn shown in Figure 3.
Proof: Suppose that, to the contrary, Figure 3 is a

subgraph of Sn. Let the address of v1 be a1a2a3 · · · an.
The address of v1 can be changed to the address of v2 by
four time changes as follows: add(u1) = aia2 · · · ai−1a1ai+1
· · · an, add(u2) = aja2 · · · a1 · · · ai · · · an, add(u3) =
aka2 · · · a1 · · · ai · · · aj · · · an, add(v2) = ala2 · · · a1 · · ·
ai · · · aj · · · ak · · · an(2 6 i, j, k, l 6 n). We claim that at least
two of i, j, k, l are identical. Otherwise, any two of i, j, k, l are
not identical, we derive a contradiction. By the assumption,
we conclude that Sn has an 8-node cycle, say C8, such that
v1, v2 ∈ V (C8). Without loss of generality, let add(v1) =
12345 · · · n, add(u1) = 21345 · · · n, add(u2) = 31245 · · · n,
add(u3) = 41235 · · · n, add(v2) = 51234 · · · n. Since
{v1, u1, u2, u3, v2,w3,w2,w1} can form an 8-node cycle, then
add(w1) = i2 · · · 1 · · · n where 3 6 i 6 n. And the
address of w2 is the one of the following: 2i · · · 1 · · · n,
32i · · · 1 · · · n, · · · , n23 · · · 1 · · · i. Since the second position
of the address of node v2 is 1 and the second position from
the left of the address of node w2 is not 1, therefore the
first position from the left of the address of node w3 is 1.
Then the address of w3 is one of the following addresses:
1i · · · 2 · · · n, 12i · · · 3 · · · n, · · · , 123 · · · n · · · i. Therefore, v2
and w3 is not adjacent which is a contradiction to the
hypothesis.

For three distinct integers i, j, k 6 n, without loss of
generality, let i = 2, j = 3, k = 4, then add(v1) =
1234 · · · n, add(u1) = 2134 · · · n, add(w1) = 3214 · · · n,
add(y1) = 4231 · · · n, add(x1) = l234 · · · 1 · · · n (l 6= 1,
2, 3, 4). Since {v1, u1, u2, u3, v2, x3, x2, x1} can form an
8-node cycle. Then the address of node x2 is the one of the fol-
lowing: 2l34 · · · 1 · · · n, 32l4 · · · 1 · · · n, · · · , n234 · · · 1 · · · l.
Note that the lth position from the left of the address of
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FIGURE 3. A graph of Lemma 11.

node v2 is l and the lth position from the left of the address
of node x2 is 1. Therefore, the first position from the left of
the address x3 is l, which implies that add(x3) = add(x1),
a contradiction.

By Lemma 11, we get easily the following lemma, and omit
its proof.
Lemma 12: In Sn(n > 5), for any subset S = {vi ∈

V (Sn)|1 6 i 6 5 and vj+1 ∈ N (vj)(1 6 j 6 4)} ⊆ V , let
L(S) = {Li = {xi, yi, zi} ⊂ V (Sn)|Li ∪ S can form an 8-node
cycle and Li ∩ Lj = ∅(i 6= j) }. Then |L(S)| 6 2.
Lemma 13: In Sn(n > 5), let V ′ ⊂ V (Sn) with |V ′| = k

(3 6 k 6 3n − 6). If there exist three nodes v1, v2, v3 ∈ V ′

such that v1, v2 share one common neighbor and v2, v3 share
one common neighbor, then the following conditions hold:

i) If v1, v2, v3 share one common neighbor, then V ′ has a
node, say v, satisfying |PNV ′ (v)| > n− 2− b k3c.

ii) If v1, v2, v3 are in the same 6-node cycle, then V ′ has a
node, say v, satisfying |PNV ′ (v)| > n− 2− b k3c.
iii) If v1, v2, v3 are in a 5-node line but not in the same

6-node cycle, then V ′ has a node, say v, satisfying
|PNV ′ (v)| > n− 2− b k3c.

