
Received October 9, 2017, accepted November 7, 2017, date of publication November 13, 2017,
date of current version December 22, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2772829

A Compositional Analysis Method for
Petri-Net Models
JIE DING1,2, XIAO CHEN 1,3, (Member, IEEE), AND RUI WANG1,2
1School of Information Engineering, Yangzhou University, Yangzhou 225127, China
2State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
3School of Computer Science and Communication Engineering, Zhenjiang 212013, China

Corresponding author: Xiao Chen (xiaochen@ujs.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61472343 and Grant 61702233, in part
by the Natural Science Foundation of Jiangsu, China, under Grant BK20160543, and in part by the Foundation of Jiangsu University under
Grant 14JDG122 and Grant BM20082061507. The work of J. Ding was supported by the Blue Project for Young Research Leader of
Jiangsu, China.

ABSTRACT Compositional analysis aims to reveal the underlying structures of a large-scale system or
network by analyzing its constituent components and their relationships. Today’s mathematical modeling
languages, such as Petri nets, are useful for describing distributed systems and complex networks. However,
the flat model architecture of Petri nets makes it difficult for them to depict the compositional structures of
a large-scale model. Therefore, an enhanced compositionality feature has become a significant demand in
large-scale modeling with Petri nets. This paper explores the underlying compositional structures of a given
Petri net model by using a proposed sorting algorithm. The algorithm analyses compositional structures by
sorting an incidence matrix that is generated from the Petri net model. Finally, the proposed sorting algorithm
is applied to a traffic network model that was built with Petri nets to analyze its compositional structures,
which represent different traffic lines, with the aim of optimizing the traffic network.

INDEX TERMS Compositionality, Petri-nets, incidence matrix, sorting.

I. INTRODUCTION
In mathematics and semantics, compositionality is the prin-
ciple that the meaning of a complex expression is determined
by the meanings of its constituent expressions and their rela-
tionships. Compositionality is a key feature of some popular
mathematical languages that are applied for modelling com-
positional architectures. The Petri-net, which was initially
defined by Carl Adam Petri in 1939, is one such popular
mathematical modelling language.

The Petri net is a widespread modelling language for
describing a family of related Discrete Event Dynamic Sys-
tems (DEDS) formalisms. According to Silva’s descrip-
tion [1], Petri nets can be represented as bipartite graphs,
in which state variables and state transformers are named
places (P) and transitions (T), respectively. Places are rep-
resented by circles, and Transactions are represented by
bars; they are connected by pre-incidence (input) and post-
incidence (output) functions (Pre and Post). Pre (Post)
defines a connection from places to transitions (transitions to
places) [1]. According to Silva’s description [1], a net struc-
ture can be considered as a quaternionN = 〈P,T ,Pre,Post〉.
A Petri-net system is represented by a net structure, in which

Pre and Post can be defined as two |P| × |T | sized incidence
matrices that describe the relationships between Ps and Ts.

Petri nets offer a graphical notation for stepwise process
modelling and have an exact mathematical definition of their
execution semantics, with a well-developed mathematical
theory for process analysis. Therefore, formality is a core fea-
ture of Petri nets compared with other modelling languages
or industry standards. Moreover, locality and structuration
can be considered two additional core features of Petri nets
based on the syntax. In a Petri net, the description is given
in ‘‘local’’ terms: local states (places) and local state changes
(transitions). This is a cornerstone for constructing net mod-
els [2]. It achieves the refinement of a place or a transition
(i.e., to make the model more detailed), or the composition
of two modular components by identifying shared transitions
(merging two or more into one) or places (fusion operation).

However, the recent growth of technologies has promoted
systems to more comprehensive and large scales [3]–[5]. For
large-scale networks or systems with complex structures and
cooperations, Petri nets’ locality feature produces a model
with a dizzying layout due to the great number of places
and transitions. As a result, it is difficult to distinguish its

VOLUME 5, 2017
2169-3536
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

27599

https://orcid.org/0000-0002-3290-507X

J. Ding et al.: Compositional Analysis Method for Petri-Net Models

complex inner structures from the layout. This is a drawback
of the ‘‘compositionality ’’ of Petri nets in large scale models.
New applications require further improvements by exploring
the new feature of Petri nets in compositionality. This paper
aims to enhance the compositional feature of Petri nets by
analysing the structure of Petri net models.

To address this issue, a decomposition technique is applied
to decompose a large Petri net model into several sub-models;
thereafter, the unconcerned sub-model can be abstracted to
a single component in a high-level model. To decompose a
Petri net model, the first step is to find its potential inner
structures. According to our literature review [6], process
algebra models benefit from the compositional feature, which
can be numerically represented by an activity matrix that is
composed of a set of transition vectors that correspond to each
activity in the model. We are inspired by the activity matrix
of process algebra and analyse the potential compositional
structures from the ‘‘incidence matrix’’ of a given Petri net
model. A Petri net’s incidence matrix generally represents the
relationships between places and transitions.

This paper aims to enhance the compositionality of Petri
net models by applying a proposed sorting algorithm that
implements a traversal sorting process on the incidence
matrix of a Petri net model. The algorithmwill finally identify
all places that are involved in the same underlying structure
of a Petri net model. Each structure can be considered a sub-
model. The general Petri net model, which represents the
whole system, is a union of these sub-models combined with
the concurrent transitions. Thus, a large-scale Petri net model
can be decomposed into sub-models that corresponds to each
compositional structure identified by the algorithm.

Section 1 briefly introduces the concept of ‘‘composition-
ality’’, which is a core feature of mathematical modelling
language, and the reason for its importance in the mod-
elling of large-scale networks or systems based on Petri nets.
Section 2 discusses the related work and our main contri-
butions. Section 3 presents the background of Petri-nets and
their compositional features. Section 4 defines the proposed
compositional analysis algorithm. Section 5 applies the algo-
rithm to a traffic network scenario to facilitate route planning.
Section 6 concludes the research and discusses future work.

