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ABSTRACT Predictable message transmission is the primary requirement in networked safety critical
embedded systems design. In these systems, delay jitter has been proven to be a critical factor that must
be considered. For periodic messages, minimizing the delay jitter means messages should be transmitted at
the expected time in every period. In this paper, we investigate the scheduling problem to reduce the delay
jitter for periodic messages in networked safety critical embedded systems. Our approach is empirically
assigning an expected completion time as a baseline for the periodic messages and minimizing the total
deviation to them. It can be applied either in centralized control buses or in synchronized ones. This
paper selects a novel bus protocol and UM-BUS, to evaluate the effectiveness of the proposed algorithm.
UM-BUS is a multi-master bus with the capability of multi-lane concurrent transmission. Aiming at different
operation mode of UM-BUS, we implemented two sets of experiments by configuring different parameters
to change the bus utilization. The results show that the heuristic algorithm works effectively and can achieve
a deviation within 0.35%, which is significantly smaller comparing with the existing scheduling algorithms.

INDEX TERMS UM-BUS, delay jitter, embedded system, safety critical, message scheduling
algorithm, EDF.

I. INTRODUCTION
Networked embedded systems generally comprise multiple
spatially distributed nodes which support processing infor-
mation from multiple sensors or actuators. These distributed
nodes typically exchange messages in a network. For these
systems, control performance strongly depends on the net-
work time delays (or latencies) [1], [2]. Especially in many
safety critical embedded systems, such as aerospace, indus-
trial control and automotive electronics, real-time responses
of themessages are typically essential requirements [3]. Real-
time means the transmissions of messages are expected to
complete at predictable time. For periodic messages, the
delay jitter, i.e., the deviation of transmission time from the
periodicity plays a key role in real-time quality [4], [5].
It is necessary to minimize the delay jitter and transmit the
messages at the expected time to enhance the control accuracy
of embedded systems.

There are a variety of factors in an embedded system
that can affect the delay jitter, among which the mes-
sage scheduling strategy has an important influence on it.
In the current real-time embedded systems, most of the
message scheduling algorithms take into account the fulfill-
ment of message deadlines. For example, it is well known
that the Earliest Deadline First (EDF) and the Least Laxity
First (LLF) strategy are two of the most widely used classic
scheduling algorithms in real-time systems [6]–[8]. These
scheduling algorithms can effectively satisfy the deadlines
of a large-scale message set and have the advantages of high
flexibility and bandwidth utilization. However, they can not
guarantee the minimum delay jitter because of the concurrent
transmission requests of multiple messages with different
deadlines.

In order to solve this problem, there are some recent works
trying to decrease the delay jitter by changing deadlines.
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In [9]–[11], a straight and effective way of reducing delay
jitter is presented that assigning tighter deadlines rather than
looking them as the same as their periods. Although shorter
deadline is helpful to make a specific message obtain higher
priority, it impairs the schedulability of the entire message
set and may make the message set non-schedulable if the
bandwidth utilization is high. Besides, this method cannot
sufficiently explore the design space where deadlines of cer-
tain messages may be increased (within the upper limit) to
reduce the overall delay jitter. In [12], the delay jitter reduc-
tion problem is formulated as an optimization problem to
identify more appropriate deadline assignments. It proposed
a heuristic to adjust the deadlines dynamically as the work-
load changes. For EDF scheduling, the deadline assignment
algorithms are proposed in [13] and [14] to improve the
schedulability. Meanwhile, the influence of release jitter in
EDF was studied, and it confirmed that jitter avoidance tech-
niques can significantly increase the scheduling capabilities
of EDF scheduling. A common theme of all these methods
is to focus on adjusting deadlines through different strategies
and then scheduling by EDF. Assigning different deadlines
to change the priority of messages under EDF scheduling
can change the transmission order of concurrent messages.
The overall delay jitter can be reduced accordingly. However,
since schedulability is closely related to the deadlines of
messages, changing them will directly impact the schedu-
lability and increase the complexity of the schedulability
analysis methods. In addition, these methods cannot obtain
the minimum delay jitter. There are still plenty of rooms for
optimization. For example, delay jitter can also be decreased
by changing the transmission interval of messages.

Another set of common used methods to smooth out delay
jitter is to deploy play-back buffers in the physical system,
e.g., [15]–[17]. The essence of play-back buffers is that
control messages are saved by the actuator for a certain
time before being executed, which is called play-back delay.
These methods can effectively smooth out the delay jitter and
improve the real-time performance and stability of embedded
system. However, to fulfill these strategies, the chosen value
of the play-back delay is very important and how to reason-
ably choose it is complex. Besides, play-back buffers will
increase the hardware costs. Since this paper aims to establish
a simple and efficient solution to decrease delay jitter, this
policy is left outside the scope.

As we all know, delay jitter is closely related to the
bus bandwidth utilization in networked embedded systems.
Based on the requirements of performance and cost in safety
critical embedded systems, the scheduling strategies are
expected to maximize the bandwidth utilization and mean-
while to minimize the delay jitter. There are plenty of works
focusing on the message scheduling problem to improve the
bandwidth utilization or the delay jitter for various buses
like CAN, FlexRay, EtherCAT, etc. In [18]–[20], message
scheduling strategies for CAN and FlexRay are proposed to
maximize bandwidth utilization. In [21], real-time perfor-
mance of EtherCAT has been studied. In [22], scheduling

algorithms are provided to optimize both bandwidth utiliza-
tion and the jitter of periodic messages. As most of the buses
in embedded systems adopt TDMA scheme, these two objec-
tives are contradicted. The space to optimize the delay jitter
is becoming smaller along with the growing of the bandwidth
utilization. However these current works did not consider the
relationship between delay jitter and bandwidth utilization.

