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ABSTRACT In this paper, we study the channel-aware (CA) randomization for a simple physical-layer
encryption scheme and show that the probability of successful attack becomes very low byCA randomization
when the known plain-text attack is carried out. As CA randomization becomes vulnerable to the channel
estimation attack, its impact on the performance is investigated in terms of the average number of known
elements of a key subsequence when the known plain-text attack is performed together with the channel
estimation attack.

INDEX TERMS Physical-layer security, randomized encryption, physical-layer encryption.

I. INTRODUCTION
Physical-layer security (PLS) is to exploit transmission
channels for secure communications based on information-
theoretic approaches [1]. In [2]–[4], for various wiretap chan-
nels, the secrecy capacity or rate, which is the maximum data
rate with perfect secrecy [5], has been studied. Channel cod-
ing plays a crucial role in PLS to achieve the secrecy rate [6],
[7] and various approaches are proposed with existing codes,
e.g., [8], [9].

In [10], PLS is considered for encryption and it is shown
that PLS can help improve the security of encryption. For
secure transmissions in wireless sensor networks (WSNs),
the notion of PLS is applied to a simple encryption scheme
that is well-suited to sensors of limited computing power
and energy in [11]. In [12], the randomization in the phys-
ical layer is employed to improve the security of a stream
cipher in a multiuser system. In general, the approaches
in [10]–[12] are different from conventional randomized
encryption schemes [13], [14] as the randomization is carried
out in the physical layer. In addition, in [11] and [12], encryp-
tion is considered in the physical layer to take into account
channel conditions. For convenience, this kind of approach is
referred to as physical-layer encryption in this paper in order
to differentiate conventional encryption approaches that are
implemented in a higher layer (e.g., transportation layer) [15].
As discussed in [16], inWSNs or the Internet of Things (IoT),
since sensors or IoT devices have limited computing power,
physical-layer encryption can be an attractive solution as
it can provide reasonably secure transmissions with simple

low-complexity ciphers (such as stream ciphers) in the phys-
ical layer.

It is noteworthy that there are also different approaches
for physical-layer encryption based on compressive sens-
ing (CS) [17], [18]. In [19] and [20],CS encryption (studied
in [21], [22]) is considered in the physical layer to exploit
different channel conditions of a legitimate receiver and an
adversary.

In this paper, we consider a physical-layer encryption
approach that is based on channel-aware (CA) randomiza-
tion in a multicarrier system. Throughout the paper, it is
assumed that a legitimate transmitter, called Alice, and a
legitimate receiver, called Bob, know the channel state infor-
mation (CSI) from Alice to Bob. The knowledge of par-
tial CSI is exploited for randomization in physical-layer
encryption. In particular, we consider CA randomization for
encryption with a stream cipher [15], which is a lightweight
cryptographic scheme and could be easily implemented using
simple hardware (this makes stream ciphers attractive for
sensors and IoT devices). The impact of CA randomization
on the performance of the known plain-text attack [15] is
studied. To see the performance, we consider the probabil-
ity of successful attack. From this, we could see how CA
randomization can improve the robustness of a lightweight
cryptographic scheme against attacks in a multicarrier
system.

Since Eve can be easily confused by CA randomization
when she does not have Bob’s CSI, she would try to esti-
mate Bob’s CSI by approaching Bob. Thus, we study this
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attack and show the impact of correlation of channels on the
performance.

It is noteworthy that although the CA randomization in this
paper uses random signals, it differs from the approaches that
use artificial noise to increase the secrecy rate [23]–[25]. The
main purpose of the CA randomization is to induce random-
ness in encryption to confuse Eve, while Bob can recover a
secret message using known CSI that can be seen as a shared
secret key between Alice and Bob. Thus, the random signals
in this paper should have the same1 statistical properties as the
secret signals. Furthermore, the performance measure in this
paper is not the secrecy rate, but the probability of successful
attack (for a given attack method), because CA randomized
physical-layer encryption does not achieve perfect secrecy.