II. RELATED WORK
In today’s computing industry, the scale of systems gives
rise to many new challenges: they will be used by different
stakeholders across multiple organizations, which may have
conflicting needs and purposes; they will be constructed with
complex dependencies and emergent properties; and they will
be evolving continuously. These systems are called as Ultra-
Large-Scale Systems (ULSSs). Hence, new improvements
of modelling techniques (e.g., Petri nets) are required to
facilitate the design of these large-scale systems. The Petri
net, as a typical mathematical formalism, has been widely
applied in many fields, such as performance modelling and
evaluation of concurrent systems, communication networks,
and even intelligent transportation systems. However, with

the increased system scale, Petri nets have a slight deficiency
in representing complex system structures and interactions.
Some researchers have begun investigating these issues.

Blake and Trivedi [7] developed hierarchical composition
by generating a two-level hierarchical model. In Blake’s solu-
tion, each subsystem is modelled by a Markov chain and the
system reliability is represented by a series of independent
Markov components. Based on this result, Petri nets have
been used to define hierarchical Markov models due to their
features in locality and structuration. Other researchers have
also made efforts to improve in the scalability of Petri nets.
For example, Martin et al. [8] derives a new product-form
solution for Stochastic Petri nets (SPNs) with signals using
the application of RACT. Ma et al. [9] defines a specification
called OR-AND Generalized Mutual Exclusion Constraints
(GMEC) and applies it to a framework of supervisory con-
trol using Petri nets to realize the disjunction of conjunctive
GMECs.Moreover, in Hayden’s [10] research, due to the con-
dition of weak compatibility in Inter-organizational workflow
nets (IWF-nets), a related algorithm is investigated to take
advantage of practical applications of IWF-nets, as in syn-
chronous/asynchronous communication systems and process
interactive systems. In [11], the researchers propose a new
method to solve sparse systems of linear algebraic equations
via sequential composition of their clans based on a weight
graph and gain an extra computational speed-up. To over-
come the complexity of analysing and controlling a Hybrid
Petri Net (HPN) with large dimensions, Goldar et al. [12]
decomposes the HPN and adopts an algorithm for the hier-
archical control of subnets using a coordinator. By using the
hierarchical control, the overall optimization problem (HPN)
is divided into several optimization problems (subnets) that
can be solved in parallel.

For large-scale system modelling, decomposition is
another typical modelling technique in Petri nets, in which a
general model is decomposed into several sub-models, which
are then analysed in parallel [13]–[15]. Our research has a
main goal of performing a compositional analysis on a Petri
net model to obtain its potential compositional structures
and thereby facilitate model decomposition. Hence, a sorting
algorithm based on the incidence matrix of a Petri net model
is designed to group places within the same structure in terms
of the concurrent transitions in the model. This algorithm can
enhance the Petri net’s ability to model large-scale systems.

Compositionality is a core feature in stochastic process
algebra (SPA), such as Performance Evaluation Process
Algebra (PEPA), which is a compact symbolic representa-
tion of stochastic process algebra based on the underlying
continuous-time Markov chain. In contrast to Petri nets,
PEPA provides a compositional feature for modelling sys-
tems with complex interactions between components. Chen
and Wang [16], [17] applies PEPA to the construction of
complex vehicular network models, in which the composi-
tionality of PEPA is represented in modelling cooperative
system activities and subsystems. In our preceding work, we
performed some pre-research in exploring the relationship

27600 VOLUME 5, 2017

J. Ding et al.: Compositional Analysis Method for Petri-Net Models

between Petri nets and PEPA. From the pre-research [18],
[19], we found some special types of Petri net models that
can be converted into PEPA models by sorting their inci-
dence matrices with the initial labels. Furthermore, a large
scale Petri net includes a series of simple sub-nets through
concurrent transitions, and a given Petri net can be converted
into a corresponding incidence matrix that is used to explore
the compositional structure. It is proved that such algebraic
conversion and numerical method can facilitate the sorting
process [19].

According to our recent literature review, some other
researchers (such as Zhou et al. [20]) have obtained the
decomposed structure of a fuzzy Petri net and made it more
adaptive in engineering applications. Their work introduces
an algorithm that uses the index function and incidencematrix
to decompose a Petri net model into various completed infer-
ence paths, such as a sub-fuzzy Petri net model. Compared
with Zhou’s research, this paper proposes a more complete
sorting process by defining a novel algorithm for sorting con-
current transitions in the incidence matrix of a Petri net model
to obtain all potential compositional structures. The main
contribution is this sorting algorithm, which is designed to
decompose a complex Petri net model by sorting its incidence
matrix rather than generating duplicate places or inference
paths in contrast to the algorithm proposed in [20].

In addition to Petri nets, compositional modelling has
been investigated earlier by Hillston [21]. Hillston proposed
a novel compositional modelling language that has a key
feature in compositionality. In [21], the compositional formal
modelling approach is introduced by specifying various com-
ponents in model definitions. Furthermore, Wang et al. [22]
explores a compositional modelling and verification frame-
work by extending Hybrid CSP that is process algebra-
like formal modelling language; Atefnoaei et al. [23] uses
a compositional verification rule for the issue of increased
complexity in modelling systems and success chance of
model-checking these systems; and Fu and Shen [24] presents
a an innovative framework of fuzzy compositional modelling
(FCM) by considering the processing of knowledge and data
with uncertain environment, and the proposed FCM approach
is able to represent and reason various inexact data and infor-
mation.

Themain contributions can be highlighted as: First, we first
propose the idea of exploring compositional architectures of
a Petri-net model through its corresponding incidence matrix,
which has capability of enhancing the compositionality of
Petri-net-based modelling approach; Second, we propose a
sorting algorithm to classify places from an unordered inci-
dence matrix to obtain each component of the corresponding
Petri-net model.