In this paper, we investigate the scheduling issues in net-
worked safety critical embedded systems. The research goal
is to decrease the message delay jitter by empirically assign-
ing specific expected completion time as the baseline and
minimizing the total deviation to them. We first formulate
the scheduling problem as a constrained optimization prob-
lem with an objective of minimizing the total deviation to
expected completion time. On the basis of ensuring schedula-
bility, the optimal transmission order and interval ofmessages
can be identified to attain minimum delay jitter. As this
problem is NP-hard, then we propose an efficient heuristic
algorithm to achieve near optimal solution. With this heuris-
tic, we first create an initial schedule under EDF scheduling
and then get the optimal schedule by improving it iteratively
according to the baseline of messages. Our approach has
no need of changing deadlines but adjusting the start time
of message transmission in order to minimize the gap to
baseline. Compared with the above mentioned methods of
adjusting deadlines to reduce delay jitter, our method can
explore more sufficient design space to decrease delay jitter
without affecting the schedulability. In order to evaluate the
effectiveness of the proposed algorithm, we implement the
experiments in an embedded system design based on a novel
high-speed serial bus that our previous work presented named
UM-BUS [23]. But not limited to UM-BUS, the proposed
algorithm in this paper can be applied in the other centralized
control buses or synchronized ones.

UM-BUS is a MLVDS based multi-master bus designed
for safety critical embedded system. It can configure mul-
tiple lanes to transmit data concurrently to achieve a high
bandwidth of up to 6.4Gbps. These lanes are also redun-
dant backup of each other to tolerate faults. Based on this
feature, we can change the bandwidth utilization by con-
figuring redundant lanes for UM-BUS, that makes it con-
venient to evaluate the optimization effects of delay jitter
under different bandwidth utilization. So in this paper,
we implement multiple sets of experiments with different
UM-BUS lanes to validate the proposed algorithm and
measure the relationship between delay jitter and bandwidth
utilization. On the other hand, considering that different mes-
sage sets can also change the bandwidth utilization, the other
sets of experiments are implemented to test the delay jitter
under different message sets. The experimental results show
that the proposed heuristic algorithm is efficient and can limit
the delay jitter within 0.35%.

The organization of this paper is as follows. First we intro-
duce the UM-BUS protocol in Section II. Then in Section III,
we present the system model and formulate the scheduling
problem. In Section IV, the heuristic algorithm is formulated
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TABLE 1. The protocol packet format of UM-BUS.

and described. In Section V, we design two groups of
experiments with different parameters to test the effective-
ness of the proposed heuristic algorithm under different
bus bandwidth utilization. Finally, conclusions are given
in Section VI.

II. THE UM-BUS PROTOCOL
A. GENERAL OVERVIEW
UM-BUS [23] is a kind of master-slave serial bus for embed-
ded system. It adopts bus topology where the distributed
nodes of embedded system can be interconnected directly as
shown in Figure 1. All nodes of UM-BUS are divided into two
sets including master nodes and slave nodes, among which
only the master nodes can initiate a communication process.
The slave nodes response to the command of the master and
perform the corresponding operation.

FIGURE 1. The topology of UM-BUS.

UM-BUS is based on MLVDS (Multi-point Low Volt-
age Differential Signaling) and uses multiple lanes (ranging
from 2 to 32) to transmit data concurrently. Meanwhile these
lanes are also redundant backup of each other. Normally,
the transmission data are allocated to all lanes by the bus
controller. However, if one or a few lanes failed, the bus
controller can detect the fault and allocate the data to the other
healthy lanes. Thus, multiple failures in lanes or circuits of
nodes can be dynamically tolerated. By this mechanism, the
total transmission rate of UM-BUS can easily be changed
by configuring different number of lanes. This makes it
convenient to implement corresponding experiments under
different bandwidth utilization.

UM-BUS uses master-slave command-response commu-
nication protocol to transmit data. In the process of bus
communication, all bus accesses are performed in the form
of exchanging packets between the master and the slave.
As shown in Figure 2, the whole process of transmission
consists of the following three parts:

FIGURE 2. The transmission process of UM-BUS.

FIGURE 3. A design of automotive collision avoidance system based
on UM-BUS.

• First, the master node sends a command packet to the
slave;

• Then, the slave node receives the packet and completes
the relevant read or write operations according to the
command;

• Finally, the slave sends a response packet including
communication status and data to the master.

According to the UM-BUS protocol, both the command
packets and the response packets are divided into two classes
including short packets and long packets, as shown in Table 1.
A short packet is used to transmit control messages with
a 16-byte format. A long packet is used to transmit bulk
data with a 1041-byte format for information such as image
acquisition data.

In comparison to existing protocols such as CAN or
FlexRay, UM-BUS not only has the advantage of higher
bandwidth and reliability, but also can simplify the process-
ing model of embedded system by minimizing the Elec-
tronic Control Units (ECUs) or distributed processors in the
system [24], [25]. A design of automotive collision avoid-
ance system based on UM-BUS is presented in Figure 3.
In this system, UM-BUS can achieve a transmission rate
of up to 3.2Gbps with 16 lanes. In addition, most of the

VOLUME 5, 2017 27479



J. Zhou et al.: Expected Completion Time Aware Message Scheduling for UM-BUS Interconnected System

distributed nodes have no processors or ECUs, such that they
are all controlled by the Processor Module (the pink block
in Figure 3).

Figure 3 describes an architecture of single-master
UM-BUS system. When there is only one master in the
UM-BUS system, all the slave nodes are controlled by this
master that constructs a physically distributed but logically
centralized embedded system architecture. In this case, the
message scheduling strategy is the same as that for the cen-
tralized embedded system. That means there are much more
flexibility to adjust the duration time of messages to decrease
the delay jitter.

B. UM-BUS ARBITRATION MECHANISM
According to the protocol of UM-BUS, up to 8 masters
can be contained in an embedded system. When there are
more than one master in the system, these multiple masters
employ the flexible TDMA (FTDMA) approach to allocate
the right of bus usage. The mechanism of UM-BUS multi-
master arbitration is shown in Figure 4.