Proof: Let S = {v1, v2, v3}. We need only to
show that there exist three nodes, say w1,w2,w3, such that
|PNV ′ (w1)| + |PNV ′ (w2)| + |PNV ′ (w3)| > 3n− 6− k , which
implies that there exists a node x ∈ {w1,w2,w3} satisfying
|PNV ′ (x)| > n− 2− b k3c.
Condition i): By Figure 4, we have that |PNS (v1)| +
|PNS (v2)| + |PNS (v3)| = 3n − 6. Let v = N (v1) ∩ N (v2) ∩
N (v3), according to Lemma 6, for {v1, v2}, V ′ has at most
one node, say u, such that v1, v, v2, u can form a 6-node cycle
with two other nodes and |(N (u)∩ (PNS (v1)∪PNS (v2))| = 2.
Similarly, for {v1, v3} and {v2, v3}, we have similar results.
Therefore, |PNV ′ (v1)| + |PNV ′ (v2)| + |PNV ′ (v3)| > 3n− 6−
(k − 3)− 3 = 3n− 6− k .
Condition ii): |PNS (v1)|+|PNS (v2)|+|PNS (v3)| = 3n−9.

Therefore, |PNV ′ (v1)| + |PNV ′ (v2)| + |PNV ′ (v3)| > 3n− 9−
(k − 3) = 3n− 6− k .

FIGURE 4. An illustration of Lemma 12.

Condition iii): According to Lemma 6, there exists a
subgraph shown as Figure 4, |PNS (v1)| + |PNS (v2)| +
|PNS (v3)| = 3n − 7. If u1 ∈ V ′(u2 ∈ V ′), then for the set
{v1, v2, u1}({v2, v3, u2}), a similar argument to condition ii)
can be used. If there exists an 8-node cycle, say C8, such
that v1, x, v2, y, v3 ∈ V (C8), according to Lemma 12, there
exist at most two nodes in V ′, say u, which satisfies that
|N (u) ∩ [PNS (v1) ∪ PNS (v3)]| = 2. Therefore, |PNV ′ (v1)| +
|PNV ′ (v2)| + |PNV ′ (v3)| > 3n − 7 − (k − 3) − 2 =
3n− 6− k .
Lemma 14: In Sn(n > 5), let V ′ ⊂ V (Sn) with |V ′| = k

(3 6 k 6 3n−6), then V ′ has always a node, say v, satisfying
|PNV ′ (v)| > n− 2− b k3c.

Proof:
Case 1: k = 1 or k = 2.
When k = 1, since for each node v ∈ V ′ |PNV ′ (v)| = n−1,

the claim is true. When k = 2, since |PNV ′ (v)| > n− 2 , the
claim holds.
Case 2: k > 3.
We prove the claim by showing that there exist three

nodes, say w1,w2,w3, such that |PNV ′ (w1)| + |PNV ′ (w2)| +
|PNV ′ (w3)| > 3n − 6 − k , which implies that {w1,w2,w3}

has a node v satisfying |PNV ′ (v)| > n − 2 − b k3c. Let
S = {v1, v2, v3} ⊆ V ′. We will discuss these cases described
as follows:
Case 2.1: There exist two nodes, say v1, v2 ∈ S, such that

v1, v2 are adjacent (see Figure 5):
Case 2.1.1: v2 and v3 are adjacent.
For S, |PNS (v1)| + |PNS (v2)| + |PNS (v3)| = 3n − 7.

According to Lemma 6, we get that V ′ has a node u such that
|N (u) ∩ [PNS (v1) ∪ PNS (v3)]| = 2. Therefore, |PNV ′ (v1)| +
|PNV ′ (v2)|+|PNV ′ (v3)| > 3n−7− (k−3)−1 = 3n−5−k .
Case 2.1.2: v2 and v3 share one common neighbor.
Then |PNS (v1)| + |PNS (v2)| + |PNS (v3)| = 3n − 7.

After a similar argument to Case 2.1.1, we get that V ′

has at most one node, say u, satisfying |(N (u) ∪ {u}) ∩
(PNS (v1)∪PNS (v2)∪PNS (v3))| = 2. Therefore, |PNV ′ (v1)|+
|PNV ′ (v2)|+|PNV ′ (v3)| > 3n−7− (k−3)−1 = 3n−5−k .
Case 2.1.3: There are two nodes x, y between v2 and v3

(see Figure 5).
then |PNS (v1)| + |PNS (v2)| + |PNS (v3)| = 3n − 5.