III. PETRI-NETS AND COMPOSITIONAL STRUCTURES
This section presents the formal definition of Petri nets
(Definition 1) and several core concepts, which will be used
for exploring the compositional structure of Petri nets (Def-
initions 2, 3 and 4). For further illustration, we introduce

different types of Petri-net models and the notion of compo-
sitional structures of Petri-net models.

A. INTRODUCTION TO PETRI NET
Definition 1 (Petri Net): A classic Petri net is composed of a
5-tuple PN = (P,T , I−, I+,M0), namely place P, transition
T , input function I−, output function I− and token M0. The
definition of a Petri net can be given:
• P = {p1, · · · , pn} is a finite and non-empty set of places;
• T = {t1, · · · , tm} is a finite and non-empty set of
transitions;

• P
⋂
T = ∅;

• I−, I+ : P × T −→ N0 are the backward and forward
incidence functions, respectively;

• M0 : P −→ N0 is the initial marking.
Definition 2 (Pre Set):We use pre(t) represent a pre-set of

transition t (input places of transition t), if

pre(t) = {p ∈ P | I−(p, t) > 0}. (1)

Definition 3 (Post Set): We use pre(t) represent a post-set
of transition t (output places of transition t), if

post(t) = {p ∈ P | I+(p, t) > 0}. (2)

Definition 4 (Incidence Matrix): For a Petri net PN =
(P,T , I−, I+,M0). Then, the backward incidence matrix
C− = (cij−) ∈ N0

#P×#T is defined by

cij− = I−(pi, tj), ∀pi ∈ P, tj ∈ T , (3)

the forward incidence matrix C+ = (cij+) ∈ N0
#P×#T is

defined by

cij+ = I+(pi, tj), ∀pi ∈ P, tj ∈ T , (4)

and the incidence matrix of PN is defined as

C = C+ − C−. (5)

From the definition, it is clear that the structure of Petri
nets can be represented by a corresponding incidence matrix
C#P×#T = [Cij] accurately, in which i ∈ [1, #P], j ∈ [1, #T]
(#P denotes the number of places, #T denotes the number of
transitions). In the matrix, each row represents a place, and
each column represents a transition. For instance, the row i is
a place that is named Pi, and the column j represents a tran-
sition tj. Each matrix element Cij represents whether a link
exists between the place Pi and the transition tj. Moreover,
Cij also represents the link direction if it exists. More details
of incidence matrix are introduced in [2] and [7].

B. PETRI-NET SYNTAX
According to the investigation, several classification methods
are used to analyse structures of Petri-net models, including
state machines, marked graphs, FC-nets, EFC-nets, SPL-nets
and ESPL-nets. These methods aim to analyse the potential
structures of a Petri-net model and classify Petri nets into
three main types, which are defined as follows:

1) The structure of the Petri net is closed (Fig. 1.a).

VOLUME 5, 2017 27601

J. Ding et al.: Compositional Analysis Method for Petri-Net Models

FIGURE 1. Three types of petri nets.

FIGURE 2. Detailed schemes in each type of petri-net.

2) The structure of the Petri net is non-closed (Fig. 1.b).
3) The structure of the Petri net is closed mix with non-

closed (Fig. 1.c).
Each of the preceding three types can be further classified

by considering different situations of the places and transi-
tions. Thus, each type is divided into three specific situations:

1) Existing a transition that is lack of input place (Fig. 2.a).
2) Existing a place that is lack of input transition

(Fig. 2.b).
3) Existing a place returning to itself through a transition

but no arc between the place/transition or any other
places/transitions (Fig. 2.c).

C. COMPOSITIONAL STRUCTURES
For large-scale system modelling, Petri net models always
have a complex structure due to the concurrent transitions.
As a result, it is difficult to analyse the compositional struc-
ture of a Petri-net model. Thus, this research aims to explore
all potential compositional structures in a given Petri-net
model through a new sorting algorithm. The algorithm uses
an incidence matrix that is generated from a Petri-net model.
The matrix, which represents all places and transitions of a
Petri-net model, is sorted by the algorithm to find all potential
structures.

A complex Petri-net model can be considered as a set of
sub-models that are combined through concurrent transitions,
such that for each sub-model, there is no further concurrent
transition. In contrast to other compositional analysis meth-
ods, this algorithm is able to find all possible compositional
structures by sorting the concurrent transitions of the inci-
dence matrix. To illustrate the algorithm, a Petri-net model
(Fig. 3) and its corresponding incidence matrix (Table 1) will
be used as an example.

From Table 1, it is clear that transition t1 is a concurrent
transition as it has two input places and two output places.

FIGURE 3. The corresponding Petri net of Table 1 and its two possible
compositional structure.

TABLE 1. Incidence matrix of a petri-net model.

TABLE 2. Sub-incidence matrix of scheme 1.

TABLE 3. Sub-incidence matrix of scheme 2.

Thus, it is obvious that the incidence matrix shown in Table 1
can be considered a combined model through the two sub-
models that are represented with two separated incidence
matrices by the concurrent transition t1; see Table 2. There-
after, all places {P1,P2,P3,P4} can be classified into two
different schemes: one scheme includes {P1,P3} and {P2,P4}
as shown in Table 2; the other scheme includes {P1,P4} and
{P2,P3} as shown in Table 3.

The two schemes indicate all possible compositional struc-
tures of the Petri-net model represented by the incidence
matrix in Table 1. Hence, the corresponding Petri-net models
for the two schemes can be represented as two different archi-
tectures, which are shown in the dotted area of Fig. 3. The
final goal is to find all possible compositional schemes with
an analysis algorithm; these schemes are displayed in Fig. 3.

IV. COMPOSITIONAL ANALYSIS ALGORITHM
Compositional analysis is conducted by a sorting algorithm.
The algorithm will first traverse transitions of the incidence
matrix obtained from a Petri net model to find all potential
closed-and-independent subsystems and remove them from

27602 VOLUME 5, 2017

J. Ding et al.: Compositional Analysis Method for Petri-Net Models

TABLE 4. Notations defined in Algorithms 1-3.

