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ABSTRACT Finding the best signal constellation for different communication channels is one of the
fundamental problems in digital communication. This problem has been studied widely from different angles
and many methods have been proposed for designing good practical signal constellations. There has been a
rejuvenated interest in designing good constellations during last decade, in part due to the advent of novel
optimization techniques. Nevertheless, most of the recent work, similar to the older work in this area, aims
to optimize the constellation within a presumed structure (such as points lying on concentric rings). In this
paper, we develop a different approach: we aim to optimize constellations based on a Chernoff bound on the
probability of error in the versatile Nakagami-m fading channel.We derive two general bounds on the symbol
error rate and bit error rate performance of orthogonal transmission in a Nakagami-m fading channel for
single-input single-output and orthogonal space-time block codes and we show that a substantial improve-
ment in the error probability is achieved with the novel constellations that are optimized using these bounds.

INDEX TERMS Constellation design, Nakagami-m fading model, multidimensional constellations,
orthogonal space-time block codes.

I. INTRODUCTION
In wireless communication systems, high quality, capacity
and reliability are among the essential demands. One of the
key enablers for this improvement is enhanced physical layer
design by optimizing each block of the transceiver. Signal
shape design, also known as constellations design, can sub-
stantially affect the performance of communication systems.
Traditionally regular one dimensional (1D) pulse-amplitude
modulation (PAM) and 2D quadrature amplitude modula-
tion (QAM) have been widely employed in the majority of
wireless systems due to their simple decoding. However,
optimization of signal constellations provides us with better
matching between signalling and the communication chan-
nels, which may substantially improve the performance of the
system. Improving the performance of a communication sys-
tem by finding a better placement of the constellation points
has been known as the packing problem and has been studied
widely in literature by using mathematical tools such as
lattice constructions, where lattice-based constellation design

is used for finding the densest packing [1], [2]. Recently,
Beko and Dinis in [3] revisited the problem of designing
multidimensional constellations by using contemporary opti-
mization tools, whereby they minimized the sum power of all
points with a constraint on the minimum distance between
points. In spite of generating good constellations, there is
still room for improvement as this method does not consider
minimizing the number of neighbours of each constellation
point, known as the kissing number [1].

To achieve even better performance, signal constellations
can be optimized with respect to the symbol error rate (SER)
or block error rate (BLER) expressions if such expressions are
available. Since the exact error rate expressions are difficult
to derive in most cases, constellation optimization based on
either approximate expressions or bounds may prove to be a
feasible alternative. A low complexity class of upper bounds
on the performance of orthogonal transmission schemes
which assumes an arbitrary position for constellation points
can be derived by using the Chernoff bound on the pairwise
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error probability (PEP) at high SNR [4], [5]. For deriving any
closed-form bound on the performance in a fading channel,
knowing the distribution of the fading and the number of
antennas of the transceiver are essential. As a result, constel-
lations are only designed for a specific channel.

It is well known that the bit-to-symbol mapping plays
a critical role in improving the bit error rate (BER). The
traditional approach in the literature for finding the BER-
minimizing constellations includes two sequential steps: opti-
mization of the constellation shape followed by optimization
of the bit-to-symbol mapping [6]. However, constellation
shapes optimized using a bound on BER can substantially
improve the BER performance. Since the main source of bit
errors at high SNR is due to the received sample falling within
a decision region that is adjacent to the transmitted symbol,
the SER or BLER bounds can be extended to a bound on
the BER for high SNR values by considering the Hamming
distance [7], [8]. As explained in Section IV, this bound can
be further used for the optimization of the constellation shape.

Signal constellations in which points are mapped to more
than two dimensions, hereafter called multidimensional con-
stellations, allow for increased separation between points
in comparison to the widely used 2D constellations [9].
Multidimensional constellations can be projected onto a set of
orthogonal 2D signal spaces, with each projection transmit-
ted independently. For example, a 4D symbol can be trans-
mitted using two 2D symbols. Designing multidimensional
constellations has been discussed using different techniques:
in [2], [10], and [11] based on lattice construction; in [12]
based on the behaviour of charged electrons in free space; and
in [3] based on the optimization of non-lattice construction.
However, as mentioned earlier, optimization of the bounds on
the error rates of these constellations can further improve the
performance.

To achieve better performance with multidimensional con-
stellations, the constellation can be designed according to
the method of transmitting different dimensions of each con-
stellation point. One way of transmitting multidimensional
constellations involves using orthogonal space-time block
codes (OSTBCs). OSTBCs, as one of themain types of space-
time block codes (STBCs), are used to provide full diversity
with a linear complexity decoder [13], [14]. Because of their
low complexity in encoding and decoding, OSTBCs have
been used widely in standards [15]. However, the Alamouti
scheme with two transmit antennas is the only full-rate full-
diversity OSTBC; the other OSTBCs suffer from a rate loss
in order to preserve their orthogonal structure.

During the last decade, there have been extensive studies
on designing high-performance high-rate space-time codes,
and some STBCs with higher performance and higher com-
plexity, such as quasi-orthogonal space-time block codes
(QOSTBCs) [16]–[18] and algebraic codes [19]–[32], have
been introduced. One major shortcoming is that quasi-
orthogonal and algebraic codes are designed for high spec-
tral efficiencies and show rather poor performance for low
to moderate spectral efficiencies. Furthermore, despite the

existence of a few studies such as [32] on designing STBCs
with fewer receive antennas (Nr ) than transmit antennas (Nt ),
most of algebraic codes are designed or work well under
Nt ≤ Nr . Therefore, they are not suitable for downlink, where
the number of receive antennas in the user equipment is usu-
ally limited. Fortunately, due to the possibility of optimizing
multidimensional constellations for low to moderate spectral
efficiencies and for any Nt and Nr , OSTBCs with multidi-
mensional constellations can outperform algebraic codes in
their poor performance regions. Another shortcoming of most
algebraic codes codes is that they are mostly designed based
on the rank and determinant criteria introduced in [33] or the
trace criteria [34] for a given QAM or hexagonal (HEX) con-
stellation. However, since multidimensional constellations
can be designed for SER, BLER or BERwithout any assump-
tion of the constellation shape, OSTBCs with multidimen-
sional constellations can outperform algebraic codes when
the degrees of freedomof algebraic codes are not significantly
higher.

Typically, an OSTBC block carries K symbols, with inde-
pendent information content carried in each symbol [13].
If we employ multidimensional constellations, each 2D com-
ponent of a 2K-dimensional constellation can be carried by
one of the K different symbols of the OSTBC. This also
can be seen as the generalization of a sphere packing prob-
lem [31]. In [5], we evaluated multidimensional constella-
tions designed based on optimizing SER or BLER1 bounds on
the performance of OSTBCs in a Rayleigh channel. Here, we
extend these bounds for the Nakagami-m channel. The output
of the optimization problem can in general be an irregular
constellation. Irregular constellations, as shown in [4] in the
context of constellation rearrangement for cooperative relay-
ing, are capable of improving the performance in comparison
to regular or isometric constellations.

The main contributions of this paper are as follows:
• Derivation of bounds, with arbitrary constellation points,
on the high-SNR orthogonal transmission SER and BER
in Nakagami-m channels for the single-input single-
output (SISO) antenna configuration where time is the
enabler for carrying different dimensions of a constel-
lation, and for systems with a multiple-input multiple-
output (MIMO) antenna configuration where OSTBC
is the enabler for carrying different dimensions of a
constellation.