If v2, x, y, v3 belong to a 6-node cycle, thenV ′ has at most one
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FIGURE 5. Case 2.1 of Lemma 14.

node, say u, satisfying |(N (u)∪{u})∩[PNS (v2)∪PNS (v3)]| =
2. And if v1, v2, x, y, v3 belong to an 8-node cycle, according
to Lemma 12, there exist at most two nodes in V ′, say w,
such that |N (w) ∩ (PNS (v1) ∪ PNS (v3))| = 2. Therefore,
|PNV ′ (v1)|+|PNV ′ (v2)|+|PNV ′ (v3)| > 3n−5−(k−3)−4 =
3n− 6− k .
Case 2.1.4: There are three nodes x, y, z between v2 and v3

(see Figure 5).
Then |PNS (v1)| + |PNS (v2)| + |PNS (v3)| = 3n − 5.

If v2, x, y, z, v3 belong to an 8-node cycle, then according
to Lemma 12, there exist at most three nodes in V ′, say u,
such that |N (u) ∩ [PNS (v2) ∪ PNS (v3)]| = 2. Therefore,
|PNV ′ (v1)|+|PNV ′ (v2)|+|PNV ′ (v3)| > 3n−5−(k−3)−3 =
3n− 5− k .

If there are at least four nodes between v2 and v3, the claim
is obvious.
Case 2.2: Any two nodes of v1, v2, v3 is not adjacent.
If v1, v2, v3 belong to a 6-node cycle, then according to

Lemma 13, the claim is true. Hence, we need only to discuss
the situation that v1, v2, v3 do not belong to a 6-node cycle.
Consider the following cases :
Case 2.2.1: There exist two nodes in S, say v1, v2, such that

they share one common neighbor.
If v1, v2, v3 share one common neighbor, then according to

condition i) of Lemma 13, the claim holds.
If v1, v2 share one common neighbor, say x, and v2, v3

share another common neighbor, say y, then according to
condition iii) of Lemma 13, the claim holds.

If v1, v2 share one common neighbor, say x, and v1, v3(and
v2, v3) share no common neighbors, then |PNS (v1)| +
|PNS (v2)| + |PNS (v3)| = 3n − 5. If V ′ has some node u
satisfying |N (u) ∩ [PNS (v1) ∪ PNS (v2)]| = 2, according to
condition ii) of Lemma 13, the claim is true. Similarly, if
there are two (three) nodes x, y(x, y, z) between v2 and v3 and
v2, x, y, v3(v2, x, y, z, v3) can form one 6-node (8-node) cycle
with two other nodes (three other nodes), a similar argument
to the Case 2.1.3, 2.1.4 can be used.
Case 2.2.2: Any two nodes of S do not share one common

neighbor.
Then |PNS (v1)| + |PNS (v2)| + |PNS (v3)| = 3n − 3.

If V ′ has some node u satisfying |(N (u) ∪ {u}) ∩ [PNS (v1) ∪
PNS (v2) ∪ PNS (v3)]| > 2, then a similar argument to Case
2.1 or Lemma 13 can be used for {u, v1, v2}. Otherwise,
|PNV ′ (w1)|+ |PNV ′ (w2)|+ |PNV ′ (w3)| > 3n−3− (k−3) =
3n− k > 3n− 6− k .

Lemma 15: In Sn(n > 5), let V ′ be a k-node subset
of V (Sn), where (1 6 k 6 3n − 6), then |N (V ′)| >
kn− (k+2)2

3 + 1.
Proof: We show this result by using induction on k .

When k = 1, since each node of Sn has exactly (n − 1)
neighbors, the result is true. when k = 2, since |N (V ′)| >
2n − 4 > 2n − (2+2)2

3 + 1, the result is true. When k = 3,

since |N (V ′)| > 3n− 7 > 3n− (3+2)2
3 + 1, the result is true.