FIGURE 4. Framework of proposed sorting algorithm.

the matrix, then a simplified matrix is obtained in Stage 1.
Thereafter, in Stage 2, the simplified matrix is traversed
to find all independent or concurrent transitions and their
corresponding pre and post sets. Finally in Stage 3, all com-
positional structures of a Petri net model will be given based
on the results of Stage 1 and 2. Each stage is defined as
an independent algorithm shown in Section 4.2. The detail
sorting process is introduced in the following Section 4.1.

A. ALGORITHM DESCRIPTION
To examine the potential compositional structure from a PN
model, a sorting algorithm is proposed in the section as
well as its design framework. The logical architecture of the
algorithm is demonstrated in Fig. 4.

The sorting algorithm is described as following steps:
S.1 Define the incidence matrix C of a given PN model;

then specify rows (places) of C with names Pi, and
columns (transitions) with names ti, i ∈ [1, 2, . . . , n].

S.2 Find the independent structure that is represented as
a closed loop in the PN model, when the condition
(Cij = 0 ∧ Cik = 0 ∧ Clj = 0) is met.

S.3 Find the column j of C that includes concurrent tran-
sitions tj under the condition (i.e., Cij = −1 and the
number of −1 in column j is over 1).

S.4 Define a mutual exclusion principle, which indicates
that input places represented by −1 in the obtained
column j of the incidence matrix cannot exist in a single

structure. In other words, the places of Pre(tj) cannot be
in the same structure when tj is a concurrent transition.

S.5 Generate a Cartesian product between the Pre and
Post set of the concurrent transitions tj on the basis
of S.4, and obtain a set of combinations in the form
of (Pre(tj),Post(tj)). These combinations will be sorted
under the conditions given in S.6.

S.6 Set two conditions for algorithm termination:
1) includes all rows (places) of C ; 2) assemble all
combinations (Pre(tj),Post(tj)) head-to-tail.

S.7 After the S.5, if both conditions of the S.6 are met, sort-
ing is done; if only the condition 1) is met, S.7 needs be
implemented by creating combinations for each place
of the set Post(t) corresponding to its related inde-
pendent transition tk . This operation continues until
condition 2) of S.6 is met.

S.8 After the S.5, if the condition 1) is still not met
except the situation in S.2, new combinations must be
generated by combining the excluded rows (places)
with its connected transitions until all rows (places) are
involved in the combinations. Thereafter, S.6 will be
implemented if the condition 2) is not met.

With the sorting algorithm, compositional analysis of a
given PN model (e.g., Fig. 3) can be conducted by sorting
out the two structures shown in Fig. 3. The algorithm can
extend QoS modelling capability of PN formalism by ana-
lyzing compositional structures based the incidence matrix.
For example, the compositional approach can be applied for
modelling of a public traffic network in order to analyze all
possible bus lines based on the incidence matrix derived from
the PN model.

B. FORMAL DESCRIPTION OF THE ALGORITHM
According to the algorithm description, this section formally
defines the proposed algorithm. It the formal definition,
the whole process is defined in terms of three algorithms,
which are introduced in the following sections. Table 4 gives
all notations used in the algorithms. Before defining the

VOLUME 5, 2017 27603

J. Ding et al.: Compositional Analysis Method for Petri-Net Models

algorithm, a set of concepts that are used in the algorithm
must be predefined.
Definition 5 (Cartesian Product, Permutation and Combi-

nation): Let CPPC(L) be a set of combinations between sets
pre(l) and post(l). The combination of pre(l) and post(l) is
denoted by CPPC(L), L = (pre(l), post(l)), which has a
mathematical form:

CPPC(L)

= {{(pre(l)[1], post(l)[1]), · · · (pre(l)[i], post(l)[j]), · · · }

· · ·

{(pre(l)[1], post(l)[j]), · · · (pre(l)[i], post(l)[1]), · · · }

· · · }

where,

• pre(l)[1] ∪ · · · ∪ pre(l)[i] ∪ · · · = pre(l).
• post(l)[1] ∪ · · · ∪ post(l)[i] ∪ · · · = post(l).
• If i 6= j and i, j ∈ [1, #pre(l)], then pre(l)[i] 6= pre(l)[j].
• If i 6= j and i, j ∈ [1, #post(l)], then post(l)[i] 6=
post(l)[j].

To explain the definition details, an example is applied by
assuming pre(l) = {P1,P2,P3} and post(l) = {P4,P5,P6},
such as L = (pre(l), post(l)). Thus, we have

CPPC(L) =

{(P1,P4) (P2,P5) (P3,P6)},
{(P1,P4) (P2,P6) (P3,P5)},
{(P1,P5) (P2,P4) (P3,P6)},
{(P1,P5) (P2,P6) (P3,P4)},
{(P1,P6) (P2,P4) (P3,P5)},
{(P1,P6) (P2,P5) (P3,P4)}.

Definition 6 (End to End): For several triples: (ti,Pa,Pb),

(tj,Pb,Pc), (tm,Pd ,Pa), (tn,Pe,Pf), · · · ; If pre(ti) =

post(tm) (i.e. place Pa) and post(ti) = pre(tj) (i.e. place Pb),
then, triples (ti,Pa,Pb), (tj,Pb,Pc) and (tm,Pd ,Pa) meet the
condition end-to-end.Meanwhile, we use the symbolETE(L)
to represent such condition, where

L = {(ti,Pa,Pb), (tj,Pb,Pc), (tm,Pd ,Pa)}.

Definition 7 (Combine ETE): For a set L and L =

{(ti,Pa,Pb),(tj,Pb,Pc),(tm,Pd ,Pa)}. If L meets the con-
dition ETE , operations can be taken on L. The symbol
CombETE (L) represents this operation, such as:

CombETE (L) = (Pd ,Pa,Pb,Pc).