FIGURE 4. The multi-master arbitration mechanism of UM-BUS.

The operation of multi-master UM-BUS is based on a
repeatedly executed cycle which comprises of multiple slots,
each corresponding to a master. The smallest time unit of
the cycle is the minislot (MS) with a duration determined by
the maximal transmission time of bus signal through various
master nodes and also the asynchronous degrees of them. For
example, the maximum transmission distance of UM-BUS is
40 meters and the error of the crystal oscillator adopted in
UM-BUS controller is 40ppm.Moreover, the synchronization
among the master nodes is done every three milliseconds.
Therefore, the minislot can be set as 500ns. The duration of
minislot is calculated by the following equation.

TMS = (
DM · 2
0.3 · 109

+ E · 2 · ST )ns (1)

where DM is the maximum transmission distance among
the master nodes, E is the error of the crystal oscillator of
UM-BUS controller and ST is the synchronization frequency
of the master nodes.

If there are no transmission requests, then every master
only take up a period of oneminislot. However, when amaster
need to transmit a packet, the corresponding minislot will
extend to a dynamic slot within which one UM-BUS protocol
packet is transmitted. The dynamic slot (DS) use an ID to
indicate the master that has the right of bus usage. If the

total number of UM-BUS masters is denoted as NM , then the
DS with an ID x is mapped to the master MDS,x , where

MDS,x = x%NM . (2)

In each dynamic slot, a packet from the corresponding
master is transmitted if present. In that case, the duration of
the dynamic slot is determined by the length of the trans-
mitted packet. Otherwise, the duration of the dynamic slot
is one MS. The duration of DS with ID x is denoted as TDS,x .
It is calculated as follows.

TDS,x =

{
TCR if a packet is transmitted
TMS if no packet is transmitted

(3)

In (3), TCR denotes the process time of an UM-BUS com-
munication request. According to the transmission scheme of
UM-BUS described in Section II-A, TCR is divided into three
parts as shown in Figure 2. In this case, TCR is given by

TCR = TC + TR−1 + TR−2. (4)

Here, TC , TR−1 and TR−2 represent the transmission time
of command-packet, the response latency of slave node and
the transmission time of response-packet, respectively. The
transmission time of a packet is determined by its length
which is 16-byte for short-packet or 1041-byte for long-
packet, while the response latency depends greatly on what
type of information the slave node dealing with.

III. SYSTEM MODEL AND PROBLEM DEFINITION
In this section, we first present the system model. Then
considering the situation of single-master UM-BUS, the cor-
responding message model is proposed together with a moti-
vational example to illustrate the underlying idea of our
work. Meanwhile, the target problem is formulated as an
optimization problem for single-master UM-BUS. Finally,
the message model and problem definition are extended to
solve the same problem of multi-master UM-BUS.

A. SYSTEM MODEL
In this paper, a networked real-time embedded system based
on UM-BUS is composed of a set of periodic messages,
each statically assigned to the master nodes connected to the
bus. These messages are typically control messages and have
deadlines that can not be violated. The messages are expected
to complete their transmission at their respective optimal
time. The messages are queued by software tasks running on
the host CPU of the master nodes which are invoked by some
events [26].

The response time of a message can be divided into two
parts, software processing time and transmission time in the
bus. The software processing time is denoted as the queu-
ing jitter which is the time lag between the corresponding
task invoked by an event and subsequent queuing of the
message [27]. In this paper, we focus on the transmission
performance and message scheduling problem of UM-BUS.
For this purpose, we assume the response time of a message
is equal to its transmission time.
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B. MESSAGE MODEL FOR SINGLE-MASTER UM-BUS
We consider a set of n periodic messages M = {m1,

m2, . . . ,mn} communicated in the single-master UM-BUS
embedded system. Every invocation of a message is referred
as an instance. All messages are assumed independent and the
first instances of them are ready at time 0. Each message mi
has a 5-tuple of parameters (Ri,Ti,Di,Pi,Ei) where:
• Ri denotes the release time ofmi. For every instance of a
message, we assume the release time is at the beginning
of the period.

• Ti denotes the period of mi.
• Di denotes the deadline ofmi. We assumemessages have
implicit deadlines equal to their period (i.e. Di=Ti).

• Pi denotes the response time ofmi. Asmentioned before,
it is equal to the transmission time in the bus.

• Ei denotes the expected completion time of mi. In every
period of mi, Ei is assumed at the fixed time before the
deadline.

The hyperperiod of the message set is denoted as Tlcm,
which is the least common multiple of Ti for i = 1, 2, . . . , n.
We will focus on the scheduling problem within one hyper-
period because of the periodicity of messages. The repetition
times fi of message mi in one hyperperiod and the total num-
ber of instances N are calculated by the following equations
respectively.

fi = Tlcm/Ti (5)

N =
n∑
i=1

fi (6)

In a hyperperiod, the invocation instance of mi is denoted
as mji (j = 1, 2, . . . , fi). For mji, it is associated with
release time Rji, deadline D

j
i, expected completion time E ji

and response time Pi which is equal for every instance of mi.
According to the message definition, these parameters are
derived from the initial 5-tuple (Ri,Ti,Di,Pi,Ei) of mi.

C. MOTIVATIONAL EXAMPLE
We use a simple example with 3 periodic messages to illus-
trate the motivation of the target problem. Table 2 shows
the parameters of the message set. In the column Release
time, Deadline and Expected time of the table, Rji, D

j
i and E

j
i

are presented for all the innovation instances of these three
messages. Here the expected time of mji is set as {Rj1 + 4,
Rj2 + 10,Rj3 + 15} with j = 1, 2, . . . , fi.

TABLE 2. Message parameters of the example system.

Wefirst use Earliest Deadline First (EDF) and Least Laxity
First (LLF) strategies to schedule the message set in Table 2.