And for k = 4, according to Lemma 10, |N (V ′)| > 4n−10 >
4n− (4+2)2

3 + 1.
Now, suppose that the result holds for k (k > 4). Next,

we will discuss the case of k+1. By contrary, suppose that V
has a subset V ′ with |V ′| = k + 1 satisfying |N (V ′)| < (k +
1)n− (k+3)2

3 + 1. By Lemma 14, we have that V ′ has a node
v satisfying |PNV ′ (v)| > n− 2− b k+13 c. Let V

′′
= V ′ − {v},

the following cases will be discussed:
Case 1: v has a neighbor in V ′.
N (V ′′) = (N (V ′) − PNV ′ (v)) ∪ {v}, then |N (V ′′)| =
|N (V ′)| − |PNV ′ (v)| + 1 < (k + 1)n − (k+3)2

3 + 1 −

[n − 2 − b k+13 c] + 1 = kn − k2+6k−3
3 + b

k+1
3 c. Since

kn− (k+2)2
3 +1− [kn− k2+6k−3

3 +b
k+1
3 c] =

2k−4
3 −b

k+1
3 c =

k−5
3 +(

k+1
3 −b

k+1
3 c) > 0 (k > 5), |N (V ′′)| < kn− (k+2)2

3 +1,
a contradiction.
Case 2: v has no neighbor in V ′.
Then N (V ′′) = (N (V ) − PNV ′ (v)), then |N (V ′′)| =
|N (V ′)|−|PNV ′ (v)| < (k+1)n− (k+3)2

3 − [n−2−b k+13 c]+

1 = kn− k2+6k
3 +b

k+1
3 c 6 kn− k2+6k

3 +
k+1
3 = kn− k2+5k−1

3 .

Since kn− (k+2)2
3 + 1− [kn− k2+5k−1

3 ] = k−2
3 > 0(k > 5),

|N (V ′′)| < kn− (k+2)2
3 + 1, a contradiction.

Lemma 16: In Sn(n > 4), let F be a subset V (Sn)
with |F | 6 ln − (l+2)2

3 (1 6 l 6 n − 2),
Ginduced (V (Sn)−F) the induced subgraph of V (Sn)−F . And
let Csub(Ginduced (V (Sn)−F)) = {C1,C2, · · · ,Cm}. Then the
following conditions hold:

i) 6l−1
i=0 i|Cardi(Csub(Ginduced (V (Sn)− F)))| 6 l − 1.

ii) There exists exactly one subset Ci ∈ Csub(Ginduced
(V (Sn)− F)) with |V (Ci)| > l.

Proof: By induction on n. For n = 4, then 1 6 l 6 2.
For l = 1, we have |F | 6 1, then the results are true. When
l = 2, we have |F | 6 3 − 1

3 . Since the connectivity of a
4-dimensional star graph is 3, the results hold when n = 4.
Assume that the results hold for some n − 1 > 4. Now we
consider the situation of n > 5. For convenience, we divide
Sn into n Sn−1s, denoted by H1,H2, · · · ,Hn.

By induction on l. For l = 1, we have |F | 6 n−3. The fact
the connectivity of Sn is n−1 implies that the results are true.
Assume that the results are true for some l−1where l−1 > 1.
We shall prove that the results hold also for l. Suppose that,
to the contrary, for some l, at least one of the condition i) and
ii) is false. Next, we will derive a contradiction.
Case 1: 6l−1

i=0 i|Cardi(Csub(Ginduced (V (Sn)− F)))| > l.
Let T = {Cardi(Csub(Ginduced (V (Sn) − F))) where 1 6

i 6 l − 1} and we can always find a subset T ′ ⊆ T with
T ′ = {C1,C2, · · · ,Cr }such that | ∪r−1i=1 Ci| 6 l − 1 and
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| ∪
r
i=1 Ci| > l. Let Ta = ∪

r−1
i=1Ci and Tb = Cr , |Ta ∪Tb| = α.

Note that |Ta|, |Tb| 6 l − 1, then α 6 2l − 2. Then |F | >
αn− (α+2)2

3 + 1. Let f (α) = αn− (α+2)2
3 + 1− [ln− (l+2)2

3 ].

