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ABSTRACT Context-based method for classification has been successfully applied in image. However, most
of these classifiers work in stages. This paper presents a novel discriminative model named context-based
max-margin to perform the task of classification for polarimetric synthetic aperture radar (PolSAR) images.
Based on the max-margin frame, support vector machine (SVM), and conditional random fields (CRF) are
used to describe the spectral and spatial information of polarimetric synthetic aperture radar (PolSAR) image,
respectively. First, the probabilistic result which is obtained from SVM can be applied as the spectral term of
the discriminative classifier. Second, CRF is used to describe the spatial information of PolSAR image. The
contextual information of both label and observation field are built as the spatial term, by which the smoother
region is obtained and the spatial information is preserved. Finally, a discriminative classifier can be learned
by means of integrating the spectral and spatial terms. Compared with other state-of-the-art classification
methods, our method exhibits higher accuracy, which indicating the effectiveness of our scheme. Here,
the total classification accuracy of the proposed model increases by about 10% and 3% compared with

the other methods for two data sets.

INDEX TERMS CRF, max-margin, PoISAR image, Wishart distance.

I. INTRODUCTION

The fully polarimetric synthetic aperture radar (PolSAR) pro-
vides useful information on describing the observed targets
than traditional synthetic aperture radar (SAR) and the appli-
cation of PoISAR has intensively attracted much attention
in the last two decades [1]-[3]. Therefore, PoISAR plays an
important role in many fields such as agriculture, geology and
military. The land cover classification of a PolISAR image
is one of the most crucial tasks in remote sensing image
field [4]-[6].

In recent years, in order to improve the classification accu-
racy of PolSAR image, many researchers have forward the
application of spatial information into PolSAR image classi-
fication [7]-[9]. Generally speaking, classification methods
for PolSAR image which include the spatial information are
divided into three main categories.

The first one is to make the spatial information used for
pre-processing. Liu et al. propose a novel superpixel-based
classification method with an adaptive number of classes for
PolSAR images [10]. The PolSAR image is first partitioned

into superpixels. Then, the number of classes and each class
center within the data are estimated. A classification method
based on multilayer auto-encoders and superpixels is pro-
posed by Hou et al. [11]. Firstly, the RGB image formed
with Pauli decomposition is used to produce superpixels.
Secondly, multilayer auto-encoders network is used to learn
the features. Song et al. proposed a segmentation and classi-
fication method which is implemented by fusing the Dirichlet
process mixture model (DPMM) model and a similarity mea-
sure scheme into the MRF framework [12].

The second approach is to use spatial information for post-
processing. A support vector machine (SVM) and markov
random field (MRF) Based Method for PolSAR classification
is proposed by Wu et al. [13]. An initial classification result
is obtained by SVM. Then, MRF method is used to revise
the initial classification. Liu et al. propose a method which
combines the Wishart classifier and triplet Markov field
for PolSAR image classification [14]. Shen et al. present a
classification method that combines the MRF and v-SVM for
sea ice PoISAR image [15].
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The third method uses spatial information directly for
classification. A new classifier is proposed by Wu et al
for PolSAR image [16]. In this method, Wishart distribu-
tion is applied into MRF to classify the PolSAR image.
Masjedi et al. presented a method adds the texture fea-
tures into the contextual classification [17]. A classification
method which adds local spatial information into stacked
sparse auto-encoder is proposed by Zhang et al. [18].

The spatial information used as either pre-processing or
post-processing, they belong to the method which is two-
step. The results of these methods significantly depend on the
first step extremely. Therefore, the results cannot be revised
completely by the second step. In addition, only the label
information or the local information is used by the third
method mentioned.

In order to mitigate the problem and retain the benefits of
the aforementioned methods, a discriminative model, namely
Context-based Max-Margin (CMM) is proposed. The pro-
posed new classifier relates the context information to the
Max-Margin framework. Both spatial and spectral informa-
tion are combined in the classifier. Therefore, the proposed
method can learn the spatial and spectral characteristics from
the training samples directly. At the same time, the character
of PolSAR data is considered.