Without considering the time predictability requirements of
real-time embedded systems, these two classical algorithms
can not schedule the messages to satisfy both the deadline
and the delay jitter. To address this issue, we use the total
deviation between actual completion time and expected com-
pletion time as the objective of optimization. Meanwhile all
the instances should not violate their deadlines. Adopting this
optimized design, the timing predictability of the system can
be guaranteed better.

Figure 5(a) shows the runtime behavior of the messages
scheduled by EDF and LLF. The third one is the ideal case
that our approach want to achieve. Figure 5(b) compares the
timing predictability of these three cases. The vertical axis
stands for the delay jitter value. The smaller the vertical value
represents the better the timing predictability.

FIGURE 5. A motivation example under different scheduling algorithm.

D. PROBLEM DEFINITION FOR SINGLE-MASTER UM-BUS
In this paper, we expect to find the optimal starting time
of every invocation instance within a hyperperiod during
message scheduling. The objective is to minimize their
total deviation between the expected completion time and
the actual completion time, while meeting their deadlines.
We use S ji to represent the starting time of mji. Based on the
given parameters, the specific formulation for single-master
UM-BUS is described as follows.

obj. : min.
n∑
i=1

fi∑
j=1

|S ji + Pi − E
j
i | (7)

s.t. : Rji 6 S ji 6 Dji − Pi (8)

∦ (S ji , S
j
i + Pi) (9)

where i = 1, 2, . . . , n; j = 1, 2, . . . , fi, and ∦ denotes all the
intervals (S ji , S

j
i + Pi) are non-overlapping.
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E. EXTENDED MODEL FOR MULTI-MASTER UM-BUS
In the UM-BUS system with single-master, all the messages
are queued by the host CPU of master without competition to
other nodes, whereas the transmission mode of multi-master
UM-BUS is very different. According to the multi-master
arbitration mechanism of UM-BUS, a message can only be
transmitted within dynamic slots that are extended from the
minislots assigned to the corresponding master.

On this occasion, we also consider a set of n periodic
messages M = {m1,m2, . . . ,mn} where each message cor-
responds to a master. So on the basis of the initial 5-tuple
(Ri,Ti,Di,Pi,Ei), the message model is extended for multi-
master UM-BUS by adding a parameter Qi to denote the
master number. The maximal value ofQi depends on the total
number of masters in the system, which is defined as NM .
In a hyperperiod Tlcm, the total number of dynamic slots

denoted as NDS and the number of dynamic slots belong to
master Qi denoted as NDS,i are computed by

NDS = N +

Tlcm −
n∑
i=1

fi · Pi

TMS
(10)

NDS,i = NDS/NM . (11)

Hence, for messagemi, the IDs of feasible dynamic slots (DS)
are as D={(Qi + NM ·nx)|nx = 0, 1, 2, 3, . . . ,NDS,i}.
The begin time BDS,x and end time EDS,x of DS with an ID

x are described as

BDS,x =
x−1∑
i=1

TDS,i (12)

EDS,x = BDS,x + TDS,x . (13)

Based on the this computation, we introduce the set UM to
represent the feasible occupied intervals of mi as
UM = {(BDS,x ,EDS,x)|x ∈ D}.
According to the message model of multi-master

UM-BUS described above, the problem definition is some-
how different compared to single-master UM-BUS. The
optimization objective is invariable for single-master or
multi-master UM-BUS. However, the constraint conditions
are extended based on (8) and (9) because of the limits of
dynamic slots. Therefore, the optimization problem for multi-
master UM-BUS can be formulated as follows.

obj. : min.
n∑
i=1

fi∑
j=1

|S ji + Pi − E
j
i | (14)

s.t. : Rji 6 S ji 6 Dji − Pi (15)

∦ (S ji , S
j
i + Pi) (16)

(S ji , S
j
i + Pi) ∈ UM . (17)

Here the parameters in (14), (15) and (16) are same as that
in (7), (8) and (9) for single-master UM-BUS.

On the basis of the above models for UM-BUS whether
it is single-master or multi-master, we define the target opti-
mization problem as Minimize Expected Completion Time

Deviation (MECTD) problem. This problem is an extension
of the job shop scheduling problem which is known to be
NP-hard [28], [29]. Therefore, the next section proposes a
heuristic algorithm to solve the problem with more time
efficiency.

IV. SCHEDULING ALGORITHM
In this section, a heuristic algorithm is presented to solve
the MECTD problem. We first use the Earliest Deadline
First (EDF) strategy to schedule the message set. As the
EDF algorithm take into account the schedulability of mes-
sages, the deadlines of all messages can be guaranteed. How-
ever, without considering the timing sensitive requirements of
real-time embedded system, it can not schedule the messages
to satisfy both the deadlines and minimum delay jitter at the
same time. Based on this consideration, we then use the total
deviation to expected completion time of messages as the
optimization objective to improve the initial schedule. Mean-
while all the messages should not violate their deadlines.
Adopting this optimized design, the timing predictability of
the system can be satisfied better. The proposed algorithm
consists of two stages:
• In the first stage, we apply EDF scheme to create the
initial schedule.

• In the second stage, the initial schedule is improved by
executing the improvement procedure iteratively until
the total deviation cannot be reduced any more.

As shown in A.1, our heuristic algorithm is defined as
Optimization Completion Time Based on EDF Algorithm
(OCTBEA). It first generates the 5-tuple (Rji,Ti,D

j
i,Pi,E

j
i )

of mji according to the input parameters (line 5). Then an
instance sequence I in a hyperperiod is formed (line 8). Next,
Procedure EDF_Schedule is called to schedule I based on
the EDF scheme (line 9). Finally, Procedure Improvement is
called iteratively to further improve the schedule (line 12).