• Derivation of the convexity conditions of the bounds for
1D constellations.

• Optimizing 1D and multidimensional high-SNR SER-
minimizing and BER-minimizing constellations based
on the derived bounds for the Nakagami-m channel.

In particular, we demonstrate the performance advantage
of the optimized 1D, 2D and multidimensional constellations
in comparison to the best known constellations in the litera-

1For most parts of this paper, a block is defined as a space-time block that
consists of all dimensions of a multidimensional constellation distributed
in space and time. However, for the generalized scheme, introduced in
Section II, a block can consist of several multidimensional constellations.
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ture, and we show howmuch gain is achieved by adapting the
constellation in the Nakagami-m channel based on the chan-
nel parameter m. In addition, we show that the optimization
problems for the case of 1D constellations are convex under
a specific condition and we explain a set of methods to solve
the convex and non-convex optimization problems efficiently.
Furthermore, we show that the space-time constellations opti-
mized using the proposed bounds outperform the best known
space-time constellations in a Nakagami-m channel.
The rest of the paper is organized as follows: The system

model is described in Section II, union bounds on the prob-
ability of error are derived in Section III, the optimization
criteria and algorithms are provided in Section IV, simulation
results are reported in Section V, and the conclusions are
presented in Section VI.

Throughout this paper, to uniquely identify the constella-
tions, the format M-ND is used where M is the number of
points and N is the number of dimensions of a constellation;
to show the 2D QAM and HEX constellations, the format
M-QAM or M-HEX is employed. For example, 16-2D rep-
resents a 2D constellation with 16 points.

II. SYSTEM MODEL
The system considered in this paper consists of multiple
transmit antennas that use STBCs. The data is divided
into groups of d bits and accordingly mapped to symbols
of different 2D constellations which are projections of a
2K -dimensional constellation with a modulation order of 2d .
The system is equipped with Nt and Nr antennas at the trans-
mitter and receiver, respectively, and each space-time code
block consists of L time slots. Each symbol is transmitted
through a block fading channel denoted by the Nt × Nr
matrix H, with elements hij = αijejφij where αij has a
Nakagami-m distribution. The system can be described as

R = GH+W, (1)

where R is the L × Nr received matrix, G is the L × Nt
transmitted STBC block, andW represents the additive white
Gaussian noise (AWGN) where each element of W is an
independent and identically distributed (iid) complex Gaus-
sian with zero-mean and variance N0/2 per dimension. The
average power of the transmitted matrix G is set to one. The
Nakagami-m fading distribution is used as the general model
for fading statistics because it provides a good match to a
wide set of empirical measurements. The corresponding SNR
distribution can be expressed as

fm,γ̄ij
(
γij
)
=

mm

γ̄mij 0(m)
γm−1e−mγij/γ̄ij , (2)

where 0 (·) is the Gamma function, γ̄ij = E[α2ij]/N0 is the
average SNR of each path and m is the shape parameter
which is fixed for all paths. For simplicity, we set E[α2ij] = 1.
The Rayleigh channel, as a special case of the Nakagami-m
model, can be obtained by setting m = 1. By denoting
cli as the space-time code symbol transmitted in time slot
l from antenna i, the general maximum likelihood (ML)

decoding rule in the receiver for the transmission of codeword
c = c11c

1
2 . . . c

1
Nt . . . c

L
1 c

L
2 . . . c

L
Nt in an L×Nt space-time block

using perfect channel state information can be expressed as
the minimization of the following metric over all constella-
tion points:

L∑
l=1

Nr∑
j=1

∣∣∣∣∣r lj −
Nt∑
i=1

hijcli

∣∣∣∣∣
2

. (3)

where r lj is the received sample on the jth antenna in time
slot l. For orthogonal transmission using the space and time
resources, different antenna configurations can be used such
as SISO andMIMO. In a SISO configuration, the consecutive
time slots may be employed as the time resources, while
in MIMO, STBCs can be employed to use both space and
time resources for transmission of different dimensions of
multidimensional constellations.

OSTBCs are general structures that can be employed for
carrying data orthogonally over fading channels. Their sim-
plest form, proposed by Alamouti [14] for two transmit
antennas, can be written as

G0 =

[
s1 s2
−s∗2 s∗1

]
. (4)

In Code G0, data are mapped separately to each con-
stellation point and carried by symbols s1 and s2, both of
which are independent elements of a 2D constellation, S2.
As described in Section I, to transmit multidimensional con-
stellations using OSTBCs, their 2D components are dis-
tributed on OSTBC symbols. By considering s1 and s2 used
inG0 as carriers of the 2D components of a multidimensional
constellation, Alamouti’s scheme can be rewritten as

G1 =

[
s(1) s(2)

−s(2)∗ s(1)∗

]
, (5)

where s(k) is the k th 2D component for transmission of
a multidimensional symbol s = [s(1), s(2), . . . , s(K )] with
s ∈ S2K , a 2K -dimensional constellation. In G1, data are
mapped to two 2D subpoints of a 4D point and the subpoints
are carried by s(1) and s(2). As an example, to provide a
spectral efficiency of 2 bits per channel-use (bpcu), a 4-QAM
constellation should be used for s1 and s2 in G0, whereas a
16-4D constellation should be used for s = [s(1), s(2)] in G1.
For the case of four-antenna transmission, the well known

OSTBC presented in [35] can be rewritten for multidimen-
sional constellations as

G2 =


s(1) s(2) s(3) 0
−s(2)∗ s(1)∗ 0 s(3)

s(3)∗ 0 −s(1)∗ s(2)

0 s(3)∗ −s(2)∗ −s(1)

 , (6)

and, by dropping the last column of G2, the corresponding
scheme for a three-antenna transmission of a 6D constellation
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can be written as

G3 =


s(1) s(2) s(3)

−s(2)∗ s(1)∗ 0
s(3)∗ 0 −s(1)∗

0 s(3)∗ −s(2)∗

 . (7)

By using the orthogonal structure of OSTBCs, a simplified
ML decoder can detect sk according to

ŝk = argmin
∀s∈S2

∣∣∣∣∣∣Pk −
∑

i,j

α2ij

 s

∣∣∣∣∣∣
2

, (8)

where

Pk =
Nr∑
j=1

L∑
l=1

Nt∑
i=1

F li,k (r
l
j h
∗
ij). (9)

In (9), k = 1, 2, . . . ,K shows the index of the different
symbols carried by one OSTBC block and F li,k (z) can be
evaluated as

F li,k (z) =



z, if cli = sk ,
z∗, if cli = s∗k ,
−z, if cli = −sk ,
−z∗, if cli = −s

∗
k ,

0, otherwise.