In the proposed method, the characteristic function is
designed by combining the spectral and spatial characteristics
of PolSAR image under the Max-Margin framework. There
are two essential parts designed for PoISAR image classi-
fication. The first part is a spectral term with the classical
discriminative classifier SVM which models the relation-
ship between the observed data and the corresponding label.
The second part is spatial term applied here which is used
to describe the spatial information and obtain the smoother
regions. Especially, the spatial information is applied during
the learning of the classifier, which is quite different from the
two-stage classifier since the spatial information is used to
revise the misclassification. In that case, the result of CMM
is not dependent on the spectral term too much. Numer-
ous descriptive and generative models have been widely
utilized in the domain of image classification, such as the
MREF [19]-[21]. In MRE, the contextual information is lim-
ited to the labeling field because of the conditional indepen-
dent hypothesis on the observed data. Therefore, the variation
of conditional random fields (CRF) is applied to extend the
direct contextual information in both labeling field and obser-
vation field [22]. In the meantime, Wishart distance is applied
as the similarity measurement.

There are several advantages of the proposed model. The
main novel contribution of this work is:

Firstly, it is a discriminative linear classification frame-
work designed from the Max-Margin framework for easy
understanding.

Secondly, different characteristic function can be designed
for different kinds of data based on the Max-Margin
framework. In CMM, there are two different terms designed
for characteristic function according to the PolSAR data.
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They are spatial term and spatial term. Therefore, selecting
the appropriate spectral term under the limited number of
labeled training samples and selecting the appropriate spa-
tial term in which both PolSAR data character and context
information can be taken into account are crucial.

The remainder of this paper is organized as follows.
In Section II, a brief presentation of back ground is given and
the proposed model is discussed in detail. Experiments and
analysis are given in Section III. The conclusion is will be
drawn Section I'V.

Il. CONTEXT-BASED MAX-MARGIN METHOD

A. MAX-MARGIN STRUCTURE IN POLSAR
CLASSIFICATION PROBLEMS

Linearly separable classification task is designed to learn
an optimal hyperplane that maximally separates the positive
examples from the negative ones, as measured by the geo-
metric margin [23]. The optimal hyperplane is learned by
the training samples and the corresponding labels. Then the
optimal hyperplane is used to classify the test samples. The
task of hyperplane learning is to maximize the margin p (W):

. YWx;

max p (W) = max(min
12 p (W) W(i Wil
where x; is the ith training sample, and y; is its label. This
task is transformed into two steps. Firstly, hyperplanes can be
find to found to separate the training samples with different
classes. This step is implemented by miny;Wx;. Secondly,

) ey

there are many hyperplanes qualified. Tlllus, the max margin
W should be found by optimizing Eq.(1).Then, the following
invariance is used: for every solution, an existing a solution
achieves the same target function value, but with a margin of
Eq. 1. Then the classification framework can be written as a
constrained optimization problem:

max [[W[ ™! st y; (W) > 1 )

For the PolSAR image classification problem, samples
usually are divided into several different classes. The main
task is to learn a function 4 : X +— ). For example:
T = (x;, yi)?; 1» N is the number of the training samples.
The classification function £ is trained from the parametric
family H. A linear family is usually chosen: f; : X' x) + IR,
a hypothesis is defined as:

t
hw(x) = arg m)gx Z wifi (X, y)
j=1
= arg max wa(x, y) 3)
y

where hw € H, wj is the coefficients and ¢ is the number
of wj. f(x,y) is the characteristic function for classifica-
tion issue. Max-Margin is a linear classification framework.
On the base of this framework, the different characteris-
tic function can be designed by combining different kinds
of data. By combining data and spatial characters of PoISAR
image, spectral and spatial term are designed in this article.
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B. CRF MODEL
Conditional random fields (CRF) is a classical discriminative
model based on the conditional probability and corresponds
to an undirected graphical model. CRF is a popular tool
for remote sensing images [22]. It can offer the ability to
propagate contextual information among the labeling field
and the observation field.

Our focuses are on the problems of the PolISAR image

classification. Let X = {x1, x2, ...xj, ...xn}ics be the input
image as the observation field and x; = (x;1, xj2, ..., Xj9) is
the vector of the C matrix, where S = {1,2,..., N} is the

set of image pixel indices and N is the number of training
samples. Suppose ¥ = {y1, y2,...¥i, ... Yn}ies is the label-
ing field and y; = (y1,¥2, ..., Ym) Where m is the number
of classes. CRF is one of the undirected graphical models.
G = (V,E) is defined as an undirected graphical model,
where V represents the set of vertexes and E represents the
set of the edges. Assuming that each node in Y corresponds
the vertex in V and if the observation field X is regarded as
the global condition as well as the labeling field Y obeys the
Markov property, (X, Y) forms a CRF. The frame of CRF
is the posterior probability P(Y|X) which satisfies the Gibbs
distribution and it can be written as:

1
[]vete X, 0) )
ceC

PYIX =759

where Z(X, 0) = Zy [lece ¥ee, X, 0) is a partition func-
tion, C is a set of clique types and 6 is the parameter of the
model. ¥.(yc, X, 0) is a potential function with the parameter
0 and it is based on the observed data and their corresponding
labels for different types of cliques C. If we only consider the
clique potential with unary and pairwise, the CRF model can
be rewritten as Eq. (5)

P(Y|X) exp{l)_ ¢ivi, x)]
ieV

T Z(X.0)
FLY Xyl )

(i.)eE

where ¢;(y;, x;) is the unary potential function which estab-
lishes the relationship of the vertexes between the observed
data and its label. €; ;(X, y;, y;) is the pairwise potential func-
tion. To take of the observation and the labeled fields into
account, it represents the relationship between the current
vertex and its neighborhood. i is the location of the vertex,
y; is the label of the location i. In the neighborhood system, j
and i can be connected to be an edge.

C. THE PROPOSED METHOD FOR POLSAR
CLASSIFICATION

Considering the characteristic of POISAR image, a new clas-

sifier is proposed, namely context-based Max-Margin (CMM).

This is a discriminative model in which the pixel-based and
region-based methods are combined on the basis of Max-
Margin frame to perform the task of classification of PoISAR
image. In this article, the POISAR image data is represented
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in coherency matrix and each pixel is a 3 x 3 complex matrix.
The complex matrix is vectorized into 9 dimensional vector
which is used as the input x - y is the label of x. In the new
frame, the CRF model can be rewritten as Maximum posterior
probability (MAP):

max P(Y|X) ocexpl Y  ¢i(vi. xi) + Y £, yi. y)I  (6)

ij

where P(Y|X) is the maximum posterior probability, X is the
observation vector of the image which is vectorized from the
complex matrix and Y is the label of the observation vector.
The label can be obtained from the MAP function.

In the max-margin frame, the problem can be re-described
as Eq. (7):

max w' [ ¢i(vi. 1) + ) £ijx. yi. )] )

i

where f(x,y) = [Z oi(vi, xi) + Z & j(X, i, yj)] is the char-

i i,
acteristic function which is redesi]gned, ¢i(yi, x;) represents
the spectral term which describe the relationship between the
training samples and its label and ¢; j(X, y;, ;) represents the
spatial term which measure the pair-site label and sample
interaction for POISAR image classification.

image

I

processing

FIGURE 1. The classification framework.

The classification framework is shown in Fig.1. The input
is the PolSAR image with whitening. {x1, x2,...x;, ... xn}
are the pixels. {y1, y2,...Yi, ...yn} are the labels of these
pixels that are from the CMM method.

The proposed CMM is illustrated in Fig.2, exhibiting the
combination of the spectral and spatial terms. As is shown
in Fig.2, the red dot P5 is the pixel which will be classified.
The brown dot is the posterior probability of the pixel. PV5 is
the posterior probability obtained from the spectral term,
which is related to the single spectral feature. PES is the
posterior probability obtained from the spatial term which is
decided by the 4-neighborhood. The spectral and spatial term
will be introduced in the following section in details.
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Spectral term

Spatial term

FIGURE 2. Illustration of CMM.

1) SPECTRAL TERM

The spectral term models the relationship between the pixels
and their labels. In the previous model, the minimum distance
from the pixel to its class center is defined as the spec-
tral term. However, it requires abundant training samples to
achieve ideal results. For PoISAR image, the limited number
of labeled training samples is a critical problem. Therefore,
a discriminative classifier support vector machine (SVM) is
applied here, which provides an effective method to learn a
max-margin decision boundary. The SVM benefits from its
generality and requires a few training samples. More impor-
tantly, SVM can exploit a very high-dimensional by adopting
the kernel function. The expression of a spectral term is:

L
$ivi xi) = Y _ Psym(yi = lIx;) ®)

=1

where ¢;(y;, x;) is the probability in which the pixel x; belongs
to a certain class y;, Psyy(yi = I|x;) is the probability
SVM model. This model is suited to the binary classification
problem. For the multi-classification problem, the one-
against-one model is used. L is the number of classes.