1) ALGORITHM 1: SORT OUT INDEPENDENT CLOSED-LOOP
SUB-SYSTEMS
Algorithm 1 includes two main functions: the first function
traverses all elements of C and determines whether inde-
pendent closed-loop subsystems exist in the given Petri-net
model; thereafter, if they do exist, the second function sep-
arates the independent closed-loop subsystems from C . The
algorithm is given as Algorithm 1.

Algorithm 1 Independent Close-Loop Sub-Systems Sorting
Algorithm
Input: C, #P, #T
Output: PD
1: for each i ∈ [1, #P] and j ∈ [1, #T] do
2: if Cij = 0 then
3: for each k ∈ [1, #P] and l ∈ [1, #T] do
4: if Ckj = 0 and Cil = 0 then
5: Preliminary division:
6: PD = PD

⋃
{Pi}.

7: end if
8: end for
9: end if
10: end for

2) ALGORITHM 2: CLASSIFY INCIDENCE MATRIX BY
EXAMINING CONCURRENT TRANSITIONS
Algorithm 1 sorts out places and transitions that constitute
independent closed-loop sub-systems, removes the corre-
sponding rows and columns from C and obtains a simplified
incidence matrix Csimp. Thereafter, Algorithm 2 aims to sort
the matrix Csimp based on concurrent transitions, and ulti-
mately includes individual transitions, concurrent transitions
and their corresponding pre- and post-places into the sets
CAct , IAct and Spost . Algorithm 2 can be specified as follows:

Algorithm 2 Concurrent Transition Classification Algorithm
Input: Csimp, #Psimp, #T simp
Output: CAct , IAct , Spost
1: for each j ∈ [1, #T simp] do
2: count = 0
3: for i from 1 to #Psimp do
4: if Csimp(ij) = −1 then
5: count ←− count + 1
6: IAct = IAct

⋃
{(−1, tj,Pi)}

7: end if
8: if Csimp(ij) = 1 then
9: Spost = Spost

⋃
{(1, tj,Pi)}

10: end if
11: end for
12: if count ≥ 2 then
13: CAct = CAct

⋃
{(−1, tj,pre(tj))}, then

14: IAct = IAct\{(−1, tj,pre(tj))}
15: end if
16: end for

3) ALGORITHM 3: OBTAIN ALL COMPOSITIONAL
STRUCTURES FROM A PETRI-NET MODEL
Algorithm 3 obtains all possible compositional structures of a
given Petri-net model by dealing with the sets obtained from
Algorithm 2. The algorithm has the following steps:
• Steps 2-4 calculate Cartesian products and perform per-
mutation and combination operations on sets CAct and
Spost ; the results are stored in the set CStemp.

27604 VOLUME 5, 2017

J. Ding et al.: Compositional Analysis Method for Petri-Net Models

Algorithm 3 Obtain All Compositional Structure
Input: CAct , IAct , Spost ; Output: PRest
1: for i ∈ [1, #CAct], j ∈ [1, #Spost] do
2: if (ti ∈ CAct (i)) = (tj ∈ Spost (j)) then CStemp = CStemp

⋃
CPPC(CAct (i), Spost (j))

3: end if
4: for m ∈ [1, #CStemp], n ∈ [1, #CSdiffer] do
5: if CStemp(m) 6= CSdiffer (n) then count ← count + 1; CSdiffer = CSdiffer

⋃
CStemp(m)

6: end if
7: if count = #Psimp then
8: if CStemp(m) meets Definition 6 then PRest = Rest

⋃
CombETE (CStemp(m))

9: end if
10: if !(CStemp(m) meets Definition 6) then Determine set of post places Ppost
11: for l ∈ [1, #IAct], k ∈ [1, #Spost] do
12: Find Spost (k), where tk ∈ Spost (k) & tk ∈ IAct (l); Cal CPPC(Spost (k), IAct (l))→ IStemp
13: end for
14: Cal CombETE (IStemp), and save in CStemp
15: end if and jump to step 13
16: end if and jump to the end
17: if count 6= #Psimp then
18: for k ∈ [1, #Csimp] & Pk ∈ Csimp & Pk /∈ CSdiffer do Deposit Pk into CSsubDiffer
19: end for
20: for x ∈ [1, #CSsubDiffer], y ∈ [1, #IAct] do
21: if CSsubDiffer (x) ∈ IAct (y) then Deposit Iact (y) into IsubAct
22: end if
23: end for
24: for n ∈ [1, #IsubAct], l ∈ [1, #Spost] do Find Spost (l), where (tl ∈ IsubAct & tl ∈ Spost (l));
25: Do CPPC(Spost (l), IsubAct (n))
26: end for
27: for n ∈ [1, #CSsubDiffer], l ∈ [1, #Spost] do
28: if CSsubDiffer (n) ∈ Spost (l) then SsubPost = SsubPost

⋃
{Spost (l)}

29: for x ∈ [1, #SsubPost] & y ∈ [1, #IAct] do Do CPPC(SsubPost (x), and IAct (y)),
30: where ty ∈ IAct (y) & ty ∈ SsubPost (x)
31: end for
32: end if
33: end for
34: end if and jump to step 12
35: end for
36: end for

• Steps 5-7 find all non-repeated sub-sets of CStemp and
store them in the set CSdiffer . Meanwhile, a variable
count is used to record the total number of different
places in the subsets of CStemp.

• Steps 8-10 determine whether the sub-sets of CStemp
meet the end-to-end condition; if so, combine the sub-
sets and store the results in PRest .

• Steps 12-14 perform the Cartesian product, permutation
and combination operations on IAct and Spost ; if the sub-
sets of IAct and Spost contain the same transitions, the
results are stored in CStemp.

• Step 18 traversesCsimp to find all places that are included
in Csimp but not in CSdiffer and then stores these places
in CSsubDiffer .

• Steps 27-33 traverseCSsubDiffer and Spost : if the places in
CSsubDiffer are included in the sub-sets of Spost , then the

corresponding sub-sets into SsubPost . Thereafter, SsubPost
and IAct are traversed to find the sub-sets are stored
in SsubPost and IAct that includes the same transitions.
Finally, perform the Cartesian product, permutation and
combination operations on these sub-sets.

