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ABSTRACT This paper discusses object proposal generation, which is a crucial step of instance-level
semantic segmentation (instance segmentation). Known as a challenging computer vision task, the instance
segmentation requires jointly detecting and segmenting individual instances of objects in an image. A com-
mon approach to this task is first to propose a set of class-agnostic object candidates in the forms of
segmentation masks, which represent both object locations and boundaries, and then to perform classification
on each object candidate. In this paper, we propose an effective refinement process that employs image
transformations and mask matching to increase the accuracy of object segmentation masks. The proposed
refinement process is applied to three state-of-the-art object proposal methods (DeepMask, SharpMask, and
FastMask), and is evaluated on two standard benchmarks (Microsoft COCO and PASCAL VOC). Both the
quantitative and qualitative results show the effectiveness of the process across various experimental settings.

INDEX TERMS Instance segmentation, object proposal, segmentation mask, convolutional neural networks,

deep learning.

I. INTRODUCTION

Instance-level semantic segmentation or instance segmenta-
tion is the task of jointly detecting and segmenting individual
instances of objects in an image. It inherits from two com-
puter vision tasks: object detection and semantic segmenta-
tion, but considerably increases the difficulty level. Unlike
object detection, its outputs are object segmentation masks
representing both object locations and boundaries, rather than
just bounding boxes. Unlike semantic segmentation, its goal
is to assign not only category label but also instance label to
every pixel in the input image. In other words, it requires dis-
tinguishing individual instances of the same category besides
distinguishing different object categories.

Currently, there are several different approaches to instance
segmentation. Dai ef al. [1] and Hayder et al. [2] divide this
task into three sub-tasks and solve them sequentially: their
methods generate a set of object candidates in the forms of
class-agnostic bounding boxes, then predict an object seg-
mentation mask for each bounding box, and finally classify
objects into categories. Hariharan et al. [3], Dai et al. [4],
and Zagoruyko et al. [5] directly generate object proposals

in the forms of class-agnostic segmentation masks, then
perform object classification. More recently, Li ef al. [6] and
He et al. [7] proposed to use a single convolutional neural
network (CNN) for generating bounding boxes, segmentation
masks and classifying objects in parallel.

In this paper, we focus on object proposal generation—
a crucial step of many instance segmentation methods above,
with the aim of improving the accuracy of object segmen-
tation masks. With the rapid advance of deep learning in
recent years, methods which utilize deep CNNs to learn a
direct mapping from images to segmentation masks dom-
inate the current trend. However, they are far from per-
fect: they usually produce segmentation masks lacking of
pixel-accurate object boundaries. As there is still room for
improvement, we propose a simple but effective segmentation
mask refinement process that can be easily applied to any
object proposal methods. The proposed process uses image
transformations, such as image flipping, to generate a new
image from the input image, then matches and combines
segmentation masks of the original and newly transformed
images.
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Il. RELATED WORK

DeepMask [8] is one of the representative CNN-based object
proposal methods, in which a deep CNN learns to generate
object segmentation masks from an input image. The lower
part (layers near the input layer) of the network is initialized
with an existing network that was trained to perform image
classification. This pre-trained network, referred to as body
net, is a CNN with all the fully-connected layers removed.
The upper part of DeepMask is then split into two branches:
one branch outputs a segmentation mask given a fixed-scale
image patch, and the other branch outputs a confidence score
that measures how likely a whole object is centered in the
patch. Note that since DeepMask follows the class-agnostic
approach, it has no notion of the object category. After being
trained, the network can be applied densely at multiple scales
and locations in the input image to output all possible objects
segmentation masks.

While DeepMask is successful in generating masks that
roughly represent object locations and boundaries, it is not
able to generate pixel-accurate masks. The reason behind this
is that DeepMask uses only a feed-forward pass through the
network and generates segmentation masks from its upper
layers. It has been revealed that early layers in a deep net-
work tend to capture low-level features such as colors and
edges, while upper layers tend to capture more abstract and
semantically meaningful information such as the presence
of an object. In order to solve this problem, SharpMask [9]
augments the feed-forward (bottom-up) architecture of
DeepMask with a top-down refinement process that combines
low-level information from the early layers with high-level
information from the upper layers. Given an input image
patch, the bottom-up pass outputs a coarse mask with low
spatial resolution, which is the input of the top-down pass.
Multiple refinement modules in the top-down pass then iter-
atively refine that mask by combining it with features at suc-
cessively lower layers in the network. This process results in
segmentation masks that better adhere to object boundaries.