2) SPATIAL TERM

Because of the speckle in the PoISAR image, it is difficult
to obtain the continuous classification results if the spectral
term is only taken into account. Generally, PolISAR image
has obvious spatial information, geometric structure and rich
object details. Hence, a spatial term is designed to smooth
the region. In most of cases, the classification of a pixel
depends on its neighborhood. In a certain kind of terrain,
the spectral variation of a pixel may follow some underlying
patterns in the neighboring region, instead of being random.
Furthermore, the underlying patterns of different classes may
also be different. In this paper, Wishart distance and a smooth
term are used to model the spatial term. The coherency matrix
of PolSAR is satisfied with the complex Wishart distribution.
In the traditional PolSAR data processing, Wishart distribu-
tion can describe the statistical property of the PoISAR data
very well. We use Wishart distance as the similarity measure-
ment that can find the underlying relationship between two
observed vectors. The Wishart distance between two pixels
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of the PoISAR can be written as Eq. (9)

1 . -1 . . -1 .
wpi, ) = 5T )™ Y +Q )7y D—a O
The spatial term is written as:

&ij(X, yi, ) = PijOi, jlxi, X;)
wp(Xi, X;)
202

where ¢; j(X, i, y;) is the posterior probability which con-
structs the interaction between the single site and its neigh-
borhoods, which can obtain the underlying pattern of the
observation data and the corresponding label. 1/ is a weight
of the spatial term which is large in a smooth region and small
in a non-smooth region. wp(x;, x;) represents the Wishart
distance between the pixels x; and x;. The closer the dis-
tance between pixel x; and x; is, the more similar they are.

= n'(1 — exp( )8,y (10)

N
o? = ﬁ 33 (x —xj)T(xi — xj) is the mean value of
i=1jed;
(x; — xj)T(x,- — xj). There is a strong possibility that the two
pixels have the same label. If y; and y; have the same label,
8 (vi,¥j) is equal to 0 and the region can be regarded to be
sufficiently smooth enough. If y; and y; have the different
labels, 6(y;, y;) is equal to 1. Then, the contextual information
in the observation field should be considered. If the pixels
have similar feature vectors, the value of exp (%’;xj)) is
close to 0. Accordingly, the spatial term is dominant. If the

. .. wp(Xi, X)) -
pixels have dissimilar feature vectors, exp(%) is close
wp (Xi,X})

to 1. The value of 1 — exp (20—2)8 (vi, yj) 1s close to 0.
Thus, the spectral term is dominant.
The detailed steps of this algorithm are shown in Table 1.

TABLE 1. Detailed steps of this algorithm.

Algorithm: Context-based Max-Margin
Input: The training samples of POISAR image: x. The label of
the training samples: y

Stepl: initialize the Wishart distance wj,(x;,x;) by Eq. (9),
the iteration times K and u

Step2: for k=1to K
Step3: perform the probability of SVM by Eq. (8)
Step4: perform the spatial term by Eq. (10)
StepS: sum the result of step3 and step4
Step6: update the label by Eq. (7)
if the number of the labels changes less than 50. Stop.
else go to step3
end
end
Output: the final label for PoISAR

Ill. EXPERIMENTS AND DISCUSSIONS

There are two set of data used in our experience. The first set
is Flevoland with the dimension of 750 x 1024, acquired by
the AIRSAR platform on 495 August 16, 1989, as shown in
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FIGURE 3. (a) the PoISAR image (PauliRGB) of Flevoland. (b) The ground truth Map. (c) Our method. (d) SVM method. (e) SVM+MRF method. (f) Wishart

ML method. (f) Wishart-based MRF method.

Fig.3.(a). Itis a four-look polarimetric L-band scene. The sec-
ond set is Jingkun Highway in western-Xi’an-Area that is
provided by our laboratory. It is acquired by RADARSAT-2,
and obtained from a subset of a C-band single-look PolSAR
image which size is of 512 x 512. A refined Lee filter with
5 x 5 window size is chosen to reduce the noise for both
Flevoland and western-Xi’an-Area sets of data.

To show the advantages of our frame, the traditional
SVM models [24], Wishart-based maximum likelihood
(Wishart ML) [25] and Wishart-based Markov random
fields (Wishart MRF) [16] are used for comparison.