In this section, the algorithm is formally defined as three
sub-algorithms. To demonstrate the process defined in these
algorithms, a real-world model scenario is adopted to verify
the reliability of the proposed sorting algorithm and examine
its usability for real-world applications.

Section 5 uses Petri-nets to define a traffic network of a
local city in China. The sorting algorithm is used to examine
the corresponding incidence matrix from the Petri-net-based
traffic network model to sort out all potential compositional
structures that represent traffic routes in the given traffic
network.

VOLUME 5, 2017 27605

J. Ding et al.: Compositional Analysis Method for Petri-Net Models

FIGURE 5. Modelling of lines, intersections and stops.

V. ALGORITHM APPLICATION
In this section, a sample model of an actual urban traffic
network is defined with Petri nets to evaluate the proposed
algorithm. Based on the traffic model, the corresponding
incidence matrix is derived from its Petri-net description
according to Definition 4. Thereafter, Algorithms 1-3 are
used to analyse the incidence matrix to decompose the overall
Petri-net model to obtain its sub-structures by classifying the
places that represent bus stops in the traffic network in the
Petri-net model.

According to the analysis results, the algorithm is benefi-
cial in the deployment of bus lines on such a traffic network.
For example, the algorithm can be used to divide the whole
network to find all potential bus lines; thereafter, further
analysis can be conducted to optimize the classifications to
achieve the bus line planning.

A. PETRI-NET MODELS AND INCIDENCE MATRIX
A real-world traffic network, seeing the left part of Fig. 7,
is obtained to generate a target traffic model prototype.
Subsequently, the prototype is simplified to the traffic net-
work scenario that is depicted in the right part of Fig. 7.
The traffic network is then defined as a Petri-net model, as
shown in Fig. 8, in which the Petri-net notations are defined
as follows:

1) Use places to represent the transportation stops.
2) Use transitions to represent the traffic intersections.
3) Use arcs to represent the transportation lines.
In addition, it is worth mentioning three key points in

defining such a traffic network model:
1) Only one-way traffic lines are considered when build-

ing the traffic network model. Specifically, each line is
regarded as a single route from the start station to the
destination; the return trip is not considered. This is to
avoid the duplicate behaviours that appear in models
that simulate the return trip as a similar process to the
onward trip.

2) A start or destination station will be considered as an
individual and independent bus stop in the model if the
station includes more than one stop (e.g., multiple stops
at a start or a destination station); see Fig. 5.

3) All other bus stops outside the stations and traffic
intersections can be modelled as corresponding rela-
tionships between bus stops; see Fig. 6.

As shown in Fig. 8, the Petri-net model is defined to
represent the simplified traffic network prototype (the right

FIGURE 6. Modelling of bus stations with multi-stops.

part of Fig. 7); the corresponding incidence matrix is shown
in Table 5.

According to Fig. 7 and Fig. 8, four bus lines are selected
for experiments: L1,L2,L3 and L4. These lines include 27 bus
stops (namely, 27 places in Fig. 8) and 16 intersections
(namely, seven intersections and nine single crossroads) from
the map of Fig. 7 (the right part). For the four selected bus
lines in Fig. 8, the places L1_1, L2_1, L3_1 and L4_1 are the
start bus stops, and the places L1_5, L2_3, L3_13 and L4_6 are
the destination bus stops. Moreover, the series of directional
arcs between the start and destination stops represent specific
routes in the traffic network.

In Table 5, each row of the incidence matrix represents
a place (namely, a bus stop) and the relationships between
places can be specified as follows:

• L1_1→ L1_5 corresponds to P1→ P5;
• L2_1→ L2_3 corresponds to P6→ P8;
• L3_1→ L3_13 corresponds to P9→ P21;
• L4_1→ L4_6 corresponds to P22→ P27.

In addition, the columns in Table 5 include 16 transitions
(t1 to t16) that represent all of the intersections.

B. COMPOSITIONAL ANALYSIS ON A TRAFFIC
NETWORK MODEL
1) ANALYSIS PRINCIPLES
In this subsection, the proposed algorithms will be used to
manipulate the incidence matrix shown in Table 5 to find all
possible compositional structures by classifying places in the
Petri-net model. This compositional analysis aims to facilitate
the planning of bus lines based on the given traffic network.

The analysis results will help maintain the deployment of
bus lines. For example, the utilization of each bus line can
be improved by determining the scheme for each line based
on the compositional analysis. Moreover, our solution can
improve the efficiency of the traffic network by considering
the selection of different bus line schemes and measuring the
traffic congestion.

In the analysis, if it is assumed that the distribution and
the total number of bus stops are fixed, then the optimal
utilization of bus lines can be guaranteed when the number
of bus stops on each line follows the mean value. In this
situation, the traffic load can be efficiently reduced due to the
non-uniform distribution of bus lines (i.e., bus stops). Here,
the mean value is set as:

N̄ = bSstops/Slinesc, (6)

27606 VOLUME 5, 2017

J. Ding et al.: Compositional Analysis Method for Petri-Net Models

FIGURE 7. Real-world traffic network and the simplified traffic model prototype.

FIGURE 8. Petri-net based traffic network model.

where
• N̄ represents the mean value;
• Sstop denotes the total number of bus stops;
• Slines means the total number of bus lines.

2) ANALYSIS RESULTS
Based on the incidence matrix shown in Table 5, all classified
bus lines are obtained using the proposed algorithms and
listed in Table 6. Furthermore, based on the properties of the
Cartesian product, permutation and combination operations,
a formula is defined for calculating the upper bound of the
classification results, which is defined as:

UB =
∏

(N (pre(ti))!), (7)

where
• UB represents the upper bound;
• ti ∈ T and ti is a concurrent transition;
• Npre(ti) represent the number of places in pre(ti).