After simplifying, f (α) = −α2+(3n−4)α+l2+4l−3ln+3
3 . Note

that α ∈ [l, 2l−2], we have that f (α) > min{f (l), f (2l−2)}.
Furthermore, f (l) = 1 and f (2l−2) = −3l

2
+(3n+4)l+(7−6n)

3 >

0 (l > 2), which implies that f (α) > 0. On the other hand,
from the assumption, we have that |F | 6 ln − (l+2)2

3 , a
contradiction.
Case 2:There exist at least twoCi ∈ Csub(Ginduced (V (Sn)−

F)) with |V (Ci)| > l.
Let C1,C2 ∈ Csub(Ginduced (V (Sn) − F)) with
|V (C1)|,V (C2)| > l. If |V (C1)| = α 6 2n − 2, then
|F | > |V (C1)| > αn− (α+2)2

3 + 1. Let g(α) = αn− (α+2)2
3 +

1 − [ln − (l+2)2
3 ] where l 6 α 6 2n − 2. Since g(α) is a

quadratic function, g(α) > min{g(l), g(2l − 2)}. Note that
g(l) = 1 and g(2n − 2) = 2n2−6n−3ln+(l+2)2+3

3 > 1, which

implies that g(α) > 1, therefore, |F | > ln− (l+2)2
3 . This is a

contradiction to the hypothesis. Therefore, |V (C1)| > 2n−2.
Similarly, |V (C2)| > 2n − 2. Let V (C1) ∩ Hi = Ai,
V (C2) ∩ Hi = Bi and F ∩ Hi = Ti. We discuss the cases
described as follows:
Case 2.1: |Ti| > (l − 1)(n− 1)− (l+1)2

3 for some i.

6n
j 6=i|Tj| = |F | − |Ti| < ln − (l+2)2

3 − [(l − 1)(n −

1) − (l+1)2
3 ] = (n − 2) + l

3 6 2n − 6(n > 5). Therefore,
6n
j 6=i|Tj| < 2n− 6.
Since the connectivity of Hj is n − 2, there is at most

one Hj(j 6= i) satisfying that Hj − Tj is disconnected. If for
each j ∈ {1, 2, · · · , n}(j 6= i), Hj − Tj is connected. Then
L = V (Sn) − (F ∪ Hi) is connected. Since each node of Hi
has exactly one neighbor outside Hi and 6n

j 6=i|Tj| 6 2n − 7,
there exist at most 2n − 7 nodes in Hi − Ti which are not
adjacent to L. Therefore, there exists only one component
of V (Sn) − F whose size is larger than 2n − 2, which is a
contradiction. If there exists some Hj(j 6= i) satisfying that
Hj − Tj is disconnected, we shall show the result is also true.
Let La be the largest component ofHa−Ta(1 6 a 6 n). Note
that |Tj| 6 2n−7 6 3n−11− 1

3 = 3(n−1)− (3+2)2
3 (n > 5),

according to the induction hypothesis, |Hj − Tj − Lj| 6 2.
Since the number of edges between any two different Hj’s,
where each one of them is different from Hi, is (n − 2)!.
When n > 5 , (2n − 7 + 2) < (n − 2)!, A = ∪nj=1,j 6=iLj is
connected. Since each node of Hi has exactly one neighbor
outside Hi and 6n

j 6=i|Tj| 6 2n − 7, there exist at most
(2n − 7 + 2) nodes in Hi − Ti which are not adjacent
to A, which implies that there exists only one component
of V (Sn) − F whose size is larger than 2n − 2, this is a
contradiction.
Case 2.2: |Ti| 6 (l − 1)(n− 1)− (l+1)2

3 for all i.
Let Li be the largest component of Hi − Ti. According

to the induction hypothesis, we have that |Li| > l − 1 and
|Hi − Ti − Li| 6 l − 2, which implies that |Hi − Li| 6
(l − 2) + (l − 1)(n − 1) − (l+1)2

3 . Since there are (n − 2)!

edges between Hi and Hj, and each node of Hi is adjacent
to at most one node in Hj, and (n − 2)! − [2(l − 2) +
2((l − 1)(n − 1) − (l+1)2

3 )] > (n − 2)! − 4n2−16n−2
3 > 0

(n > 6), there exists at least one edge from Li to Lj, which
implies that Li,Lj are connected(n > 6). And for n = 5,
|Ti|, |Tj| 6 −l2+10l−13