(10)

This simplified decoder can be used for decoding themulti-
dimensional constellations by changing (8) into a summation
of decoding of different 2D components of the multidimen-
sional constellations, expressed as

ŝ = argmin
∀s∈S2K

K∑
k=1

∣∣∣∣∣∣Pk −
∑

ij

α2ij

 s(k)

∣∣∣∣∣∣
2

. (11)

Note that the term Pk should be computed only once for
each k , as this substantially decreases the complexity of
decoding in comparison to the high-performance complex
codes such as the perfect codes [26], [27] in which (3) may
need to be computed for all points of a constellation.
Up to now, only transmission of one multidimensional

symbol per codeword has been discussed. However, by con-
sidering the independence of 2D symbols in the OSTBC
structure, a codeword can be split to carry symbols ofmultiple
independent multidimensional constellations with different
numbers of dimensions. As an example, G3 can be split to
carry two 2D components of one 4D constellation and one
2D constellation; the new codeword can be written as

G4 =


s(1)1 s(2)1 s(1)2

−s(2)∗1 s(1)∗1 0

s(1)∗2 0 −s(1)∗1

0 s(1)2 −s(2)∗1

 . (12)

This generalized scheme can provide a performance-
complexity trade-off in comparison to the base scheme

described above where we used all independent 2D sym-
bols of an OSTBC to carry dependent 2D symbols of a
multidimensional constellation. In this scheme, since all 2D
resources are not used, the number of dimensions of themulti-
dimensional constellation decreases, which reduces the com-
plexity of each search in ML decoding. To maintain the
same spectral efficiency, the number of points can also be
decreased, and, therefore, the number of searches in ML
decoding decreases as well. Even though the complexity
reduction results in performance degradation in comparison
to the base scheme, the scheme still preserves considerable
gain, especially when the OSTBC has a large size. As an
example for achieving the spectral efficiency of 1.5 bpcu,
G3 can be used with a 64-6D constellation, whereas G4 can
be used with a 16-4D constellation for [s(1)1 , s

(2)
1 ] and a QPSK

constellation for s(1)2 .

III. UPPER BOUNDS ON THE PERFORMANCE
In this section, we derive three general bounds on the perfor-
mance of an OSTBC with multidimensional constellations.
1D and 2D constellations and SISO antenna configuration
are special cases of this bound. Although certain bounds
on performance of OSTBCs exists in the literature [36],
a specific bound based on the position of points is necessary
to optimize the constellation. We start with a bound on the
SER. Due to the orthogonal structure of the OSTBC, its PEP
is given by [35]

P(s→ ŝ | H) =

Q


√√√√(∑Nr

j=1
∑Nt

i=1 α
2
ij

2N0

)
K∑
k=1

∣∣s(k) − ŝ(k)∣∣2
 , (13)

where Q(·) is the Gaussian tail function. By using the
Chernoff bound on (13), a union bound on the SER of
OSTBCs can be written as

Ps≤
1
2d

2d∑
v=1

2d∑
v′=1
v′ 6=v

(4)mNtNr∏Nr
j=1

∏Nt
i=1

(
γ̄ij
m

∑K
k=1

∣∣∣s(k)v −s(k)v′ ∣∣∣2+4)m ,
(14)

The derivation of (14) is presented in Appendix A.1.
Proposition 1: In the case of 1D constellations, the union

bound in (14) is a convex function on the convex set{
− (1− evv′ )L+ evv′x < sv − sv′ < −(1− evv′ )x + evv′L,

∀evv′ ∈ {0, 1},∀v, v
′
∈ {1, . . . , 2d }

}
, (15)

where L is a large positive number, evv′ is a binary variable
and x is given by

x =
2√

γ̄ (2+ 1
mNtNr

)
, (16)

where γ̄ is the total average SNR for each received matrixG.
Proof: In Appendix B.1.
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In (16), when m→∞ or NtNr>>1, x tends to
√
2/γ̄ and

in the limit of high SNR, x tends to zero. The union bound
in (14) can be upper bounded as

Ps ≤
1
2d

2d∑
v=1

2d∑
v′=1
v′ 6=v

(4m)mNtNr

µ

(∑K
k=1

∣∣∣s(k)v − s(k)v′ ∣∣∣2)mNtNr
, (17)

where µ is defined as

µ :=

Nr∏
j=1

Nt∏
i=1

γ̄ij. (18)

The derivation of (17) is presented in Appendix A.2.
Proposition 2: In the case of 1D constellations, the union

bound in (17) is a convex function on the convex set{
0 < sv′ − sv<L,∀v∈{1, . . . , 2d }, v′∈{v+ 1, . . . , 2d }

}
.

(19)
Proof: In Appendix B.2.

For the case of the Rayleigh channel, which corresponds to
m = 1 in the Nakagami-m model, (17) can be simplified to

Ps ≤
1
2d

2d∑
v=1

2d∑
v′=1
v′ 6=v

4NtNr

µ

(∑K
k=1

∣∣∣s(k)v − s(k)v′ ∣∣∣2)NtNr
. (20)

For the AWGN channel, which corresponds to the limiting
case in Nakagami-m model with m → ∞, the bound is
given by

Ps ≤
1
2d

2d∑
v=1

2d∑
v′=1
v′ 6=v

exp

(
−
NtNr
4N0

K∑
k=1

∣∣∣s(k)v − s(k)v′ ∣∣∣2
)
. (21)

A simple proof for (21) is presented in Appendix A.3.
If, in each space-time block of the scheme, only one sym-

bol from the multidimensional constellation is transmitted,
the SER and BLER of the STBC block become identical.
Therefore, the above bound can be used for finding the locally
optimum constellations for minimizing the BLER of a space-
time block. For the generalized scheme, the SER bound is
used to optimize different-sized independent multidimen-
sional constellations used with the scheme, even though this
is no longer an appropriate bound on the BLER.

By considering the Hamming distance H(v, v′) between
each pair of constellation points, the corresponding bound on
the BER can be written as

Pb ≤
1
d2d

2d∑
v=1

2d∑
v′=1
v′ 6=v

H(v, v′)(4m)mNtNr

µ

(∑K
k=1

∣∣∣s(k)v − s(k)v′ ∣∣∣2)mNtNr
. (22)

For 1D constellations, labels of the constellation points
are found by considering the weights H(s, ŝ). Hence, both
sv > sv′ and sv < sv′ may happen. If we consider all possi-
bilities for the sign of pairwise differences, 2(2

d
−1)! different

subproblems should be solved. Therefore, the optimization
procedure is not possible in polynomial time. In addition,
solving all subproblems limits the convexity to the case of
mNtNr ∈ N . However, for a specific labelling, e.g. Gray
mapping, only one subproblem should be solved. Here, we
show that under a specific bit-to-symbol mapping, (22) is
convex.
Proposition 3: In the case of 1D constellations, for a given

bit-to-symbol mapping, the union bound in (22) is a convex
function on the convex set defined in (19).

Proof: It is shown in Appendix B.2 that for 1D constel-
lations (17) is a convex function on the convex set defined
in (19). In the proof, we assumed s1 ≤ s2 ≤ . . . ≤ s2d .
To keep this condition, the weights Ĥ(v, v′) = H(av, av′ )
should be used instead of H(v, v′) in (22), where a is the
vector of indices of a given mapping. Ĥ(v, v′) is always a
non-negative integer and the non-negative weighted sum of
convex functions is also a convex function [37]. Hence, (22) is
convex on (19) for a given bit-to-symbol mapping.
One of the important factors in deriving bounds for the

optimization of constellations is considering their complex-
ity. For example, well-known union bounds on the perfor-
mance of constellations in the AWGN channel based on Q(·)
function in [38] are quite difficult to optimize for medium-
to-large constellations since each evaluation of Q(·) takes a
relatively long time in comparison to the simplified bounds
presented in (17), (20), (21), and (22). Furthermore, in many
cases, optimization based on more complex bounds results
in very little improvement. Therefore, throughout this paper,
we only optimize (17) and (22) to find SER-minimizing
and BER-minimizing 1D, 2D and multidimensional
constellations.