Both DeepMask and SharpMask rely on an image pyra-
mid containing images at multiple scales to handle the scale
variance of objects during inference. Recently, Hu et al. [10]
proposed a novel network architecture for object proposal
generation, called FastMask, which can segment multi-scale
objects in one shot. The network consists of three functional
modules: body, neck and head. Similar to DeepMask and
SharpMask, the body module is initialized with a pre-trained
network and is responsible for extracting feature maps from
the input image. The neck module is the key difference;
it repeatedly zooms out the extracted feature maps to cre-
ate a feature pyramid containing feature maps at multiple
scales. The feature pyramid is then passed through a 1 x 1
convolutional layer for reducing dimensions. Next, dense
sliding windows are extracted from the output feature maps
and fed into the head module for multi-scale inference. The
head module is then responsible for generating segmentation
masks from those sliding windows.
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FIGURE 1. Example cases where segmentation masks generated for the
original image and the transformed image are different. (a) Masks
generated by SharpMask for original images, (b) masks generated by
SharpMask for flipped images, (c) masks obtained by combining the
masks in (a) and (b).

lll. METHODOLOGY

While DeepMask, SharpMask, and FastMask can achieve
good results compared to previous object proposal methods,
they are still far from perfect. Masks generated by them often
have boundaries outside real objects and cover redundant
parts of the background, which is not well suited for tasks
that require pixel-accurate masks. In order to further improve
the accuracy of those masks, we propose a refinement process
that employs image transformations and mask matching. This
process is based on the observation that when an image is
transformed, e.g., horizontally flipped as shown in Fig. 1,
the masks of the transformed image may be different from—
better or worse than—those of the original image. This also
demonstrates that these networks are not transformation-
invariant even though they are usually trained with data
augmented by various image transformations such as resiz-
ing, cropping, flipping, and rotation. As a result, we can
potentially combine the masks of the original image and the
transformed image in some way to obtain even better masks.

Let us consider an image transformation 7 that takes as
input an image x. The inverse of T, if exists, is a transfor-
mation 7~! such that T~! (T (x)) = x. For example, for
the horizontal flip Ty and the vertical flip 7\, Th}l = Ty
and Tv}] = T\y. For the rotation T, ¢ which rotates the input
image by 6 degrees, T;el =T, .

Let SM () denote a segmentation mask generator, H and W
denote the height and width of the original image x. The
proposed segmentation mask refinement with respect to an
image transformation T proceeds as follows:

1) Generate segmentation masks for objects in x:
M=SMx)y={m} (=12,....N) (1)

where m; € R”*W is a binary mask. An element of m;
is 1 if the corresponding pixel belongs to an object and
0 otherwise. N is a predefined number of masks.
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FIGURE 2. An illustration of the proposed refinement process with horizontal flip and N = 5.

2) Transform the original image x to form a new image x’:
x'=T x) 2)

3) Generate segmentation masks for objects in x’, then
apply the inverse transformation to the generated
masks:

M =17 (M () = [} G=12.0)
3)

where mj’ e RI*W is a binary mask. In general,
M # M’ because most networks are not
transformation-invariant.

4) Match each mask m; with a mask m:b(i) that has the
highest intersection-over-union (IoU) value with it:

lm; A |
IoU; = ——~
|m; v mj|
¢(i) = arg maxIoUj “4)
j

where A and V denote element-wise minimum and
maximum operators, respectively, and |m| denotes the
sum of all elements in m. It is worth noting that rather
than matching m; with m, my with m), etc., this step
matches each m; with the most promising counterpart
and thus may benefit from a large value of V.

5) For all i, combine m; and m;)(i) by element-wise mini-
mum operation:

mi = mi A iy 3)

Henceforth, M = {m;} is the set of refined segmentation
masks. The quality of M depends critically on the image
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TABLE 1. Statistics of the two datasets used in experiments.

MS COCO PASCAL VOC
Images 5000 2913
Categories 80 20
Objects 35078 6934
Objects per image 7.0 2.4
Objects per category 438.5 346.7

transformation 7. While there are several options for T,
we propose to use horizontal flip because empirically it
results in natural-looking images that usually do not cause
troubles, e.g., missing objects or incorrectly locating object
boundaries, for mask generator networks. An illustration of
the whole process with horizontal flip and N = 5 is given
in Fig. 2.

IV. EVALUATION

A. EXPERIMENTS

The proposed refinement process is analyzed and evaluated
using various experimental settings. For reference, some vari-
ants of the process that employs vertical flip and rotation are
also examined.

1) DATASETS

Two standard datasets for instance segmentation—Microsoft
COCO (MS COCO) [11] and PASCAL VOC [12]—are
selected as benchmarks for several object proposal methods
in our experiments. In particular, we use the first 5000 images
in the MS COCO 2014 validation set (following previous
studies [8]-[10]), and all images in the PASCAL VOC
2012 training and validation set. Statistics of the two datasets
are summarized in Table 1.
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TABLE 2. Average recall (%) given different numbers of proposals per image.