A. 1 Optimization Completion Time Based on EDF
Algorithm (OCTBEA)
Require: M = {m1,m2, . . . ,mn}
1: Calculate the hyperperiod Tlcm of M ;
2: for i = 1; i 6n ; i++ do
3: fi = Tlcm/Ti;
4: for j = 1; j 6fi; j++ do
5: Generate 5-tuple (Rji,Ti,D

j
i,Pi,E

j
i ) of m

j
i;

6: end for
7: end for
8: Form the instance sequence:
I = {mji|i = 1, 2, . . . , n; j = 1, 2, . . . , fi};

9: Call EDF_Schedule(I , S);
10: while S ′ is better than S do
11: S = S ′;
12: Call Improvement(S, S ′);
13: end while

In the following, we first take the single-master UM-BUS
as an example to give the implementation details and the
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formal descriptions of the procedures EDF_Schedule and
Improvment . After that, the implementation of these two
procedures for multi-master UM-BUS is presented by com-
parison to the single-master one.

A. SCHEDULING ALGORITHM FOR SINGLE-MASTER
UM-BUS
For single-master UM-BUS, the two stages of OCTBEA can
be formally described as follows.

1) STAGE I: CREATING AN INITIAL SCHEDULE
In order to guarantee the schedulability of the messages, we
first form an initial schedule according to EDF scheme. Then,
a batch sequence is defined where each batch Bq contains
the instances being transmitted in succession. For example,
if the start time of message instance m1

2 is the same as
the completion time of another message instance m1

1. Then
m1
1 and m

1
2 belong to the same batch. The definition of batch

sequence is to enhance the efficiency and decrease the time
complexity of the subsequent procedures in the second stage.
Based on the rules of batch construction, the following vari-
ables can be calculated to record the batch sequence, as shown
in Table 3.

The formal description of procedure EDF_Schedule is
shown in A.2.

A. 2 Procedure EDF_Schedule(I , S) Generate Initial
Schedule and Batch Sequence

Require: I = {mji|i = 1, 2, . . . , n; j = 1, 2, . . . , fi}
1: Create initial schedule S according to EDF rules;
2: Renumber the instances as {I1, I2, . . . , IN} according to
S;

3: q = 1;
4: Bq = ∅;
5: TDEA = 0;
6: while There are untreated instances in S do
7: Sq = min{Ri|Ri is the start time of untreated

instance Ii};
8: Add to Bq instances satisfied the criteria of batch

generation;
9: Record the number of instances in Bq as Nq;
10: Eq = max{Ci|Ci is the completion time of Ii in Bq};
11: Calculate TDEAq of Bq;
12: Remove the instances of Bq from the set of untreated

ones;
13: TDEA = TDEA+ TDEAq;
14: q = q+ 1;
15: end while
16: NB = q− 1;

In Procedure EDF_Schedule(I , S), the instance sequence
I is scheduled by EDF scheme to create an initial schedule S.
Then according to the above-mentioned rules of batch defini-
tion, a batch sequence is generated by dividing the schedule
into several smaller segments.

TABLE 3. Variable definition of the procedure.

2) STAGE II: PROCEDURE IMPROVEMENT
In the first stage, OCTBEA creates an initial schedule which
meets the deadline of all messages without considering the
optimal Total Deviation between Expected completion time
and Actual time (TDEA). In the improvement stage, the
TDEA is improved by iteratively performing three procedures
in turn as follows:
• ProcedureMove_Batch optimizes TDEA by moving the
original schedule without changing the batch sequence.
Every batch of the schedule can be moved to the left or
the right to decrease its TDEA. At the same time, the
schedulability of messages must be guaranteed;

• Procedure Exchange_Batch optimizes TDEA by
exchanging the order of the message instances in the
batches. For a batch, the best execution interval of each
instance is calculated to determine the optimal order of
them to decrease TDEA. However, the occupied interval
of a batch is invariable and the schedulability can not be
violated;

• Procedure Insert_Batch optimizes TDEA by inserting
idle time in the batches. That is, the adjacent message
instances in a batchmight be separated for the purpose of
decreasing TDEA.After this procedure, the batchwill be
regenerated according to the criteria mentioned above.

In what follows we give formal descriptions of the
improvement procedures.

Procedure Move_Batch(S, S ′) adopts two loops to move
the batches in turn to the left and to the right respectively to
decrease TDEA. The maximum adjustable interval of a batch
is calculated according to its order in the batch sequence and
the instances it contained.

Procedure Exchange_Batch(S, S ′) first calculates the devi-
ation of each instance in a batch when they start at the
same time and find the minimal deviation along with the
corresponding instance. Then the orders of instances are
exchanged according to their deviations on condition that
the requirement of release time and deadline are satis-
fied. These processes are repeated until all the batches are
traversed.

Procedure Insert_Batch(S, S ′) first traverses the batch
sequence to calculate the maximal adjustable intervals of
each batch which are denoted as t1 and t2. Then in a batch,
the maximal insertable intervals of each instance is calcu-
lated and compared to t1 and t2 respectively. The minimal
value of comparative result is the maximal interval what an
idle time can be inserted. According to these calculation,
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A. 3 Procedure Move_Batch(S,S ′) Improve the Schedule S
by Moving the Batches
Require: Schedule S
1: for q = 1; q 6NB; q++ do
2: if q = 1 then
3: t1 = Sq;
4: else
5: t1 = Sq − Eq−1;
6: end if
7: t2 = min{MLi|MLi is the maximal adjustable interval

to the left of instance Ii in Bq};
8: Max_l = min{t1, t2};
9: Move all the instances in batch Bq to the left no more

than Max_l to minimize TDEAq;
10: Update the interval [Sq,Eq) of batch Bq;
11: end for
12: for q = NB; q >1; q−− do
13: if q = NB then
14: t1 = Tlcm − Eq;
15: else
16: t1 = Sq+1 − Eq;
17: end if
18: t2 = min{MRi|MRi is the maximal adjustable interval

to the right of instance Ii in Bq};
19: Max_r = min{t1, t2};
20: Move batch Bq to the right no more than Max_r to

minimize TDEAq;
21: Update the interval [Sq,Eq) of batch Bq;
22: end for

the idle time Tl to the left or Tr to the right is inserted to
decrease TDEA. After that, the batch sequence is regenerated
due to the rules of it.