The rest of the paper is organized as follows. In Section II,
we present a CA randomized physical-layer encryption
method in a multicarrier system. An effective attack that is
based on the channel estimation is studied and the perfor-
mance analysis is carried out in Section III. Numerical results
are presented in Section IV. Finally, the paper is concluded
with some remarks in Section V.
Notation: Matrices and vectors are denoted by upper- and

lower-case boldface letters, respectively. The superscripts T
and H denote the transpose and complex conjugate transpose,
respectively. For a vector a, diag(a) is the diagonal matrix
with the diagonal elements from a. For a matrix X (a vector
x), [X]n ([x]n) represents the nth column (element, resp.). If
A is a set of indices, [x]A is a subvector of x obtained by
taking the corresponding elements.E[·] denotes the statistical
expectation. CN (a,R) represents the distribution of circu-
larly symmetric complex Gaussian (CSCG) random vectors
with mean vector a and covariance matrix R.

II. CA RANDOMIZED PHYSICAL-LAYER ENCRYPTION
A. SYSTEM MODEL AND ASSUMPTIONS
Suppose that there is a pair of legitimate transmitter and
receiver, called Alice and Bob, respectively, and an adver-
sary (or an eavesdropper), called Eve.We consider amulticar-
rier system for secure transmissions from Alice to Bob with
L subcarriers over a wideband channel. Suppose that Alice
transmits a block of signal symbols over L subcarriers, which
is denoted by s ∈ CL×1. Then, the received signal at Bob is
given by

y = Hs+ n, (1)

where n ∼ CN (0,N0I) is the background noise vector and
H = diag(H0, . . . ,HL−1) is a diagonal (frequency-domain)
channel matrix. Here,Hl denotes the channel coefficient over
the lth subcarrier from Alice to Bob.

Similarly, the received signal at Eve is given by

z = Gs+ w, (2)

where w ∼ CN (0,N0I) is the background noise vector and
G = diag(G0, . . . ,GL−1) is a diagonal (frequency-domain)

1For example, if the secret signals are independent binary random vari-
ables, the random signals are also independent binary random variables.

channel matrix. Here, Gl represents the channel coefficient
over the lth subcarrier from Alice to Eve. We consider the
following assumption throughout the paper.

A1) The channel coefficients in the frequency domain2 are

Hl ∼ CN (0, σ 2
H ) and Gl ∼ CN (0, σ 2

G). (3)

In addition, Hl and Gl are independent.

Let αl = |Hl |2 and βl = |Gl |2. We also assume time division
duplexing (TDD) mode for CA secure transmissions [16],
[19], [26]. Bob can transmit a pilot signal to allow Alice to
estimate Bob’s CSI,H. In addition, Alice sends a pilot signal
to Bob so that Bob can estimate his CSI, H. Note that due to
the pilot signal from Alice, Eve can also estimate her CSI,G.
Therefore, throughout the paper, we assume that both Alice
and Bob know H, but not G, and Eve knows G, but not H.
Note that as in [26], the estimation of CSI is imperfect due

to the presence of background noise and the CSI estimation
error has to be taken into account. However, we do not
consider the CSI estimation error in this paper. In particular,
for a tractable analysis of the channel estimation attack in
Section III, we will assume that the CSI is perfectly esti-
mated (while the impact of the CSI estimation error might
be considered for future research).

B. CA RANDOMIZED ENCRYPTION
Alice can transmit signals through a subset of the subcarriers
of the power gains greater than or equal to τ . Here, τ is
positive and a design parameter. The resulting CA scheme
relies on the partial CSI, which is defined as

Dl = 1(αl ≥ τ ), (4)

where 1(S) is the indicator function that becomes 1 if the
statement S is true and 0 otherwise. For convenience, we also
define

I = {l |Dl = 1} = {l |αl ≥ τ }. (5)