IV. OPTIMIZATION CRITERIA AND ALGORITHMS
In this section, the optimization problems, optimization pro-
cedure and the choice of the method, are discussed. The
labelling search algorithm as the second method of find-
ing BER improving constellations is explained. Furthermore,
samples of optimized constellations are shown.

A. OPTIMIZATION PROBLEMS
For finding optimized constellations, the union bound given
in (17) on the BLER is minimized. To improve the per-
formance by employing the shaping instead of increasing
the power, the only constraint used in the optimization of
multidimensional constellations is that the average power
of the constellation points is limited to one. The optimiza-
tion problem for minimizing BLER is to find s(k)v for all
k ∈ {1, . . . ,K } and v ∈ {1, . . . , 2d } that will

minimize
2d∑
v=1

2d∑
v′=v+1

C(∑K
k=1

∣∣∣s(k)v − s(k)v′ ∣∣∣2)mNtNr
,

subject to
1

2dK

2d∑
v=1

K∑
k=1

∣∣∣s(k)v ∣∣∣2 ≤ 1, (23)
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where C = 2(4m)mNtNr /(2dµ), which is a constant and does
not affect the optimization. In ( 23), v′ is started from v + 1,
since |s(k)v − s

(k)
v′ | and |s

(k)
v′ − s

(k)
v | result in an equal PEP. Note

that (23) does not depend on µ and therefore the output of
the optimization is an SNR-independent constellation. For the
case of the BER optimization, the problem is written as

minimize
2d∑
v=1

2d∑
v′=v+1

H(v, v′)C ′(∑K
k=1

∣∣∣s(k)v − s(k)v′ ∣∣∣2)mNtNr
,

subject to
1

2dK

2d∑
v=1

K∑
k=1

∣∣∣s(k)v ∣∣∣2 ≤ 1, (24)

where C ′ = 2(4m)mNtNr /(d2dµ). Due to convexity of the
problem for 1D constellations, the following convex pro-
grams are used to optimize 1D constellations by minimizing
the SER and the BER, respectively:

Minimize
2d∑
v=1

2d∑
v′=v+1

C

(sv − sv′)2mNtNr
,

subject to
1
2d

2d∑
v=1

|sv|2 ≤ 1,

sv′ − sv ≤ L, sv′ − sv ≥ 0,

∀v ∈ {1, . . . , 2d }, v′ ∈ {v+ 1, . . . , 2d }. (25)

Minimize
2d∑
v=1

2d∑
v′=v+1

Ĥ(v, v′)C ′

(sv − sv′)2mNtNr
,

subject to
1
2d

2d∑
v=1

|sv|2 ≤ 1,

sv′ − sv ≤ L, sv′ − sv ≥ 0,

∀v ∈ {1, . . . , 2d }, v′ ∈ {v+ 1, . . . , 2d }. (26)

In (25) and (26), due to the normalization of the total
constellation power to one, the distance of points cannot
be greater than two. As such, we set L = 2. Note that
the equalities in constraints are not activated. Otherwise, the
objective function tends to infinity.

B. OPTIMIZATION PROCEDURE AND THE
CHOICE OF THE METHOD
The constellations optimized in this paper do not need to
be updated. Thus, only offline optimization is discussed in
this section. For the nonlinear programs (NLPs) in (23) and
(24), two optimization methods, including the interior-point
method (IPM) and the sequential quadratic programming
method (SQPM), were employed. These two classes of meth-
ods are typically used for solving constrained optimization
problems. IPM works based on the iterative moving in the
interior of the feasible set, determined using the constraints,
and decreasing a multiplier until a perturbed Karush–Kuhn–
Tucker (KKT) conditions tends to the original KKT. IPM
initially walks far from the boundary of the feasible set and

iteratively gets closer to the boundary. In each iteration of
the SQPM, a quadratic program, which is generated by the
quadratic approximation of the objective function, is solved.
At each step, the Jacobian and the Hessian are approximated
and a step length is determined using a line search in the
direction of the minima. Each iteration in IPM typically is
more complex than SQPM but fewer iterations are needed to
achieve a good solution. For a detailed description of IPM
see [39], [40], and for SQPM see [6], [40] and references
therein. In the both cases, the step size decrease as the solver
goes closer to a local optima. Thus, the minimum step size is
used as the stopping criteria. As the size of the constellation,
and consequently the number of variables, increases, we need
to increase the maximum number of iterations. As m, Nt ,
or Nr increases, the complexity of computation of the Jaco-
bian and Hessian and estimation of the quadratic program
increases and the optimization slows down. For all methods,
the vector of complex symbols is transferred to the double-
size vector of real variables.

For both small and large constellations, e.g., 16-2D and
256-4D, both IPM and SQPM converge to a locally opti-
mum solution with a very similar objective function value.
However, in all cases SQPM converges to the best final value
faster. In contrast, IPM finds a solution within ±1% of the
final solution faster. As an example, for optimization of a
256-4D SER-minimizing constellation, IPM finds a good
solution in the feasibility region in around 51000 steps. This
takes around 200 seconds using Matlab on a computer with
24 GB RAM and a 3.40 GHz i7-3770 CPU. In comparison,
SQPMfinds the same solution in around 160000 steps, which
takes around 300 seconds, by setting m = 1, Nt = 1 and
Nr = 1. Although further optimization is not effective on the
performance of the system, SQPM and IPM converge to the
best achievable solution in around 410000 and 670000 steps,
corresponding to around 700 and 2200 seconds, respectively.
In fact, since IPM can move far from the boundary of the
feasible set, it converges faster to a good solution. In the long
run, since the computation of each step in SQPM is cheaper,
SQPM can move deeper in the feasible set during a limited
time and generates slightly better results. Nevertheless, for
large constellations, IPM finds a good solution faster than
SQPM. Therefore, it is used as the preferred optimization
method in this paper.

To improve the results, we restart the solver from a slightly
perturbed starting point sequentially to find several locally
minimum solutions and we choose the best of these. For gen-
erating new starting points, small perturbation coefficients
from CN (0, 0.2) are randomly generated and added to the
initial starting point. Then the new starting point total power
is normalized to satisfy the power constraint in (23) and (24).

In addition to IPM and SQPM,we also examined simulated
annealing (SA) in [41] and genetic algorithm (GA) as two
well known methods of global optimization. For the case
of an SA algorithm, although improvement in bound value
is observable, it converges very slowly and the results are
worse than the solution found using IPM and SQPM. For GA,
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the results were even worse as it does not find any useful
solution. Indeed, due to the continues nature of the feasible
set, evolutionary algorithms cannot find good solutions.

The convex problems in (25) and (26) can be modelled and
solved using cvx. Due to energy efficiency, optimum con-
stellations for coherent systems have zero mean. It has been
shown that they are typically symmetric around zero [44].
Therefore, as a good solution, we can optimize the con-
stellation for the positive points alone, i.e., s2(d−1) , . . . , s2d .
Therefore, we only have 2(d−1) free variables to optimize.
Thus, for optimization of a 1D constellation with d = 6,
only 32 variables should be optimized. For the case of the
BER-minimizing constellation, we set the bit-to-symbol
mapping to Gray. Gray mapping is optimal at high SNR for
regular constellations in the AWGN channel [44]. Here, we
assume it remains good in the Nakagami-m channel. For the
sake of comparison, we also used IPM to solve the equivalent
1D problems in (23) and (24) to find locally optimal solutions.
The result shows that the convex optimization of a 16-1D
constellation, can provide up to 0.2 dB better results than
non-convex optimization.