M PASCAL
Method S COCO SC voOC
AR@10 AR@100 AR@1000 AR@10 AR@100 AR@1000
DeepMask 15.1 28.6 37.1 24.5 35.0 40.7
DeepMask-+hflip 15.9 30.1 38.9 26.1 36.9 42.4
DeepMask+vflip 15.2 28.7 36.9 25.6 35.7 40.8
DeepMask+1t90 15.1 28.4 36.8 25.5 35.6 40.7
DeepMask+rt180 15.3 28.8 37.1 25.7 36.0 40.9
DeepMask+1t270 15.0 28.3 36.4 25.4 35.4 40.4
SharpMask 16.0 30.3 39.4 25.7 36.8 42.8
SharpMask+hflip 17.3 32.2 41.3 28.2 394 44.9
SharpMask+vflip 16.7 30.9 39.5 27.7 38.2 43.2
SharpMask+1t90 16.3 30.2 38.7 27.1 375 425
SharpMask+rt180 16.8 31.1 39.7 27.8 38.5 43.4
SharpMask+1t270 16.1 30.0 38.3 27.1 37.4 424
FastMask 16.9 31.3 40.9 25.2 36.9 45.1
FastMask+hflip 17.0 31.4 41.0 26.4 38.2 45.8
FastMask+vflip 16.8 31.1 40.6 25.4 36.9 44.8
FastMask+rt90 16.8 31.1 40.6 25.4 36.9 449
FastMask+rt180 16.8 31.1 40.6 25.5 36.9 44.8
FastMask+rt270 16.8 31.1 40.6 25.4 36.9 449
DeepMask SharpMask FastMask
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FIGURE 3. Performance comparisons of baseline methods and variants on the MS COCO dataset: DM, SM, FM denote DeepMask, SharpMask, FastMask,
respectively.
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FIGURE 4. Performance comparisons of baseline methods and variants on the PASCAL VOC dataset: DM, SM, FM denote DeepMask, SharpMask,
FastMask, respectively.
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FIGURE 5. Recall (%) vs. loU threshold on the MS COCO dataset.

2) METHODS
DeepMask, SharpMask, and FastMask are selected as

baseline object proposal methods since currently they are
state-of-the-art and their trained models have been made
publicly available.! For fair comparison, all models adopt

1DeepMask and SharpMask: https://github.com/facebookresearch/
deepmask FastMask: https://github.com/voidrank/FastMask
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Recall@1000 proposals per image

ResNet-50 [13] as their body networks and were trained
on the MS COCO 2014 training set, which contains about
80,000 images having 500,000 segmented objects of 80 com-
mon categories. For DeepMask and SharpMask, we use
the “zoom” setting (DeepMaskZoom and SharpMaskZoom)
for inference as it can boost the performance particularly
for small objects. We then combine the three baseline
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FIGURE 6. Recall (%) vs. loU threshold on the PASCAL VOC dataset.

methods with five variants of the proposed process
that employ horizontal flip (hflip), vertical flip (vflip),
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wise rotation of 180 degrees (rt180), and counterclockwise
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FIGURE 8. Gains in average recall by the proposed refinement process and its variants on the PASCAL VOC dataset.

rotation of 270 degrees (1t270), which results in a total
of 18 object proposal methods.

3) METRICS

Segmentation masks generated by the methods above for
images in the two datasets are compared to ground truths
available in the datasets. For a generated mask and a ground
truth mask, if their IoU is above a certain threshold, the gen-
erated mask is considered to be “accurate” and the object
corresponding to the ground truth mask is considered to
be “accurately detected”. A common metric for evaluating
the performance of an object segment proposal method is
recall, which is defined as the number of accurately detected
objects divided by the total number of objects. Following
previous studies, we compute recall at multiple IoU thresh-
olds and report the average value, i.e., average recall (AR).
AR rewards both high recall and good localization, and has
been shown to correlate extremely well with detection per-
formance [14]. In detail, the IoU thresholds in use are 0.5,
0.55,0.6,0.65,0.7,0.75, 0.8, 0.85, 0.9, and 0.95. In addition,
by definition, recall increases when a method generates more
segmentation masks. Therefore, AR is computed with regard
to only a specific number of proposals per input image, which
is 10, 100, and 1000 in this work.

B. QUANTITATIVE RESULTS

Table 2 reports average recall of each method on the two
datasets. AR@10, AR@100, and AR@ 1000 denotes average
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recall given 10, 100, and 1000 proposals per input image,
respectively. Numbers in bold are the highest values in cor-
responding columns. These results are analyzed from several
perspectives in the rest of this subsection.

1) IS THE PROPOSED REFINEMENT EFFECTIVE?