Alice transmits a secret message over I and random signals
over Ic, where Ic represents the complement set of I. Since
Bob knows I from H, he can choose the signals transmit-
ted through I and discard the random signals transmitted
through Ic. On the other hand, Eve does not exactly know
I. Thus, since she has to consider the signals through all the
subcarriers and due to random signals, she may have an incor-
rect message. A similar CA randomization approach (with
interleaving according to the channel gains) is used in [26].
Note that the CA randomization based on the partial CSI
in (4) is an indirect approach to extract the secret-key from
CSI as opposed to direct approaches, e.g. [27]. Since only
one-bit quantization is used as in (4), it might be robust
against the CSI estimation error, although the CSI estimation

2The channel coefficients in the frequency domain,Hl ’s, can be correlated.
However, if the subset of subcarriers with sufficient frequency spacing is
used, the corresponding Hl ’s can be assumed to independent.
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error3 is not considered in this paper. In this subsection, CA
randomization is applied to a simple cipher for physical-layer
encryption as follows.

Let m = [m0 . . . mM−1] denote the secret mes-
sage or plain-text to Bob, where M = |I|. In addition, let

αm(0) ≥ . . . ≥ αm(L−1), (6)

where m(l) denotes the index of the subcarrier whose
channel gain is the lth largest. Clearly, we have I =

{m(0), . . . ,m(M − 1)}. We consider a randomized physical-
layer encryption method that uses Bob’s CSI, H, or CA
randomized encryption, which is denoted by

c = E(m,H), (7)

where c is the cipher-text of length L. In this section, we con-
sider the following encryption method:

E(m,H) = [m r]PH, (8)

where r of size 1× (L−M ) is a random bit sequence and PH
is a permutation matrix that depends onH, which is given by

[PH]m,l =

{
1, if m = m(l);
0, o.w.;

Note that E(·, ·) can be seen as a homophonic encoder [28]
with the random bit sequence, r. The statistical properties of
r should be the same as those ofm so that Eve cannot exploit
any statistical differences to find m.
At Bob, if c is available, m can be found by the following

decryption method:

D(c,H) =
[
cP−1H

] [ I
0

]
. (9)

That is, when c = E(m,H), we can readily show that

m̂ = D(c,H) = ([m r]PH)P−1H

[
I
0

]
= m.

For simplicity, in this section, we consider the following
binary phase shift keying (BPSK) mapping to transmit c:

S(b) =
√
P(1− 2 b), b ∈ {0, 1}.

Then, c becomes s = [s0 . . . sL−1]T in (1) and (2), where

sl = S(cl ⊕ xl). (10)

Here, x = [x0 . . . xL−1], where xl ∈ {0, 1}, represents a
subsequence of a key sequence obtained by a pseudorandom
number (PN) generator.

III. CHANNEL ESTIMATION ATTACK
In this section, we focus on the performance of a known plain-
text attack to estimate the key sequence of the CA randomized
encryption scheme in Subsection II-B.

3The impact of CSI estimation error on permutation error or mismatch
between Alice and Bob can be found in [26], where it is shown that the
probability of permutation mismatch is negligible at a high signal-to-noise
ratio (SNR).

A. KNOWN PLAIN-TEXT ATTACK
In this subsection, we discuss the known plain-text attack by
Eve to find the key sequence. In this attack, we assume that
Eve knows a message, m, and M . With known message m
and her received signal, z, Eve can attempt to find x.

If a PN generator is used with an initial vector, x becomes
a subsequence of a PN sequence with a finite period. When
Eve knows the structure of the PN generator, she might be
able to determine the initial vector with some subsequences
using correlation attacks [29], [30]. Thus, one successful
attack (which provides M known elements of x) may be
enough for Eve to determine the initial vector and subse-
quently the key sequence. If the length of the initial vector
is much longer than M , Eve needs more than one successful
attack. In any case, in order to understand the level of secu-
rity under the known plain-text attack, we are interested in
finding the probability of successful attack, where the event
of successful attack is defined as that Eve can correctly know
M elements of x from (m, z) without knowing Bob’s CSI,H.