To initiate the solver for optimizing based on the SER
or BLER with a good starting point, all constellations are
initially selected from the Cartesian product of PAM con-
stellations known as cubic constellations [10]. For example,
the rectangular QAM constellations are used as the initial
point for optimization of 2D constellations. To initiate the
optimization for minimizing the BER, the Cartesian product
of Gray-mapped PAM constellations is employed.

For optimization in the AWGN channel, a value
of m = 10 is used in optimization problems (23) and (24)
instead of a very large m, since large values of m slows down
the optimization procedure and Nakagami-m fading with
m = 10 is close enough to the AWGN channel. Alterna-
tively, the bound (21) can be used for the optimization of
constellations in the AWGN channel. However, the result
of optimization with this bound does not show good per-
formance since the SNR knowledge is necessary for finding
good constellations.

C. TWO-STEP OPTIMIZATION OF
BER-MINIMIZING CONSTELLATIONS
Traditionally, to optimize the constellation for minimizing the
BER, a two-step process is used. First an optimum constella-
tion is found based on the shaping metric; and second, the
bit-to-symbol mapping is optimized by using an appropriate
metric [6]. Therefore, two independent steps are needed to
find an optimum constellation for minimizing the BER. For
example, in our case, the bound (17) on the SER is used to
find a constellation with a good shape and then by using an
appropriate algorithm, such as the binary switching algorithm
in [42], [43], and [45], the best bit-to-symbol mapping is
found. To find the bit-to-symbol mapping, we modify the
binary switching algorithm to adapt it to our problem. The
labelling algorithm can be described as Algorithm 1, where

Algorithm 1 Binary Switching Algorithm
Input: SER optimized constellation points s
Output: A locally optimum bit to symbol mapping z∗ for s

Procedures used in the algorithm:
•SORT_INDICES(): Sorts out and returns a vector of indices
of constellation points in decreasing order of cost function C.
•SWITCH_INDEX(i,j): Switch the index of ith and jth constel-
lation points in s and returns the new index vector.
•UPDATE_COST(): Calculates and returns the cost of each
point based on (27) and the total cost based on (28).
Variables:
δ: Vector of sorted costs of constellation points.
z,z′: Vectors of indices of constellation points.
D,1: Total cost value.
IMax : Number of iterations.
Initialisation:

1: Randomly choose an index vector z for constellation points s
and sort them out based on the random index vector.
The body of Algorithm:

2: z∗=z
3: for I = 1 to IMax do
4: [1,δ]=UPDATE_COST(s(z∗))
5: z=SORT_INDICES(δ,z∗)
6: v=1
7: Indicator=0
8: IterationFinishFlag=0
9: while (IterationFinishFlag==0) do
10: for v′ = 1 to 2d do
11: if (z(v) 6= v′) then
12: z′=SWITCH_INDEX(z(v),v′)
13: D=UPDATE_COST(s(z′))
14: if (D < 1) then
15: 1 = D
16: z∗ = z′
17: Indicator=1
18: end if
19: end if
20: SWITCH_INDEX(v′,z(v))
21: end for
22: if (Indicator==1) ‖ (v == 2d ) then
23: IterationFinishFlag=1
24: else if Indicator==0 then
25: v=v+1
26: end if
27: end while
28: end for
29: return z∗

c(v) is the cost of each symbol and can be calculated as

c(v) =
2d∑
v′=1
v′ 6=v

H (v, v′)C ′(∑K
k=1

∣∣∣s(k)v − s(k)v′ ∣∣∣2)mNtNr
. (27)

The total cost can be calculated as the sum of the cost function
of each symbol and can be expressed as

ctot =
2d∑
v=1

c(v). (28)

The binary switching algorithm is initialized by a random
index vector. The individual cost of points for each index
v in constellation and the total cost of the bit-to-symbol
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mapping is computed using the UPDATE_COST () function
based on (27) and (28), respectively. The individual pairwise
cost of points for each point v are first sorted out using
the SORT_INDICES() function in decreasing order. Then,
the algorithm swaps the index of the point with the highest
individual cost with all other points using SWITCH_INDEX ()
to find amappingwith a lower total cost. Indeed, it is assumed
that the highest individual cost should be suppressed first.
In case no improvement is achieved by switching the indices,
the same procedure is repeated for the rest of the sorted
indices in z in decreasing order. If a better bit-to-symbol
mapping is found, the Algorithm 1 starts the next iteration.
In case of no improvement after checking all indices in z, the
algorithm is halted.

By switching the indices, any index vector can be achieved
from any other index vector [42]. Therefore, the globally
optimal solution is not out of the achievable range of the
solutions, although it is hard to achieve. Here, we choose to
start the new iteration after finding an improved bit-to-symbol
mapping instead of checking all elements of z to avoid the
greediness. We also examined the case of choosing the best
mapping by checking all sorted elements of z in each iteration
which resulted in worse mappings for many constellations
due to being more greedy.

To achieve a better result in limited time, Algorithm 1 can
be excited many times with different initial points specified
by different random vectors, z. Here, we choose to have
10000 different initial points since more than that rarely
improves the quality of optimization for small to medium-
size constellations.

In Section V, we compare the result of the two-steps
optimization method with the constellations achieved using
the bound (22) on the BER which corresponds to the joint
optimization of constellation shaping and bit-to-symbol map-
ping. We show that the constellations achieved using the
optimization of (22) outperform the constellations achieved
using the two-step method.

FIGURE 1. Comparison of 1D 16-PAM SER optimized constellations for
the AWGN channel (top, in blue), the Nakagami-m channel with m = 3
(middle, in green), and the Rayleigh channel, i.e., Nakagami-m with
m = 1 (bottom, in red).

D. SAMPLES OF OPTIMIZED CONSTELLATIONS
By optimizing problems of Section IV-A, constellations
with improved performance in comparison to the PAM and
QAM constellations are achieved. Fig. 1 shows samples of
16-1D constellations optimized by solving the problem (23)
for the Nakagami-m fading channel. We observe that while
for the AWGN channel, approximately equidistant PAM con-
stellations are known to outperform other constellations, the
optimal shape is quite different for other cases including
Nakagami-m with m = 3 and Rayleigh fading.

The best known 2D constellations in high SNR for min-
imizing the SER are Voronoi constellations, where signal
points are positioned approximately on a hexagonal grid
which we refer to as the HEX constellations [46]–[48] or
penny packing [49]. Fig. 2(a) shows a sample of 16-2D
constellations optimized by solving the problem (23). Inter-
estingly, the optimized constellation for the AWGN channel
is HEX-like while the one for the Rayleigh channel is on
two polygons (one inside of the other) with a zero amplitude
point in the middle. Fig. 2(b) shows the samples of the opti-
mized 2D constellations for minimizing the BER by solving
the problem (24). Interestingly, for the AWGN channel, the
optimized constellation is a HEX-like one, while for the
Rayleigh channel it is only slightly different from a 16-QAM
constellation.

QAM constellations with order 2d , d ∈ 3, 5, 7, . . . 2n+ 1,
are not energy efficient. However, by solving (23), energy
efficient alternatives can be generated. Fig. 2(c) and Fig. 2(d)
illustrates the 8-2D constellations optimized for the SER
and BER of the AWGN and Rayleigh fading channels,
respectively.