B. SCHEDULING ALGORITHM FOR MULTI-MASTER
UM-BUS
For multi-master UM-BUS, the overall process of scheduling
algorithm is the same as single-master UM-BUS except the
constraints of feasible dynamic slots. On this occasion, the
dynamic slot assignment has to be fixed such that all the mes-
sages meet their deadlines and achieve the minimal TDEA
further. The start time and the duration time of dynamic slot
are variable according to the scheme of UM-BUS multi-
master arbitration. They are determined by the transmission
requests of masters and the corresponding message schedule.
Hence, for any dynamic slot x within a hyperperiod, it is
necessary to record and update the relevant variables of it
including the start time BDS,x , the duration time TDS,x and the
end time EDS,x in the process of generating the initial sched-
ule and the next iterative improvements. We now describe the
algorithm that constructs a schedule first and then improves
it respecting the dynamic slots constraints. Here, we only
discuss the different part of the algorithm compared to that
of single-master UM-BUS.

A. 4 Procedure Exchange_Batch(S,S ′) Improve the
Schedule S by Exchanging the Order of Instances in
the Batches
Require: Schedule S
1: for q = 1; q 6NB; q++ do
2: for i = 1; i 6Nq; i++ do
3: The start time of Instance mi is denoted as Start_i;
4: for j = i; j 6Nq; j++ do
5: The completion time of Instance mj is denoted as

End_j;
6: if Instance mj can start at Start_i and Instance mi

can complete at End_j then
7: Calculate the deviation of Instance mj when its

start time is Start_i;
8: end if
9: Record the Instance mx which has the minimal

deviation;
10: end for
11: if mx 6= mi then
12: Exchange the orders of mx and mi;
13: end if
14: end for
15: end for

1) STAGE I: CREATING AN INITIAL SCHEDULE
In the first stage, the initial schedule is generated according
to EDF policy as that of single-master UM-BUS. The formal
description of procedure EDF_Schedule is as follows. In this
algorithm, the omitting part is same as algorithm A. 2.

Procedure EDF_Schedule(I , S) first sorts the instances in
accordance with EDF policy. Then dynamic slot assignment
is fixed such that all the sorted instances meet their deadlines.
The feasible set of dynamic slots is according to the map
αDS which determines what dynamic slot can be occupied
by an instance. The map αDS is updated every time after a
dynamic slot is assigned to an instance. After that, the process
of generating batch sequence is omitted because it is same as
the procedure of single-master UM-BUS.

2) STAGE II: PROCEDURE IMPROVEMENT
In this stage, the initial schedule is improved by iteratively
performing three procedures Move_Batch, Exchange_Batch,
and Insert_Batch as that of single-master UM-BUS. How-
ever, each improved schedule should guarantee the restric-
tions of the multi-master UM-BUS protocol specification
during the entire iteration process. In contrast to the imple-
mentation of single-master UM-BUS, the improvement pro-
cedures of multi-master UM-BUS add an additional process
to keep the latest status of dynamic slots when scheduling the
messages. In the following, we give the formal description of
Move_Batch as an example to illustrate how to improve the
schedule for multi-master UM-BUS by moving the batches.
The operation mechanism of the other two procedures
are similar to Procedure Move_Batch, so they are omitted
here.
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A. 5 Procedure Insert_Batch(S,S ′) Improve the Schedule S
by Inserting Idle Time in the Batches
Require: Schedule S
1: for q = 1; q 6NB; q++ do
2: if q = 1 then
3: t1 = Sq;
4: else
5: t1 = Sq − Eq−1;
6: end if
7: if q = NB then
8: t2 = Tlcm − Eq;
9: else
10: t2 = Sq+1 − Eq;
11: end if
12: for j = 1; j 6Nq − 1; j++ do
13: t3 = min{MLi|MLi is the maximal adjustable inter-

val to the left of instance Ii in Bq with i = 1, ą, j};

14: Max_l = min{t1, t3};
15: t4 = min{MRi|MRi is the maximal adjustable inter-

val to the right of instance Ii in Bq with i = j +
1, ą,Nq};

16: Max_r = min{t2, t4};
17: Insert idle time Tl to the left nomore thanMaxl or Tr

to the right no more thanMaxr to minimize TDEAq;

18: t1 = t1 − Tl ;
19: t2 = t2 − Tr ;
20: end for
21: Update the interval [Sq,Eq) of batch Bq;
22: end for

A. 6 Procedure EDF_Schedule(I , S)

Require: I = {mji|i = 1, 2, . . . , n; j = 1, 2, . . . , fi}
1: Sort the instances as {I1, I2, . . . , IN} according to EDF

rules;
2: Calculate the total number of dynamic slots NDS in a

hyperperiod;
3: Calculate the number of dynamic slots belong to master
Qi and denote it as NDS,Qi ;

4: Construct the initial map αDS : Qi→{(BDS,x ,EDS,x)|x =
Qi, (Qi+1 ·NM ), (Qi+2 ·NM ), . . . , (Qi+ (NDS,Qi −1) ·
NM )}, i = 0, 1, 2, . . . ,NM ;

5: for i = 1; i 6N ; i++ do
6: assign the instance Ii a dynamic slot with minimal ID

to meet its deadline according to αDS ;
7: Update the map αDS ;
8: end for
9: . . . . . . ;//The process of generating batch sequence is same

as A. 2, so it is omitted here.