3 6 3 − 1
3 , which implies that Hi −

Ti (Hj − Tj) is connected. Therefore, Li,Lj are connected
for n = 5. Furthermore, ∪ni=1Li is the largest component of
Ginduced (V (Sn)−F), then either V (C1) ⊆ ∪ni=1V (Hi−Ti−Li)
or V (C2) ⊆ ∪ni=1V (Hi − Ti − Li). Without loss of generality,
let V (C1) ⊆ ∪ni=1V (Hi−Ti−Li), then Ai ⊆ V (Hi−Ti−Li).
For each pair i, j (i 6= j), α = |Ai| 6 l − 2 and β = |Aj| 6
l−2, |N (Ai)∩V (Hi)|+|N (Aj)∩V (Hj)| > α(n−1)− (α+2)2

3 +

1+β(n−1)− (β+2)2

3 +1 > (α+β)(n−1)− (α+β+2)2

3 +1 (∗).
For A1,A2, · · · ,An, we can always find a positive integer
1 6 r 6 n such that |∪r−1i=1 Ai| 6 l−2, |∪ri=1Ai| > l−1. Since
| ∪

r
i=1 Ai| 6 2(l − 2) 6 2n− 8 and |V (C1)| > 2n− 2, there

exist three nodes u, v,w ∈ ∪nj=r+1Aj. According to Lemma
15 and (∗), |N (∪nj=r+1Aj) ∩ (∪nj=r+1Hj)| > |N ({u, v,w}) ∩

(∪nj=r+1Hj)| > 3(n − 1) − 52
3 + 1 = 3n − 10 − 1

3 . Let

γ = 6r
i=1|Ai|. Since6

r
i=1|N (Ai)∩Hi| > γ (n−1)− (γ+2)2

3 +1,
|F | > 6r

i=1|N (Ai) ∩ Hi| + |N (∪nj=r+1Aj) ∩ (∪nj=r+1Hj)| >

γ (n − 1) − (γ+2)2

3 + 1 + 3n − 10 − 1
3 , where l − 1 6 γ 6

2(l−2). According to the properties of the quadratic function,
γ (n− 1)− (γ+2)2

3 + 1 > (l − 1)(n− 1)− (l+1)2
3 + 1, where

l − 1 6 γ 6 2(l − 2). Therefore, |F | > (l − 1)(n − 1) −
(l+1)2

3 + 1+ 3n− 10− 1
3 . Since (l− 1)(n− 1)− (l+1)2

3 + 1+

3n− 10− 1
3 − [ln− (l+2)2

3 ] = 2n− 7− l+1
3 > 0 (n > 5),

we conclude that |F | > ln− (l+2)2
3 , a contradiction.

Combining the above cases, our proof is completed.

IV. THE T /S-DIAGNOSABILITY OF THE STAR GRAPH
Definition 17: Let S be a system, t and s are two positive

integers (t 6 s). S is called to be t/s-diagnosable if a set of
units L with |L| 6 s, which contains all faulty units of S, can
be located provided the number of faulty units in the system
S is no more than t .
Lemma 18: Let G = (V ,E) be a system, G′ a connected

subgraph of G with |V (G′)| > t + 1. Assume that G has at
most t faulty vertices. If the test results in G′ are all 0s, then
G′ doesn’t contain any faulty vertices.

Proof: To the contrary, suppose that G′ contains some
faulty vertex u. Since the test results in G′ are all 0s,
each vertex of NG′ (u) is faulty. Furthermore, all vertices of
NG′ (NG′ (u)) are faulty. Since G′ is a connected subgraph of
G, each vertex of V (G′) is faulty. Hence, the system has more
than t faulty vertices, a contradiction.
Lemma 19 [35]: Let G = (V ,E) represent a system, Y =
{vi ∈ V |1 6 i 6 l, (vj, vk ) /∈ E (1 6 j, k 6 l, j 6= k)(l >
3)}. Let β be the cardinality of N (Y ), then the system is not
(β + 1)/[β + (l − 1)]-diagnosable.
Now, we begin to discuss the t/s-diagnosability of n-

dimensional star graph.
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Theorem 20: Sn(n > 5) is not [(n − 2)l + 2]/[(n − 1)l]-
diagnosable (3 6 l 6 n− 1).