The two 2D projections of a sample optimized 16-4D con-
stellation is plotted in Fig. 3. In this figure, each 2D constel-
lation point represents two dimensions of a 4D constellation
point, and points with the same label are indicated with the
same marker and colour. This figure shows that constellation
points generated by solving (23) can be irregularly placed
anywhere in the signal space.

V. PERFORMANCE EVALUATION AND DISCUSSION
In this section, we evaluate the performance of the
constellations optimized in Section IV in comparison to the
best-known constellations in the literature. The channel is
modelled as experiencing uncorrelated Nakagami-m fading
with AWGN. The results of SISO and MIMO antenna con-
figurations are discussed in the first and the second parts of
this section, respectively.

A. RESULTS FOR THE SISO CONFIGURATION
In this section, the performance of constellations optimized
for the SISO configuration are evaluated. For comparison,
constellations were also optimized by using a bound on the
SER of the SISO AWGN channel in [47], [50], and [51]. The
corresponding optimization problem can be written as

minimize
1

2d
√
2π

2d∑
v=1

2d∑
v′=1
v′ 6=v

exp
(
−

1
4N0
|sv − sv′ |2

)
1
√
2N0
|sv − sv′ |2

,

subject to
1
2d

2d∑
v=1

|sv|2 ≤ 1. (29)

For the optimization of 2D constellations based on (29), the
SNR is set to 20 dB (the SNR value is required for this
optimization and we found the best results at the mentioned
value).
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FIGURE 2. Comparison of a) 16-QAM and 16-2D SER optimized constellations, b) 16-QAM and 16-2D BER
optimized constellations, c) 8-QAM and 16-2D SER optimized constellations and d) 8-QAM and 16-2D BER
optimized constellations. The QAM constellations are shown with black squares and the optimized
constellations for AWGN and the Rayleigh fading channel are shown with blue circles and red asterisks,
respectively.

FIGURE 3. Sample of the optimized 16-4D constellation used for the
scheme G1.

In Fig. 4, the BLER of 64-1D constellations has been
evaluated in the Nakagami-m channel with differentm values
and for the spectral efficiency of 6 bpcu. In each case, the per-
formance of the optimized constellation for the correspond-
ing m-factor is compared with the approximately equidistant
64-PAM constellation which is the well known capacity max-
imizing high-SNR 1D constellation for the AWGN channel.

In the Nakagami-m channel with m = 1, which is the
Rayleigh channel, the constellation optimized for m = 1
shows a 0.4 dB gain in comparison to 64-PAM at a BLER
of 10−4. For the case of m = 3, the constellation optimized
for m = 3 shows a 0.2 dB gain in comparison to equidistant
64-PAM at a BLER of 10−4, and for the casem→∞, which
is the AWGNchannel, the constellation optimized form = 10
performs approximately the same as 64-PAM.

Fig. 5 shows the comparison of the BLER of 2D and
4D constellations in the AWGN channel for 4 bpcu. The
length of the block is considered to be two channel uses
since the size of the largest constellation is 4D in these
figures. These results indicate that the 16-2D constella-
tions, optimized either by solving problem (23) by setting
m = 10 or by solving problem (29), perform similarly to each
other and have approximately the same performance as the
16-2D constellation optimized in [3] or a 16-HEX constella-
tion. Furthermore, all these 16-2D optimized constellations
work 0.4 to 0.5 dB better than 16-QAM. The 256-4D con-
stellation optimized in [3] performs around 0.2 dB better
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FIGURE 4. BLER comparison of a 1D constellation with a SISO
configuration for 6 bpcu in Nakagami-m channels with different values
of m, a) equidistant 64-PAM vs. 64-PAM optimized for m = 1 in
Nakagami-m fading with m = 1, b) equidistant 64-PAM vs. 64-PAM
optimized for m = 3 in Nakagami-m fading with m = 3 , c) equidistant
64-PAM vs. 64-PAM optimized for m = 10 in an AWGN channel.

FIGURE 5. BLER comparison of a 2D constellation with a SISO
configuration for 4 bpcu in an AWGN channel.

than optimized 16-2D constellations, while the 256-4D con-
stellation optimized by solving problem (23) with m = 10
shows an additional 0.2 dB gain. Moreover, the performance
of some of these constellations were checked in the Rayleigh
channel and, as expected, the 16-2D constellation designed
for Rayleigh outperforms the 2D constellation optimized for
AWGN by 0.2 dB, and the 16-QAM constellation by 0.4 dB
at a BLER of 10−5.
Constellations optimized for minimizing the BER can be

achieved by solving problem (23) on the SER and finding
the best bit-to-symbol mapping by using the binary switch-
ing algorithm as described in Section IV, which we refer
to as method A, or alternatively by solving problem (24)
on the BER which is the joint optimization of the con-
stellation shape and the bit-to-symbol mapping, which we
refer to as method B. Here, we compare these two methods.
Fig. 6 illustrates the BER comparison of different 16-2D

FIGURE 6. BER comparison of 2D constellations with a SISO configuration
for 4 bpcu in a Rayleigh channel.

constellations in the SISO Rayleigh channel. It shows that
the 16-2D constellation constructed based on method A by
solving the problem (23) with m = 1 outperforms the
16-2D constellation constructed based on method A by
using the constellation optimized in [3] for 0.4 dB at a
BLER of 10−5; the 16-2D constellation optimized based on
method B with m = 1 provides an additional 0.4 dB gain.
For the case of the AWGN channel where we used a

constellation optimized for the AWGN channel, there is only
a small preference in performance for the constellation opti-
mized using method B in comparison to method A, since as
we observe in Fig. 2(a) and Fig. 2(b), constellations optimized
for SER using bound (17) and for BER using bound (22)
already have quite similar HEX-like shapes.

FIGURE 7. BER comparison of 2D constellation with a SISO configuration
for 4 bpcu in an AWGN channel.

In Fig. 7, the BER performance of the 2D constel-
lation optimized by solving problem (24) under a SISO
antenna configuration and in the AWGN channel is exam-
ined. Among 2D constellations, 16-QAMwith Gray mapping
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is outperformed by the 16-2D constellation optimized for
Nakagami-m with m = 10 by 0.3 dB at a BLER
of 10−5. Furthermore, the 256-4D constellation optimized for
Nakagami-m with m = 10 outperforms the optimized 16-2D
constellation by 0.5 dB at a BLER of 10−5.

The above results show that by increasing the dimension-
ality of the constellation, there is more space for points to
be further apart and this improves performance. Furthermore,
by increasing the number of points of a constellation the
performance gap between constellations optimized based on
the bounds (17) and (22) and distance based constellations
(e.g. [3]) increases. Results of this section are summarised
in Table. 1.

TABLE 1. Performance advantage of optimized constellations in
comparison with the best-known constellations in the literature
for the SISO system.

B. RESULTS FOR THE MIMO CONFIGURATION
In this part of the performance evaluation, as the baseline,
OSTBCs with QAM constellations are compared against
the schemes G1-G3, which consists of the use of multidi-
mensional constellations with OSTBC. Since BLER (or the
BER of a block) is used in the comparisons, constellations
were optimized by using the problems (23) and (24), and;
therefore, one multidimensional constellation is used in each
space-time code block. As a reference for comparison, the
same scheme is constructed by using OSTBC and the con-
stellation proposed in [3]. The scheme is also compared with
the Golden code [26] and the algebraic MISO code in [32]
which we refer to as the ‘‘Oggier code’’. The constellations
used with the Golden code for 2 bpcu and 4 bpcu are BPSK
and QPSK, respectively, and with the Oggier code for 1 bpcu
is BPSK. Furthermore, the scheme is compared with the
QOSTBC with optimal rotation in [35], used with QPSK for
a spectral efficiency of 2 bpcu.