According to the algorithms and the corresponding inci-
dence matrix (Table 5), it is easy to get the sets: IAct , Spost and
CAct . Here, just two concurrent transitions are given as well
as its related corresponding operationCPPC (i.e. the sub-sets
of CPPC(CAct)):
CAct = {(−1, t5, pre(t5)), · · · , (−1, t12, pre(t12)), · · · }.
Thereafter, the sets CPPC(t1) and CPPC(t5) can be

obtained from the follows:

CPPC(t5) =
{
{(P6,P7), (P13, p14)},
{(P6,P14), (P13,P7)}.

}
CPPC(t5) =

{
{(P1,P2), (P18, p19)},
{(P1,P19), (P18,P2)}.

}
To facilitate measurements, an analysis platform is applied

to implement to classification process. Fig. 9 demonstrates
the basic steps for the classification of the incidence matrix
on the analysing platform. Step 1 conducts initial operations
on the incidence matrix to obtain the sets(I_Act , C_Act ,

VOLUME 5, 2017 27607

J. Ding et al.: Compositional Analysis Method for Petri-Net Models

TABLE 5. Incidence matrix of the petri-net model defined in Fig. 8.

FIGURE 9. Specific operations of the algorithms achieved through
programming and the final classification results.

S_post), and then generates the final results from CPPC .
Step 2 displays all sets obtained from the CPPC operation,
which include the final 128 possible structures of the model.

According to formula (7), it can be concluded that the
upper bound on the number of classification results is 128.

FIGURE 10. Initial results from formulas 6-8 and optimized results.

This value is consistent with the experimental results from
the analyser. Furthermore, the classification results have been
optimized to find the best bus line deployment. To complete
the optimization, the value of N̄ should be set to 6 based on
formula (6). Thus, the optimized results shown in Fig. 10 can
be generated with formula (8).

S =

√∑
(Ni − N̄)2, (8)

where
• Ni represents the number of bus stops in each line;
• S represents the corresponding standard deviation.
Fig. 10 shows the plot of bus stops on each line that was

generated in the preceding analysis. This figure describes the
average number of bus stops N̄ (vertical axis) on each bus line

27608 VOLUME 5, 2017

J. Ding et al.: Compositional Analysis Method for Petri-Net Models

TABLE 6. Optimized qualifying compositional structures of the application in Fig. 8.

(horizontal axis), and the standard deviation of the number
of bus stops. Hence, the optimal bus stop distribution has the
smallest standard deviation. The specific bus line deployment
and the included bus stops can be found in Table 6.

VI. CONCLUSION
Compositionality is a key feature that is required by today’s
large-scale modelling tasks. However, not all popular mod-
elling techniques have this feature. This research aims to
explore this feature of a popular modelling technique – Petri
nets by proposing a sorting algorithm. The algorithm can
sort all possible compositional structures of a Petri-net model
by analysing its corresponding incidence matrix, which is
inspired by a feature of stochastic process algebra; it also
enhances the compositional analysis ability of Petri nets,
especially for large-scale networks and concurrent systems.
To demonstrate the use of the algorithms, a traffic network
that is modelled with Petri nets is used for experiments on
planning bus lines by sorting all possible bus lines between
the given bus stops. The experimental results clearly demon-
strate the usability of the proposed algorithms, as they classify
all potential lines and generate the optimal lines by specifying

the selected bus stops for each line. Thus, the compositional
analysis improves the efficiency of the traffic system and
reduces the traffic load, while also bridging the gap between
Petri nets and stochastic process algebras.

In future work, further research will be conducted to
improve the efficiency of the sorting process, and restore
the model structures of general Petri-net models from their
corresponding incidence matrices to achieve a conversion
between Petri nets and process algebras.

REFERENCES
[1] M. Silva, ‘‘Half a century after Carl Adam Petri’s Ph.D. thesis: A perspec-

tive on the field,’’ Annu. Rev. Control, vol. 37, no. 2, pp. 191–219, 2013.
[2] C. R. Vazquez andM. Silva, ‘‘Stochastic continuous Petri nets: An approx-

imation of Markovian net models,’’ IEEE Trans. Syst., Man, Cybern. A,
Syst., Humans, vol. 42, no. 3, pp. 641–653, May 2012.

[3] G. Liu, M. Zhou, and C. Jiang, ‘‘Petri net models and collaborative-
ness for parallel processes with resource sharing and message passing,’’
ACM Trans. Embedded Comput. Syst., vol. 16, no. 4, 2017, Art. no. 113,
doi: 10.1145/2810001.

[4] P. Wang, L. Ma, R. M. P. Goverde, and Q. Wang, ‘‘Rescheduling trains
using Petri nets and heuristic search,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 17, no. 3, pp. 726–735, Mar. 2017.

[5] J. Huang, Y. Zhu, B. Cheng, C. Lin, and J. Chen, ‘‘A PetriNet-based
approach for supporting traceability in cyber-physical manufacturing sys-
tems,’’ Sensors, vol. 16, no. 3, p. 382, 2016.

VOLUME 5, 2017 27609

J. Ding et al.: Compositional Analysis Method for Petri-Net Models

[6] J. Ding and J. Hillston, ‘‘Numerically representing stochastic process
algebra models,’’ Comput. J., vol. 55, no. 11, pp. 1383–1397, 2012.

[7] J. T. Blake and K. S. Trivedi, ‘‘Reliability analysis of interconnection
networks using hierarchical composition,’’ IEEE Trans. Rel., vol. 38, no. 1,
pp. 111–120, Apr. 1989.

[8] A. Marin, S. Balsamo, and P. G. Harrison, ‘‘Analysis of stochastic Petri
nets with signals,’’ Perform. Eval., vol. 69, no. 11, pp. 551–572, 2012.

[9] Z. Ma, Z. Li, and A. Giua, ‘‘Design of optimal Petri net controllers for
disjunctive generalized mutual exclusion constraints,’’ IEEE Trans. Autom.
Control, vol. 60, no. 7, pp. 1774–1785, Jul. 2015.