These two experiments have the same parameters and the
parameter settings are as follows:

In the experiments, SVM parameters are adapted by five-
fold cross validation. The regularization parameter in the
SVM is tuned in the range of {10_2, 10°%, ..., 103}. The
Wishart ML method is a maximum likelihood classifier
based on Wishart distribution. The Wishart MRF method
is a region-based classifier. The window size is chosen as
5 x5 for segmenting in Wishart MRF and SVM+MREF. In the
proposed method, only one parameter ! needs to be set and
u! is selected adaptively. For a reasonably fair comparison,
the window size is set as 5 x 5. If the number of pixels
in the same block belongs to the same class more than 20,
the region of this block can be regarded as a smooth region.
Otherwise, the region is considered as a non-smooth region.
In smooth region, the value of ! is set to 5. Spatial term is
the major factor for classification. On the contrary, le is set to
the reciprocal of the value in a smooth region, and the value
of u! is set to 1/5 and spectral term will be dominated.

A. EXPERIMENT ON FLEVOLAND IMAGE

Fig.3. (a) and (b) show the corresponding Pauli RGB images
of Flevoland and the ground truth respectively. The ground
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truth is manually labeled. There are 15 classes in this scene
including Stem Beans, Rape Seed, Bare Soil, Potatoes, Beet,
Wheat, Wheat2, Wheat3, Peas, Barely, Lucerne, Grass, For-
est Water and Buildings. Three classical algorithms are used
to make a comparison with our method. In our experiments,
we choose 10% samples randomly for each class for training
and remaining 90% for testing.

Results of these methods for comparison and the proposed
method are shown Fig.3. (c)~(g). It can be observed that,
our method shows better results than the other ones. Fig.3.
(d) shows the classification result with traditional SVM.
As shown in the top red rectangle in Fig.3. (d), Potatoes,
Forest, and Stem beans cannot be distinguished from
each other very well for SVM method. In addition,
Buildings cannot be recognized at all in the same fig-
ure in the bottom red rectangle. Furthermore, as a pixel-
based classification method, many pixels are misclassi-
fied and the region is not smooth enough. Fig.3. (e)
is the classification result of SVM+MRE. It is clear
that, compared with SVM, the effect of classification is
improved in many categories, such as Stem Beans, Pota-
toes, Peas and Water. However, the result of SVM+MRF
depends on the classification effects of SVM. There-
fore, many pixels that are misclassified cannot be revised.
Fig.3. (f) is the classification result of Wishart ML. In the red
rectangle in Fig.3. (f), the Rape Seed is wrongly classified
into Wheatl and Wheat3. Because of lacking training data
in these area, the estimation of parameters is unreliable. The
classification result with Wishart MRF is shown in Fig.3. (g).
Compared with SVM and Wishart ML methods, the region
is smoother, benefiting from the region-based classification
method. However, in the top right corner, Water is recog-
nized as Bare Soil. The classification result of Wishart MRF
depends on the center label. If the center label is incorrect,
the whole block will be misclassified. Fig.3. (c) exhibits the
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FIGURE 4. (a) the PoISAR image (PauliRGB) of Xi'an-area. (b) The ground truth Map. (c) Our method. (d) SVM method.
(e) SVM+MRF method. (f) Wishart ML method. (f) Wishart-based MRF method.

result of proposed method, which is better than the other three
methods. In particular, we got the smoother region and higher
classification accuracy. As shown in small blue rectangle
in Fig.3. (c)~(g), the Steam Beans is classified almost by
CMM and Forest is classified to Steam Beans by the other
methods. In bigger blue rectangle in Fig.3. (d)~(g), Wheatl is
recognized as Wheat1 more or less. CMM shows an exciting
result.

We record the classification accuracy in TABLE 2. The
overall accuracy (OA) is used to evaluate the performance of
different methods. Accuracy is calculated by Eq. (11):

=N

A 11)
where A is the accuracy, N; is the number of pixels that are
classified correctly for a certain class, N, is the total number
of pixels in this class in ground truth. For the total accuracy,
N; is the number of correct classifications for all the training
samples and N, is the total number of pixels in ground truth.
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TABLE 2. Classification accuracy of different methods for Flevoland.