In Fig. 8 the BLER performance of the Golden code,
Alamouti’s OSTBC G0 and the scheme G1, all with 2 bpcu,
are compared in a Rayleigh channel. This result shows that
scheme G1 with a constellation optimized by solving the
problem (23) has the same performance as scheme G1 with
a constellation optimized in [3]. Both schemes outperform
OSTBC by 0.4 dB in a 2 × 1 configuration and by 0.5 dB
in a 2×2 configuration at a BLER of 10−4. Furthermore, the
Golden code in a 2 × 2 configuration shows a BLER worse
than OSTBC. Indeed, most algebraic codes are designed for
high rates and therefore show poor performance at low rates
since not all their degrees of freedom are well exploited.

FIGURE 8. BLER comparison of scheme G1, OSTBC and the Golden code
for 2 bpcu.

FIGURE 9. BLER comparison of the scheme G1, OSTBC and the Golden
code for 4 bpcu.

Fig. 9 shows the performance comparison of scheme G1
with OSTBC in 2 × 1 and 2 × 2 configurations and the
Golden code 2 × 2 for 4 bpcu in a Rayleigh channel. The
outcome indicates that the scheme G1 with a constellation
optimized by solving the problem (23) and with a constel-
lation optimized in [3] perform the same. They also work
better than OSTBC as one of the best codes for the 2 × 1
configuration, by 0.9 dB at a BLER of 10−3. Furthermore,
for the 2 × 2 antenna configuration, it is 0.9 dB better than
OSTBC and only 0.5 dB worse than the Golden code at 10−4.
Note that the Golden code 2 × 2 outperforms G1 since it
benefits from more degrees of freedom, but it also has four
times more complexity in terms of complex multiplications
in each search for ML decoding even though the number of
searches is the same as that in the scheme.

Fig. 10 shows the error performance of the
schemesG2 andG3 for 3×1 and 4×1 antenna configurations,
respectively, in a Rayleigh channel. The schemes G2 and G3
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FIGURE 10. BLER comparison of the schemes G2 and G3, OSTBC and the
Oggier code for 1 bpcu, with Nr = 1.

have approximately the same performance when used with
either the constellation optimized by solving the problem (23)
or the constellation optimized in [3], and they outperform
OSTBC by 1.5 dB in 3 × 1 and in 4 × 1 configurations
at a BLER of 10−4. Furthermore, the BLER comparison of
the scheme and OSTBC in 3 × 2 and 4 × 2 configurations
in Fig. 11 shows 1.7 dB and 1.8 dB improvement at 10−4,
respectively. To compare the scheme with algebraic codes,
the recently designedMISO code in [32] (the ‘‘Oggier code’’)
that can support lower rates was tested; similar to the Golden
code in Fig. 8, its BLER is worse than the corresponding
OSTBC.

FIGURE 11. BLER comparison of the schemes G2 and G3, OSTBC and the
Oggier code for 1 bpcu, with Nr = 2.

Fig. 12 shows the performance of the scheme G2 in com-
parison to OSTBC and QOSTBC 4× 1 and 4× 2 for 2 bpcu.
The results show that the scheme outperforms OSTBC by
around 4 dB at 10−3 and also outperforms QOSTBC 4×1 and
4 × 2 by 0.8 dB and 0.4 dB at 10−4, respectively. Note that
the improvement in comparison to OSTBC or QOSTBC is

FIGURE 12. BLER comparison of the scheme G2, OSTBC and QOSTBC
for 2 bpcu.

achieved at the expense of more decoding complexity. In the
case of QOSTBC, joint pairwise decoding results in a lower
number of searches, but each search is more complex than
the decoding of the scheme. Furthermore, unlike the previous
figures, the performance of the scheme with the constella-
tion achieved from solving the problem (23) outperforms the
scheme with a constellation optimized in [3] by 0.3 dB and
0.2 dB for 4 × 1 and 4 × 2 configurations, respectively.
In comparison to [3], since the modulation is optimized for
the Rayleigh fading channel, the performance is improved.

FIGURE 13. BER comparison of the scheme G2 and QOSTBC for 2 bpcu.

The BER of the schemeG2 in comparison to the QOSTBC
for 4 × 1 and 4 × 2 configurations is shown in Fig. 13.
For a 4 × 1 configuration, scheme G2 with a constellation
optimized by solving the problem (23) outperforms scheme
G2 with method A and a constellation optimized in [3]. It also
outperforms QOSTBC by 0.3 dB at BER of 10−5. For a
4 × 2 configuration, the scheme G2 with a constellation
optimized by solving the problem (23) andQOSTBC perform
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FIGURE 14. BLER comparison of the generalized scheme and OSTBC in
three different values of σ2 for 1.5 bpcu.

approximately the same and outperform scheme G2 with
method A and a constellation optimized in [3] by 0.5 dB at
BER of 10−5.
Finally, Fig. 14 shows the performance of the generalized

schemeG4 with one 16-4D constellation and aQPSK constel-
lation in comparison with the scheme G3 for a 3× 1 antenna
configuration used with a 64-6D constellation and an OSTBC
with a QPSK constellation in a Rayleigh channel. For the
case of σ 2

= 0, the scheme G3 outperforms G4 by 0.4 dB
andG4 outperforms OSTBC by 0.3 dB at the BLER of 10−4.
As explained in Section II, the difference of the generalized
scheme G4 and scheme G3 can be explained by using a
complexity-performance trade-off. For the ML decoding of
scheme G3, 64 searches in 6D space are necessary while for
the generalized scheme G4, only 16 searches in 4D space
and 4 searches in 2D space are necessary. Thus, the gener-
alized scheme has a lower decoding complexity and since
the points have less space to be far apart, the performance is
degraded. Furthermore, similar to the results in Fig. 15, if the
channel is estimated imperfectly, the BLER shows an error
floor.

By designing multidimensional constellations adapted to
OSTBC, high performance improvements can be achieved
at the expense of increasing the complexity of decoding.
Increasing the dimensionality of the constellation improves
the performance even though the size of the employed
OSTBC, including the number of antennas and the number
of time slots, may be increased. Indeed, this is the main
reason that schemes G2 and G3 provide more gain in com-
parison to G1. Additionally, as observed in the results of
the generalized scheme shown in Fig. 14, there exists a
complexity-performance trade-off when part of the indepen-
dent symbols of the OSTBC are used to carry dependent
dimensions of multidimensional constellations. Performance
advantages of the results of this section are summa-
rized in Table. 2 for 2 bpcu. Note that for 1 bpcu, the
gain in comparison to the best-known constellations is

TABLE 2. Performance advantage of optimized constellations in
comparison with the best-known constellations in the literature for the
MIMO Rayleigh fading channel and 2 bpcu.

approximately zero. For reference, the performance of the
scheme under imperfect channel estimation has been reported
in Appendix C.

When the regular constellations such as QAM constel-
lations are used, the decision regions are very regular.
Therefore, designing a low complexity ML decoder for these
constellations is possible using the simple decision thresh-
olds. However, for the irregular constellations, the deci-
sion regions are very complex and designing a decoder
based on these regions may be infeasible. In both cases,
sphere decoders may decrease the decoding complexity [20].
However, for regular constellations, sphere decoders with
lower complexity can be designed.