The reported results are divided into groups of six:
baseline, baseline+hflip, baseline+vflip, baseline+1t90,
baseline+rt180, and baseline+1t270; comparisons within
each group is visualized in Figs. 3 and 4. As can be seen,
DeepMask+hflip, SharpMask-+hflip, and FastMask-+hflip
outperform their baselines in all experimental settings on both
datasets, i.e., the proposed refinement process helps improve
DeepMask, SharpMask, and FastMask. In addition, multiple
recall-vs-iou curves shown in Figs. 5 and 6 confirm that
the proposed refinement is effective not only in terms of
average recall, but also in terms of separate recall at different
IoU thresholds. The reason behind the effectiveness of the
proposed process lies in the mask matching and combination
steps, which take advantages of masks of two images, original
and flipped, to generate even better masks.

2) WHICH IMAGE TRANSFORMATION IS THE BEST?

The proposed process with horizontal flip results in better
improvement than all of its variants. Although this conclusion
can be drawn from the figures above, for a clearer compari-
son, absolute gains in average recall by each of the image
transformations are plotted in Figs. 7 and 8. While horizontal
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DeepMask DeepMask+hflip SharpMask

SharpMask+hflip

FastMask FastMask+hflip Ground truth

FIGURE 9. Examples of segmentation masks generated by different methods for images in the MS COCO dataset.

flip increases average recall of all the baseline methods, other
transformations sometimes even have lower performance.
The superiority of horizontal flip over the others can be
explained by that many objects appear in horizontally sym-
metrical shapes and thus flipping an image horizontally still
results in a natural-looking image. On the other hand, flipping
it vertically or rotating it results in an image containing
strange-looking objects. In addition, vertically flipped images
and rotated images are usually not present in popular training
datasets, thus may cause troubles for neural networks during
inference, unless they are specifically trained to be invariant
to such transformations.

3) WHICH METHOD BENEFITS THE MOST FROM THE
PROPOSED REFINEMENT?

Figures 7 and 8 show that among the three baseline methods,
SharpMask benefits the most from the proposed refinement.
In addition, as can be seen in Table. 2, SharpMask-+hflip
surpasses FastMask in almost all experimental settings and
becomes the best method in general. One more finding is
that the performance of DeepMask-+hflip is very close to that
of SharpMask, which is encouraging because as mentioned
in Section II, SharpMask is an extension of DeepMask with
complex refinement modules. Unlike DeepMask and Sharp-
Mask, FastMask—the best among the three baselines—does
not benefit much from the proposed refinement.

26416

Besides the findings above, it is worth noting that all
methods perform better on the PASCAL VOC dataset than
on the MS COCO dataset even though they are all trained
on the latter dataset. The reason is that the average number of
objects per image in the PASCAL VOC is only about one third
of that in the MS COCO dataset, as shown in Table 1. During
inference, given the same number of proposals for images in
both datasets, the dataset with a smaller number of ground
truth objects is likely to lead to higher recall.

C. QUALITATIVE RESULTS

This subsection shows examples of segmentation masks gen-
erated by different methods, the three baselines and their
variants where the proposed refinement process is applied,
for images in the MS COCO dataset and the PASCAL VOC
dataset. Since each segmentation mask is associcated with
a confidence score by a method of interest, only the masks
with highest confidence scores are visualized. Alternatively,
as all images are provided with ground truth annotations, one
can visualize the masks with the highest IoU with ground
truths, as done in existing work [8], [9]. However, such an
approach is not followed here because it is not suitable for
practical usage. In practice, because ground truth annotations
are usually not given, one must rely on the aforementioned
confidence scores to select the best masks for their purposes.
Figures 9 and 10 confirm that the proposed refinement can
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DeepMask DeepMask+hflip SharpMask

SharpMask+hflip

FastMask FastMask+hflip ~ Ground truth

FIGURE 10. Examples of segmentation masks generated by different methods for images in the PASCAL VOC dataset.

help all methods, especially SharpMask, generate segmen-
tation masks with higher accuracy, i.e., masks that delineate
object boundaries more precisely.

V. CONCLUSIONS

In this paper, we proposed a simple but effective segmen-
tation mask refinement process that can be applied to any
object proposal methods to increase the accuracy of object
segmentation masks. The process works by matching and
combining the masks generated for an input image and its
horizontally flipped image. We applied the process to three
current state-of-the-art baseline methods (DeepMask, Sharp-
Mask, FastMask), and conducted various experiments on two
standard datasets (the MS COCO dataset and the PASCAL
VOC datatset). The results confirm that the proposed process
is effective, i.e., it improves the performance (average recall)
of all baseline methods in various experimental settings on
both datasets.

In future work, more image transformations or their com-
binations, as well as other methods for combining masks
will be examined to further improve the proposed refine-
ment process. Moreover, the process may be applied to
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state-of-the-art instance segmentation methods such as
FCIS [6] or Mask R-CNN [7]. Since object proposal genera-
tion is a crucial step of instance segmentation, it is expected
to improve those methods with regard to both detection and
segmentation performances.
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