ethod

CMM SVM SVM+ Wishart Wishart

Region MRF ML MRF
Stem Beans 0.9921 0.8722 0.9804 0.8867 0.9713
Rape Seed 0.9626 0.8521 0.9122 0.5347 0.7885
Bare Soil 0.9931 0.9922 0.9836 0.9286 0.9980
Potatoes 0.9720 0.6661 0.9253 0.8304 0.9311
Beet 0.9594 0.9224 0.9753 0.8515 0.9363
Wheat2 0.9336 0.8323 0.8852 0.8030 0.8746
Peas 0.9918 0.8997 0.9752 0.9409 0.9690
Wheat3 0.9975 0.9505 0.9707 0.8795 0.9459
Lucerne 0.9604 0.9277 0.9387 0.8183 0.7894
Barley 0.9716 0.9483 0.9820 0.8808 0.9623
Wheatl 0.9879 0.9152 0.9703 0.9411 0.9348
Grasses 0.9538 0.8614 0.9124 0.5968 0.7210
Forest 0.9799 0.9347 0.9566 0.8924 0.9190
Water 0.9837 0.9478 0.9957 0.5117 0.5360
Buildings 0.8776 0.1646 0.8476 0.8204 0.8095
Total 0.9752 0.8868 0.9530 0.8074 0.8746

We can see that, for the experiment of Flevoland, the
classification accuracy of CMM is the highest compared
with the other three methods for most classes and the best
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TABLE 3. Classification accuracy of different methods for Xi'an-area.

Method .
CMM SyM | SvM+ | Wishart Wishart
Region MRF ML MRF
City 0.7100 | 0.7153 | 0.6670 | 0.7087 0.7102
Vegetation 0.9777 | 09417 | 09514 | 0.9153 0.9584
Total 0.9104 | 0.8848 | 0.8824 [ 0.8633 0.8960

results are in bold. CMM is a discriminative classification
framework with spectral and spatial information for classifier
learning. Therefore, the better results can be obtained com-
pared with the other methods. Especially for the categories
that CMM recognizes very well, including Stem Beans, Peas
and Wheat3, with the accuracy values of 0.9921, 0.9918 and
0.9975. For the total classification accuracy, the proposed
method achieved 0.9752. The total classification accuracy is
enhanced by about 10%. Nevertheless, not all of the pixels
have the true labels for the whole image, so the accurate
calculation is based on the pixels with the true label as shown
in Fig.3. (b).

B. EXPERIMENT ON XI’AN-AREA

There are two classes of Jingkun Highway in western-Xi’an-
Area in the Fig.4. (a). They are City and Vegetation. The
ground truth is shown in Fig.4. (b) . The ground truth is
manually labeled. We also choose 10% samples randomly for
training and remaining 90% samples for testing.

The results of classification are shown in Fig.4. (c)-(g).
Fig.4. (d) shows the classification result of SVM., exhibiting
that such a pixel-based method causes, many speckle noise
in the figure. In the blue rectangle in Fig.4. (d), Vegetation is
regarded as City. Fig.4. (e) shows the result of SVM+MREF,
exhibiting that the region is not smooth enough compared
with the result of CMM. Fig.4. (f) is the result of of Wishart
ML, in which more isolated regions exist and the region is not
sufficiently smooth. Fig.4. (g) shows a smooth region from
the result of WMREFE. This method is liable to misclassify
the pixels, because it exploits only spatial information and
however the spectral information is not taken into account.
The result of our proposed method exhibits much better clas-
sification result of Vegetation that the other methods on the
visual effects, as shown in Fig.4. (c). Especially in the middle
of the figure, as shown in the ellipse region, Vegetation cannot
distinguish from City well by contrast. Our proposed method
achieves obvious improvement in Vegetation.

The classification accuracy of these four methods is listed
in Table 3. The accuracy is calculated by Eq. (11). For the
classification of Vegetation, the accuracy of CMM can reach
0.9777 and the total accuracy 0.9104 is highest. The experi-
mental results show that the CMM is able to achieve excellent
classification accuracy and outstanding visual effect.

IV. CONCLUSION

This work proposed a new classification method applied
to the PolSAR data. The method is a novel discriminative
model which is used to enhance the classification accuracy of
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PoISAR image. On the basis of Max-Margin frame, the char-
acteristic function is redesigned and conditional random
fields is employed to propagate the contextual information
in both labeling field and observation field. Spectral term and
spatial term are two important parts of the model. SVM is
used as spectral term which provides an effective method of
learning a maximum-margin decision boundary and cover the
speckle-like classification under the limited training samples.
CRF is applied as the spatial term which is used to describe
the spatial information of PolSAR and smoothen the region
during the classification. In the spatial term, Wishart distance
is used to describe the statistical property of POISAR image.
At the same time, the pixel and label information is combined
to smoothen the region. The experimental results show that
our method offers potential application to the POISAR classi-
fication and we can get clearer classification maps compared
with the other three classification methods.
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