[10] R. A. Hayden, ‘‘Scalable performance analysis of massively parallel
stochastic systems,’’ Ph.D. dissertation, Dept. Comput. Imperial College
London, London, U.K., 2011.

[11] D. Zaitsev, ‘‘Sequential composition of linear systems’ clans,’’ Inf. Sci.,
vol. 363, pp. 292–307, Oct. 2016.

[12] S. N. Goldar, A. Doustmohammadi, and S. B. Ajabshir, ‘‘Decomposition
of first-order hybrid Petri nets for hierarchical control of manufacturing
systems,’’ in Proc. ICCIA, Dec. 2013, pp. 311–316.

[13] J. Ye, M. Zhou, Z. Li, and A. Al-Ahmari, ‘‘Structural decomposition and
decentralized control of Petri nets,’’ IEEE Trans. Syst., Man, Cybern., Syst.,
to be published, doi: 10.1109/TSMC.2017.2703950.

[14] K. Marussy, A. Klenik, V. Molnár, A. Vörös, I. Majzik, and M. Telek,
‘‘Efficient decomposition algorithm for stationary analysis of complex
stochastic Petri net models,’’ in Proc. 37th Int. Conf. Appl. Theory Petri
Nets Concurrency, 2016, pp. 281–300.

[15] I. Grobelna, R. Wisniewski, M. Grobelny, and M. Wisniewska, ‘‘Design
and verification of real-life processes with application of Petri nets,’’
IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 11, pp. 2856–2869,
Nov. 2016.

[16] X. Chen and L.Wang, ‘‘Exploring fog computing-based adaptive vehicular
data scheduling policies through a compositional formal method—PEPA,’’
IEEE Commun. Lett., vol. 21, no. 4, pp. 745–748, Apr. 2017.

[17] X. Chen and L. Wang, ‘‘A cloud-based trust management framework for
vehicular social networks,’’ IEEE Access, vol. 5, pp. 2967–2980, 2017.

[18] J. Ding and J. Hillston, ‘‘Structural analysis for stochastic process alge-
bra models,’’ in Proc. AMAST, Lac-Beauport, QC, Canada, Jun. 2010,
pp. 1–27.

[19] J. Ding, J. Hillston, and D. Laurenson, ‘‘Structural and fluid analysis for
large scale PEPAmodels, with applications to content adaptation systems,’’
Ph.D. dissertation, Univ. Edinburgh, Scotland, U.K., 2010.

[20] K.-Q. Zhou, A. M. Zain, and L.-P. Mo, ‘‘A decomposition algorithm of
fuzzy Petri net using an index function and incidence matrix,’’ Expert Syst.
Appl., vol. 42, no. 8, pp. 3980–3990, 2015.

[21] J. Hillston, A Compositional Approach to Performance Modelling.
Cambridge, U.K.: Cambridge Univ. Press, 1996.

[22] S.Wang, N. Zhan, and L. Zhang, ‘‘A compositional modelling and verifica-
tion framework for stochastic hybrid systems,’’ Formal Aspects Comput.,
vol. 29, no. 4, pp. 751–775, 2017.

[23] L. Aştefǎnoaei, S. Bensalem, and M. Bozga, ‘‘A compositional approach
to the verification of hybrid systems,’’ in Theory and Practice of Formal
Methods (Lecture Notes in Computer Science), vol. 9660. Cham, Switzer-
land: Springer, 2016, pp. 88–103.

[24] X. Fu and Q. Shen, ‘‘Fuzzy compositional modeling,’’ IEEE Trans. Fuzzy
Syst., vol. 18, no. 4, pp. 823–840, Aug. 2010.

JIE DING received the B.S. degree in math-
ematical education from Yangzhou University,
Yangzhou, China, in 2001, the M.S. degree in
mathematical statistics from Southeast University,
Nanjing, China, in 2004, and the Ph.D. degree
in communication from The Edinburgh Univer-
sity, Edinburgh, U.K., in 2010. He is currently
an Associate Professor with the School of Infor-
mation Engineering, Yangzhou University. His
research interests include performance modeling

for communication systems.

XIAO CHEN received theM.Sc. and Ph.D. degrees
in computing science from Newcastle University
in 2009 and 2013, respectively. He is currently
an Associate Professor with Jiangsu University,
China. His research interests include formal mod-
eling and performance analysis for large scale
systems, e.g., smart systems, cloud systems, and
cyber-physical systems. He currently involved in
the research of Internet of Vehicles using a stochas-
tic formal method for performance analysis.

RUI WANG received the B.Sc. degree in soft-
ware engineering from Yangzhou University,
Yangzhou, China, in 2011, where he is currently
pursuing the M.Sc. degree with the School of
Information Engineering. His research interests
include performance modeling and evaluation,
IoT, and ITS.

27610 VOLUME 5, 2017

	INTRODUCTION
	RELATED WORK
	PETRI-NETS AND COMPOSITIONAL STRUCTURES
	INTRODUCTION TO PETRI NET
	PETRI-NET SYNTAX
	COMPOSITIONAL STRUCTURES

	COMPOSITIONAL ANALYSIS ALGORITHM
	ALGORITHM DESCRIPTION
	FORMAL DESCRIPTION OF THE ALGORITHM
	ALGORITHM 1: SORT OUT INDEPENDENT CLOSED-LOOP SUB-SYSTEMS
	ALGORITHM 2: CLASSIFY INCIDENCE MATRIX BY EXAMINING CONCURRENT TRANSITIONS
	ALGORITHM 3: OBTAIN ALL COMPOSITIONAL STRUCTURES FROM A PETRI-NET MODEL

	ALGORITHM APPLICATION
	PETRI-NET MODELS AND INCIDENCE MATRIX
	COMPOSITIONAL ANALYSIS ON A TRAFFIC NETWORK MODEL
	ANALYSIS PRINCIPLES
	ANALYSIS RESULTS

	CONCLUSION
	REFERENCES
	Biographies
	JIE DING
	XIAO CHEN
	RUI WANG