As mentioned earlier, we assume that Eve knows M ,
i.e., the length of the secret message. Thus, Eve is to choose
M received signals from z. For convenience, denote byM the
index set of M selected received signals. Consider an index,
say l̄. If the l̄th received signal, zl̄ , corresponds to one of m
and a decision is correctly carried out, Eve can perform the
following operation:

sl̄ ⊕ cl̄ = (cl̄ ⊕ xl̄)⊕ cl̄ = xl̄,

which provides an element of x. The probability that Eve can
make an incorrect decision provided that l̄ corresponds to one
of m is [31]

θ = Pr(|zl̄ − Gl̄
√
P|2 < |zl̄ − Gl̄(−

√
P)|2 | sl̄ = −

√
P)

= E

Q
√2P|Gl |2

N0


=

1
2

(
1−

√
γE

1+ γE

)
, (11)

where γE =
σ 2G P
N0

, θ is the (conditional) error probability
(provided that the selected index l̄ ∈ I), and Q(x) =∫
∞

x
1
√
2π
e−

t2
2 dt . Thus, if Eve knows all the indices corre-

sponding to m (which is possible when PH or Bob’s CSI is
available at Eve), the probability of successful attack, which
is denoted by PSA, becomes PSA = (1−θ )M . In other words,
if γE is sufficiently high, Eve can expect a very high PSA.
On the other hand, if l̄ does not correspond to any of m,

Eve may have a random bit. Thus, if Eve cannot choose any
index correctly, the probability of successful attack becomes(
1
2

)M
= 2−M . Taking into account all possible combina-

tions, we can find the probability of successful attack as
follows.
Lemma 1: The probability of successful attack is given by

PSA =
(
1
2
+

(
1
2
− θ

)
δ

)δL
, (12)
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where δ = M
L .

Proof: See Appendix A.
In (12), for a fixed δ, PSA can decrease exponentially

with L, which implies that the probability of successful
attack can be very low in a multicarrier system with large L,
which becomes additional secrecy gain of a wider bandwidth
system.

Note that although the successful attack can provideM ele-
ments of x, their locations in x are unknown. Thus, Eve has
to consider all possible combinations to determine correct
locations, which would increase the computational cost at
Eve. In addition, the probability of successful attack in (12)
can increase if more pairs of known plain-text and its corre-
sponding received signal are available under the same CSI.
In particular, for independent known plain-text, the probabil-
ity of successful attack with J pairs of known plain-text and
its corresponding received signal would be 1− (1−PSA)J ≈
JPSA. In general, however, since the CSI is time-varying, the
variation of CSI can limit the number of pairs, J . Thus, the
overall probability of successful attack would be not be high
if PSA is sufficiently low and J is not too large.
Since a closed-form expression for the probability of suc-

cessful attack is found as in (12), M can be decided to make
the known plain-text attack more difficult (or to lower the
probability of successful attack).
Lemma 2: There exists a unique minimum of PSA(M ) as

it is a log-convex function of M (here, PSA(M ) is used to
emphasize that PSA in (12) is a function of M). The minimum
point lies between 0 and L if θ < 1

4 .
Proof: See Appendix B.

According to Lemma 2, we can see that there is an opti-
mal value of M that minimizes the probability of successful
attack, and with a sufficiently low value of θ , the optimal
value of M would lie between 0 and L. If L is very large,
we may use a convex optimization technique to find the
optimal value of M . However, if L is small, a linear search
can be used.

B. CHANNEL ESTIMATION ATTACK
As shown in Subsection III-A, if CA randomization is
employed, the probability of successful attack of the known
plain-text attack, becomes negligible. To overcome this prob-
lem, Eve can consider the channel estimation attack. In this
section, we study the channel estimation attack that can mit-
igate CA randomization to improve the performance of the
known plain-text attack.