Proof: According to Lemma 19 and Lemma 7, we
conclude that the result is true.
Theorem 21: Sn(n > 5) is bln − (l+2)2

3 c/(bln −
(l+2)2

3 c +

l − 2)-diagnosable, where 2 6 l 6 n− 2.
Proof: We employ G = (V ,E) to represent the graph

of Sn, R to represent the collection of all faulty units in Sn
with |R| 6 bln − (l+2)2

3 c . Let Csub(Ginduced (V − R)) =
{C1,C2, · · · ,Cm} represent the collection of all components
inG−R. By Lemma 16, we have the two conditions described
as follows:

i) 6l−1
i=0 i|Cardi(Csub(Ginduced (V − R)))| 6 l − 1.

ii) Csub(Ginduced (V − R)) has exactly one Ci such that
|V (Ci)| > l.

Let S = ∪l−1i=0(∪Cardi(Csub(Ginduced (V − R)))) and α =
|S| 6 l − 1. We will discuss the cases described as follows:
Case 1: α < l − 1.
By above condition ii), we have Ci = Ginduced (V − R −

S), which implies that Ginduced (V − R − S) is a component.
On the other hand, we have that |Ci| > n! − (l − 2)− bln−
(l+2)2

3 c > bln − (l+2)2
3 c (n > 5). Since the test results in

Ci are 0s, we conclude that all nodes of Ci are fault-free by
Lemma 18. Since |V − V (Ci)| 6 bln −

(l+2)2
3 c + l − 2 and

V − V (Ci) contains all faulty nodes in Sn, the result is true.
Case 2: α = l − 1.
We claim that R doesn’t have any node v satisfying N (v) ⊆

R ∪ S. By contrary, let R′ = R − {v}, then we have that
|N (S ∪ {v})| 6 |R′| 6 bln − (l+2)2

3 c − 1, a contradiction
to Lemma 15. Therefore, N (R) ⊂ V (Ci). On the other hand,
the similar argument to the proof of Case 1 can be used to
prove that all nodes in Ci are fault-free here. Hence, all nodes
of R can be diagnosed to be faulty correctly. The result is
true.
Theorem 22: Sn(n > 5) is β/(β + l − 2)-diagnosable,

where β and l are two positive integers satisfying the fol-
lowing conditions :β ∈ (b(l − 1)n − (l+1)2

3 , bln − (l+2)2
3 c],

l ∈ [2, n− 2].
Proof: we useG = (V ,E) to denote the graph of Sn, and

R to denote the set of all faulty nodes in Sn with b(l − 1)n−
(l+1)2

3 c < |R| 6 bln−
(l+2)2

3 c. Let Csub(Ginduced (V − R)) =
{C1,C2, · · · ,Cm}. And a similar argument to the proof of
Theorem 4.2 can be used to prove the result.
The results that Sn is (n−1)-diagnosable and (2n−4)/(2n−

4)-diagnosable have been obtained in previous literatures.
Our studies show that Sn is bln−

(l+2)2
3 c/(bkn−

(l+2)2
3 c+l−2)-

diagnosable where 2 6 l 6 n−2, but not [(n−2)l+2]/(n−
1)l-diagnosable (3 6 l 6 n − 1). In other words, our results
show that the t/s-diagnosability of Sn is about (s − t + 2)
times as large as t-diagnosability of it. Figure 6 describes the
relationship of several diagnosabilities of Sn.
For some integer l ∈ [2, n−2] and some integer β ∈ (b(l−

1)n − (l+1)2
3 , bln − (l+2)2

3 c], by Theorem 22 it is guaranteed
that Sn is t/s-diagnosable (t = β, s = t + l − 2). In the next
section, for a t/s -diagnosable system Sn, in order to locate

FIGURE 6. The comparison of several diagnosabilities of Sn.

one set of nodes containing all faulty nodes with size of less
than or equal to s, a t/s diagnosis algorithmwill be presented.

V. A FAST T /S DIAGNOSIS ALGORITHM OF Sn
For the t/s-diagnosable system Sn, and a syndromeω, our t/s-
diagnosis algorithm needs to determine the largest component
of fault-free nodes, for this reason, we present firstly an
algorithm called Depth-First search (DFS) (see Algorithm 1).

Algorithm 1 DFS
Input:
Input Sn, a syndrome ω, let L = S = ∅ and a fault bound
T .

Output:
Output The set S.
1: Choose a node p ∈ V (Sn)− L and let S = {p}.
2: DFS(p):
for each q ∈ N (p)
if ω(q, p) = ω(p, q) = 0,
S = S ∪ {q} and DFS(q).
3: If |S| > T + 1, then goto step 4. If |S| 6 T , then let
L = L ∪ S and goto step 1.
4: Output S.