Procedure Move_Batch(S, S ′) first gets the duration of
minislot TMS for multi-master UM-BUS system. Then the
maximal adjustable interval to the left or to the right

A. 7 Procedure Move_Batch(S,S ′) Improve the Schedule S
by Moving the Batches
Require: Schedule S
1: ts = TMS ;
2: for q = 1; q 6NB; q++ do
3: if q = 1 then
4: t1 = Sq;
5: else
6: t1 = Sq − Eq−1;
7: end if
8: N1 = t1/ts;
9: t2 = min{MLi|MLi is the maximal adjustable interval

to the left of instance Ii in Bq};
10: N2 = t2/ts;
11: Max_l = min{N1,N2};
12: Move all the instances in batch Bq to the left by

decreasing their dynamic slots ID no more thanMax_l
to minimize TDEAq according to the map αDS ;

13: Update the interval [Sq,Eq) of batch Bq;
14: Update the map αDS ;
15: end for
16: for q = NB; q >1; q−− do
17: if q = NB then
18: t1 = Tlcm − Eq;
19: else
20: t1 = Sq+1 − Eq;
21: end if
22: N1 = t1/ts;
23: t2 = min{MRi|MRi is the maximal adjustable interval

to the right of instance Ii in Bq};
24: N2 = t2/ts;
25: Max_r = min{N1,N2};
26: Move all the instances in batch Bq to the right by

decreasing their dynamic slots ID nomore thanMax_r
to minimize TDEAq according to the map αDS ;

27: Update the interval [Sq,Eq) of batch Bq;
28: Update the map αDS ;
29: end for

is computed, which converts to the number of minislots
by dividing it by TMS . Next, the batches are moved in
turn respectively to decrease TDEA according to the max-
imal minislots and the map αDS . After that, the occu-
pied interval of the batches and the map αDS are all
updated.

The time complexity of OCTBEA is related to the total
number of instancesN in one hyperperiod. In OCTBEA, gen-
erating the initial schedule based on EDF scheme can be done
in O(N 2) time. Procedure Move_Batch(S, S ′), Procedure
Exchange_Batch(S, S ′) and Procedure Insert_Batch(S, S ′)
incur O(N ), O(N 2) and O(N ) calculations respectively. The
iteration times of the improvement procedures are relevant to
the total number of messages. Therefore, the complexity of
OCTBEA is O(N 2).
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V. EXPERIMENT EVALUATION
In this section, the effectiveness of the proposed schedul-
ing algorithm is evaluated by comparing it to the classi-
cal scheduling algorithms EDF and LLF. The two versions
of OCTBEA for single-master UM-BUS and multi-master
UM-BUS are tested respectively by different experiment sets.

Furthermore, for each algorithm version, two sets of exper-
iments are conducted by configuring different amounts of
lanes or messages to test the efficiency of the proposed
heuristic algorithm under different bus bandwidth utiliza-
tions. These experiments can also evaluate the relationship
between the delay jitter and the bandwidth utilization. Com-
bining equations (5) and (6), the bandwidth utilization can be
calculated by the following equation:

U =

n∑
i=1

(fi · Pi)

Tlcm
(18)

where the message transmission time Pi is in proportion with
the number of UM-BUS lanes. According to the experiments
in the previous work [23], the single lane of UM-BUS can
attain the actual transmission rate of 40Mbps. Thus the trans-
mission time of short packet and long packet of UM-BUS can
be calculated as follows.

Pi =
Hi · 10
40 · Li

us (19)

In equation (19), Hi is 16 for a short packet message or
1041 for a long packet message. It multiplies by 10 because of
8b/10b data codingmechanism of UM-BUS. Li is the number
of UM-BUS lanes. Under different configurations of lanes
and messages, we apply OCTBEA together with the EDF and
LLF algorithms respectively to schedule the messages.

A. EXPERIMENTS FOR SINGLE-MASTER UM-BUS
According to the information exchanging requirements of
real-time embedded systems, we present a design of system
architecture based onUM-BUS consisting of onemaster node
and six slave nodes as shown in Figure 6. In this single-master
UM-BUS system, a set of periodic messages presented in
Table 4 needs to be scheduled.

In Figure 6, the slave nodes 4, 5, 6 are I/O modules
which are comprised of sensors or actuators to implement
signal acquisition and control. According to the packet for-
mat definition of UM-BUS protocol, we assign short packet
transmission to these nodes. Whereas the slave nodes 1, 2, 3
are image gathering modules which are used to collect image
information. We adopt long packet to transmit these infor-
mation to improve transmission efficiency. The periods of
messages in Table 4 are derived from the real-world require-
ments of real-time embedded system. The expected comple-
tion time of message mi is randomly selected from the set
{(Ti − Pi)·n/10|n = 1, 2, . . . , 10}.

1) CASE I: FIXED MESSAGES, DIFFERENT LANES
In this case, we study the impact of different bus utilizations
caused by different lanes. The message set is fixed as Table 4,

FIGURE 6. The architecture of a real-time embedded system based on
single-master UM-BUS.

TABLE 4. The message set of single-master UM-BUS system.

while the lanes are configured as 2, 3, 4, 5, 6, 8, 10, 12,
14 and 16 respectively. The first half of Table 5 shows the
parameters of these ten experiments. In this table, the caption
#messages(short/long) denotes the number of messages in
the message set where the figure in bracket denotes the num-
ber of short packets and long packets respectively. The cap-
tion #instances denotes the number of invocation instances
in one hyperperiod. The results are shown in Figure 7(a). The
vertical axis stands for the Delay Jitter Ratio (DJR) which is
calculated by the following equations.

For OCTBEA:

DJR =

n∑
i=1

fi∑
j=1
|S ji + Pi − E

j
i |

Tlcm · n
(20)

For EDF or LLF:

DJR =

n∑
i=1

fi∑
j=1
|S ji + Pi − R

j
i −Md,i|

Tlcm · n
(21)

Md,i =

fi∑
j=1

(S ji + Pi − R
j
i)

fi
i = 1, 2, . . . , n (22)

DJR represents the ratio of total delay jitter to a hyper-
period multiplying the message number. For OCTBEA,
expected completion time E ji is the baseline to schedule mji,
so the sum of all the deviations of messages to expected
completion time is regarded as the total delay jitter. However,
for EDF algorithm or LLF algorithm, the delay jitter of mji is
the difference between actual delay of mji and average delay
of mi. In equation (21), Md,i stands for the average delay
of mi, which is calculated by equation (22).
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TABLE 5. Experimental parameters for single-master UM-BUS.