VI. CONCLUSIONS
In this paper, two bounds on the performance of the SER and
BER of multidimensional constellations in a Nakagami-m
fading channel at high SNR are derived. These bounds are
used to obtain the constellations that minimize the SER and
BER. The convexity of the SER and BER upper bounds is
proven for 1D constellations. As the result of optimization,
SER-minimizing 1D, 2D and multidimensional constella-
tions overcome the best-known constellations in SISO con-
figuration. The BER-minimizing constellations optimized
using the BER bound outperform the constellations found
based on the independent optimization of shape and the bit-
to-symbol mapping. In addition, it is shown that adapting the
constellations based on the channel parameterm can improve
the performance.

The multidimensional constellations were also optimized
for the OSTBC and it is observed that these constellations
can improve the BLER of the OSTBC in comparison to
regular 2D QAM constellations. The OSTBC with multi-
dimensional constellations works well for low-to-moderate
spectral efficiencies where all degrees of freedom of alge-
braic codes cannot be fully exploited. Even though the non-
orthogonal algebraic codes may provide better performance
than orthogonal STBCs at high spectral efficiencies, the
optimized constellations provide a trade-off between decod-
ing complexity and performance. Furthermore, the scheme
outperforms QOSTBCs but this improvement is achieved
at the expense of higher ML decoding complexity. Finally,
the proposed generalized scheme can provide a complexity-
performance trade-off for OSTBCs with multidimensional
constellations.
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APPENDIX A
A.1 Derivation of (14): SER Union Bound for a
Nakagami-m Channel
By using the Chernoff bound, (13) is upper bounded as

P(s→ ŝ | H)

≤ exp

(
−

(∑Nr
j=1

∑Nt
i=1 α

2
ij

4N0

)
K∑
k=1

∣∣∣s(k) − ŝ(k)∣∣∣2)

=

Nr∏
j=1

Nt∏
i=1

exp

(
−

(
α2ij

4N0

)
K∑
k=1

∣∣∣s(k) − ŝ(k)∣∣∣2) . (30)

By considering the distribution of α2ij for Nakagami-m fading,
the PEP can be upper bounded further as

P(s→ ŝ) ≤
4mNtNr∏Nr

j=1
∏Nt

i=1

(
γ̄ij

∑K
k=1|s

(k)−ŝ(k)|
2

m + 4
)m . (31)

From (31), a union bound on the SER of OSTBC with
multidimensional constellations can be derived as (14).

A.2 Derivation of (17): The Second SER Union Bound for
a Nakagami-m Channel
At high SNR where γ̄ij/m>>4, the PEP in (31) can in turn be
bounded by

P(s→ ŝ) ≤
(4m)mNtNr(∏Nr

j=1
∏Nt

i=1 γ̄ij

) (∑K
k=1

∣∣s(k) − ŝ(k)∣∣2)mNtNr .
(32)

From (32), the corresponding union bound on the SER can be
derived as (17).

A.3 Derivation of (21): SER Union Bound for an AWGN
Channel
To prove (21), starting from (30) and by considering
α2ij = 1 for the AWGN channel, the PEP upper bound is
written as

P(s→ ŝ) ≤ exp

(
−

(
NrNt
4N0

) K∑
k=1

∣∣∣s(k) − ŝ(k)∣∣∣2) . (33)

Finally, by considering the union bound, (21) can be
derived.

VII. APPENDIX B
B.1 Proof of Convexity of (14) for 1D Constellations
For simplicity let us assume γ̄ij is the same for all paths, i.e.,
γ̄ ′ = γ̄ij. For 1D constellations, (31) can be written as

P(s→ ŝ) ≤
C ′′(

γ̄ ′

m (s− ŝ)2 + 4
)mNtNr , (34)

where C ′′ = 4mNtNr . Setting δ = (s− ŝ) and y = C ′′( γ̄
′

m δ
2
+

4)−mNtNr , we take the second derivative of y to examine the

convexity. It can be given as

d2y
dδ2
= 2γ̄ ′NtNrC ′′

(2mNtNr + 1)δ2γ̄ ′/m− 4

( γ̄
′

m δ
2 + 4)2+mNtNr

. (35)

For convexity of (31), d2y/dδ2 should be positive. This
only happens if the following condition is satisfied:

x :=
2√

γ̄ ′

m (2mNtNr + 1)
< |δ|. (36)

Therefore, the minimum distance of the constellation
points should be greater than x. For OSTBCs, the total aver-
age SNR of each received matrix G is simplified as γ̄ =
E[
∑

i
∑

j α
2
ij]/N0 = NtNr/N0, which results in γ̄ = NtNr γ̄ ′.

Therefore, x can be rewritten in terms of the total average
SNR as (16). Given the convexity condition in (36), the upper
bound on the PEP in (34) is convex on mutually excluded sets
since either δ > x or δ < −x for each pair of points. Because
the sum of convex functions preserves the convexity [37], the
union bound on the PEP in (17) is also convex in the convexity
regions of (34) given in (15). The more general case, where
γ̄ij is different for each path, can be proven by considering the
log-convexity of (31) for 1D constellations.

B.2 Proof of Convexity of (17) for 1D Constellations
For 1D constellations, (32) can be written as

P(s→ ŝ) ≤
C ′′

(s− ŝ)2mNtNr
, (37)

where C ′′ = (4m)mNtNr /γ̄ . We set y = C ′′(s− ŝ)−2mNtNr .
Hence d2y/dδ2 can be given as

d2y
dδ2
= 2mNtNrC ′′(2mNtNr + 1)δ−2(mNtNr+1). (38)

For convexity of (38), it is sufficient that δ > 0. First, we
explainwhy δ can be non-negative.Without loss of generality,
we can assume a specific ordering for 1D constellations, since
symbol labelling is not effective on the SER. Thus, we can set
s1 ≤ s2 ≤ . . . ≤ s2d . Therefore, we can assume δ is always
non-negative so the convexity condition is limited to δ 6= 0.
This observation is consistent with the asymptotic behavior of
(16) since, as γ̄ tends to infinity, x tends to zero. Therefore,
PEP in (37) is a convex function on mutually excluded sets
corresponding to δ > 0 or δ < 0. The rest of the proof is the
same as the last part in Appendix B.1.

APPENDIX C
PERFORMANCE OF THE CONSTELLATIONS UNDER
IMPERFECT CHANNEL ESTIMATION
The performance of G3 for a 3 × 1 antenna configuration
under imperfect channel estimation in a Rayleigh fading
channel is evaluated in Fig. 15. The channel estimation
method is assumed to be linear minimum mean square
error (LMMSE). As described in [52] and [53], the variance
of the channel estimation error with LMMSE can bemodelled
with a factor σ 2 ranging from zero to one that corresponds to

26636 VOLUME 5, 2017



H. Khoshnevis et al.: Design of High-SNR Multidimensional Constellations for Orthogonal Transmission

FIGURE 15. BLER comparison of the scheme G3 in three different values
of σ2 for 2 bpcu with a 3× 1 antenna configuration.

a coherent receiver (perfect channel estimation) when it is set
to zero and a non-coherent receiver (no channel estimation)
when it is set to one. It can be seen that when the channel is
estimated imperfectly, the BLER curves show an error floor
at relatively high values.
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