It is worth noting that for given a syndrome ω and a bound
(T 6 bln − (l+2)2

3 c, l 6 n − 2, n > 5), the set of nodes S,
which comprises all nodes in the largest component of fault-
free nodes in Sn, can always be output by Algorithm 1. In
fact, Lemma 16 guarantees that such a component with size
of larger than or equal to T + 1 is existing and unique. On
the other hand, Lemma 18 guarantees that all nodes in such a
component are fault-free.

Next, we will propose another algorithm, called Isolating-
Fast Faults (in brief, IFF), to locate the set of nodes L with
size of less than or equal to s for a t/s-diagnosable Sn (t 6
bln− (l+2)2

3 c, l 6 n−2, n > 5) (see Algorithm 2 for details).
Theorem 23: For Sn, let N = n! denote the order number

of Sn, then the algorithm IFF has time complexityO(Nlog2N ).
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Algorithm 2 IFF
Input:
Input Sn, a syndrome ω, an integer l (l 6 n − 2), a fault
bound T (T 6 bln− (l+2)2

3 c).
Output:
Output Three sets of units: P, Q, R, where the units of P
are faulty, the units of R are fault-free, the units of U are
unknown.
1: Let P = R = U = ∅. And call the algorithm DFS to
output the set of nodes of the largest fault-free
component S.
2: R = R ∪ S and P = P ∪ N (R).
3: If V = R ∪ P, output the sets R and P, goto step 5.
4: If |P| = T , then R = V − P and output the sets R and
P. Otherwise, U = V −R−P and output the sets P,R,U .
5: END.

TABLE 1. The results identified by the algorithm isolating-fast faults in
the 6-dimensional star graph.

TABLE 2. The results identified by the algorithm isolating-fast faults in
the 8-dimensional star graph.

Proof: To locate the set of vertices of the largest compo-
nent S, step 1 costs Nlog2N time. In step 2, calculating N (R)
costs at mostO(N ) time, calculating the setR andP costsO(1)
time, thus, step 2 costs O(1+ N + 1) = O(N ) time. Besides,
step 3, step 4 and step 5 cost O(1) time. Consequently, the
time of running the algorithm IFF is O(Nlog2N + N + 1) =
O(Nlog2N ).

Next, in order to evaluate the effectiveness of the algorithm
Isolating-Fast faults, we design an experience of computer
simulation as follows.We randomly deploy t = bkn− (k+2)2

3 c

faulty nodes in Sn. For the sake of convenience, we suppose
that the probability, which the test result of each faulty vertex
testing another vertex is 1, is 0.5. After running the algorithm
for 100,000 times, we obtain the results of simulations on
the 6(8)-dimensional star graph shown in the Table 1(2).
And it is clear that the algorithm successfully identifies all
faulty nodes in the system. It is worth mentioning that for
the sake of guaranteeing the reliability of the outcomes of
the simulation, we utilize the software Java and the advanced
hardware including Intel Core i7 CPU 3.3 GHz, 16 GB
DRAM, 64-bit Windows 7 OS to program and execute the
algorithm.

VI. CONCLUSIONS
Sn is an useful topology, we proved the result that for Sn if
S ⊂ V (Sn) with |S| 6 ln − (l+2)2

3 (1 6 l 6 n − 2) then
Sn−S has unique component with sizemore than or equal to l.
By this component, we proposed a t/s diagnosis algorithm
to locate a set of vertices containing all faulty vertices with
size of no exceeding s. At the same time, we introduced a
sufficient condition to judge that Sn is not t/s-diagnosable
(namely t = (n−2)l+2, s = (n−1)l and 3 6 l 6 n−1) and
another sufficient condition to judge that Sn is t1/(t1 + l − 2)
-diagnosable (t1 ∈ (b(l − 1)n − (l+1)2

3 , bln − (l+2)2
3 c], l ∈

[2, n − 2]). Our results are obtained based on the PMC.
As is known to all that the comparison model, the gener-
alization of the PMC model, is another classical model in
system-level fault diagnosis. It is attractive to extend the out-
comes of this paper from the PMC model to the comparison
model.
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