2) CASE II: FIXED LANES, DIFFERENT MESSAGES
In this case, we study the impact of different bus utiliza-
tions caused by different message sets. The lane number
of UM-BUS is configured as 4 while the number of messages
is increased or decreased on the basis of the message set in
Table 4. The lower part of Table 5 shows the parameters of
these eight experiments. The results are shown in Figure 7(b).

Figure 7 shows OCTBEA for single-master UM-BUS is
efficient in practice. In Figure 7(a), the total delay jitter is
getting smaller as bus bandwidth utilization has decreased by
increasing UM-BUS lanes. When the bandwidth utilization
is 56.5% with 2 lanes, the total delay jitter can be optimized
by a ratio of 5.26% along with an improvement of 2% (1%)
compared to EDF (LLF). Under high bandwidth utiliza-
tion, the best execution intervals of messages are probably
overlapped with each other, so the optimization effect of
OCTBEA is limited. However, when the bandwidth utiliza-
tion is 7.1% with 16 lanes, the delay jitter ratio can be
decreased to 0.35% with an improvement of 4.8% (4.2%)
compared to EDF (LLF). In Figure 7(b), the varying trend
exhibits the same property as that in Figure 7(a) when the
number of messages changes. In order to further illustrate
the optimization efficiency of OCTBEA, in Figure 7(c), we
compared the delay jitters of a message in experiment No.3 of
CASE I. Here, the unit of the vertical axis ismicrosecond. The
results show that the delay jitter can be effectively optimized
by OCTBEA compared to EDF or LLF.

According to the above analysis, OCTBEA exhibits differ-
ent optimization effect under different bandwidth utilization.
The lower the bandwidth utilization, the better the delay
jitter can be optimized. The relationship between delay jitter
and bandwidth utilization under EDF, LLF and OCTBEA is

FIGURE 7. Evaluations of EDF, LLF and OCTBEA for single-master UM-BUS.

FIGURE 8. The delay jitter ratios under different bandwidth utilization.

depicted in Figure 8. For EDF and LLF, the delay jitter is
more relevant to message set than bandwidth utilization. The
delay jitter does not change appreciably when the bandwidth
utilization changes. However, through OCTBEA, bandwidth
can be fully used to decrease the delay jitter.

B. EXPERIMENTS FOR MULTI-MASTER UM-BUS
In Today’s embedded systems, more than one processor
is needed because of the increasing controlling scale and
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FIGURE 9. The architecture of a real-time embedded system based on
multi-master UM-BUS.

TABLE 6. The message set of multi-master UM-BUS system.

processing capacity of the system. Accordingly, this paper
investigates the effectiveness of OCTBEA for multi-master
UM-BUS. In this experiment, we present an architecture of
embedded system based on multi-master UM-BUS, which
contains two master nodes and eight slave nodes as shown
in Figure 9.

In the above multi-master UM-BUS system, we assume
a set of periodic messages presented in Table 6 need to be
scheduled, where the parameter definition and configuration
of messages are the same as that of single-master UM-BUS.
Based on this message set, two sets of experiments config-
ured with different UM-BUS lanes or different messages are
conducted as that for single-master UM-BUS. Table 7 shows
the parameters of these two sets of experiments. The results
are shown in Figure 10.

Figure 10 shows OCTBEA is effective in decreasing delay
jitter for the multi-master UM-BUS system. The varying
trend under different lanes or messages presents the same
feature as that in Figure 7. For example, in Figure 10(a),
when the bus utilization is 75.9% with 2 lanes, the total delay
jitter can be optimized by a ratio of 5.35% along with an
improvement of 2.94% (3.72%) compared to EDF (LLF).
When the bus utilization is 9.5% with 16 lanes, the delay
jitter radio can be decreased to 2.21% with an improvement
of 1.59% (0.94%) compared to EDF (LLF). In Figure 10(b),
when the bus utilization is 53.2%with 17 messages, the delay
jitter ratio can be optimized to 3.56% with an improvement

FIGURE 10. Evaluations of EDF, LLF and OCTBEA for multi-master
UM-BUS.

FIGURE 11. The delay jitter ratios under different bandwidth utilization.

of 2.66% (2.03%) compared to EDF (LLF). When the bus
utilization is 16.1% with 10 messages, the delay jitter radio
can be decreased to 1.59% with an improvement of 1.41%
(1.43%) compared to EDF (LLF). Moreover, Figure 10(c)
shows the delay jitters of a message obtained by experiment
No.4 of CASE II. From this figure, we can see the delay jitter
curve of OCTBEA is more smooth than that of EDF and LLF.

The relationship between delay jitter and bandwidth
utilization in multi-master UM-BUS system is shown
in Figure 11. Compared to Figure 8, the variation curve of
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TABLE 7. Experimental parameters for multi-master UM-BUS.

OCTBEA in multi-master UM-BUS system has not dropped
sharply under low bandwidth utilization. Due to the fact that
the messages from given master can only occupy the fixed
slot, the optimization effects of OCTBEA for multi-master
UM-BUS are not as well as that of single-master UM-BUS.

VI. CONCLUSION
UM-BUS is a novel serial bus designed for embedded sys-
tem with multi-lane concurrent transmissions to enhance the
bandwidth. In order to improve the timing sensitive require-
ments of real-time embedded system on UM-BUS, this paper
proposes a scheduling scheme to reduce the total delay jitter
of messages. Due to its NP-hardness, a heuristic algorithm
is presented. It consists of two stages: creating the initial
schedule based on EDF scheme and improving the sched-
ule iteratively. By configuring various UM-BUS lanes or
message sets, the bandwidth utilization is changed. In this
case, two sets of experiments with different lanes or different
message sets are implemented to evaluate the effectiveness of
our algorithm. The results show that the proposed algorithm
can effectively attain the objective compared to the other
classical algorithms.
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