1) CORRELATION ANALYSIS OF CHANNEL
ESTIMATION ATTACK
In the frequency-domain, we can have

Gl = ρHl + Ul, (13)

where ρ is constant (which is the unnormalized correlation
coefficient) andUl is an independent CSCG random variable.
In addition to A1, we consider the following assumption.
A2) Ul ∼ CN (0, σ 2

U ) is independent of Hl .

FIGURE 1. For effective channel estimation attack, Eve may approach Bob
rather than Alice when Alice uses multiple antennas.

Under A2, from (13), σ 2
G becomes

σ 2
G = |ρ|

2σ 2
H + σ

2
U (14)

and the correlation coefficient between Gl and Hl is given by

ρG,H =
E[GlH∗l ]
σGσH

=
ρσ 2

H

σGσH
. (15)

In general, Eve wants to have a large correlation coefficient
and a large channel gain tomitigate CA randomization by pre-
cisely estimating Hl from Gl . To this end, Eve can approach
Alice so that σ 2

G � σ 2
H and |ρG,H | → 1. In order to

avoid this problem, Alice can physically prevent anybody
from approaching her. Alternatively, Alice can use multiple
antennas (with sufficient spacing) so that Eve’s channel can
be correlated with only one of multiple antennas. In this case,
Eve may choose to approach Bob4 as illustrated in Fig. 1.

If Eve is close to Bob, we expect that the distance between
Alice and Eve is similar to that between Alice and Bob and
the average channel power gain at Eve is similar to that at
Bob. Thus, we can assume that σ 2

G = σ 2
H or γE = γB.

Consequently, Eve may not be able to enjoy both higher SNR
(than Bob’s SNR) and high correlation simultaneously. If
σ 2
G = σ

2
H , it can be shown that

ρG,H = ρ

σ 2
U = σ

2
H (1− |ρ|

2).

From this, we may modify A2 as follows:
A2a) Ul ∼ CN (0, σ 2

U ) is independent of Hl and σ 2
U =

σ 2
H (1− |ρ|

2) (or σ 2
H = σ

2
G).

Under (13), Eve can attempt to estimate Hl for given Gl .
To this end, the conditional probability density function (pdf)
of Hl for given Gl , f (Hl |Gl), can be considered. Under
A1 and A2, from (13), it can be seen that Hl is a condi-
tional CSCG random variable for given Gl . Thus, from [32],
the conditional mean becomes the minimum mean squared
error (MMSE) estimate of Hl for given Gl , which is given by

Ĥl = E[Hl |Gl] =
E[HlG∗l ]
E[|Gl |2]

Gl

= ψρ∗Gl, (16)

4If Bob also employs multiple receive antennas, the channel correlation,
ρG,H , can be low. To overcome this, Eve may have multiple antennas.
However, for simplicity, we only assume that Bob and Eve are equipped with
single antenna in this paper.
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where ψ = σ 2H
σ 2H |ρ|

2+σ 2U
. Note that under A2a, ψ = 1. At Eve,

once Ĥl is found, she can obtain an estimate of the partial CSI
of Bob as

D̂l = 1(|Ĥl |2 ≥ τE) = 1(α̂l ≥ τE), (17)

where α̂l = |Ĥl |2 and τE is a design parameter that Eve can
choose to decide whether or not the lth subcarrier is used
to transmit secret information from Alice to Bob using CA
randomization.

Note that α̂l becomes an exponential random variable as
both Hl and Ul are CSCG random variables. Thus, it can be
shown that

α̂l ∼ f (α̂l) =
1

σ 2
Ĥ

e
−

α̂l
σ2
Ĥ , α̂l ≥ 0,

where σ 2
Ĥ
= E[|Ĥl |2] = ψ2

|ρ|2E[|Gl |2]. We can also readily
show that σ 2

Ĥ
= |ρ|2σ 2

H under A2a.
Lemma 3: Suppose that Gl is given as (13). Under A1 and

A2, a closed-form expression for the conditional probability
of D̂l = 1 for given Dl = 1 can be found as

P(τ, τE) = Pr(D̂l = 1 |Dl = 1) = Pr(α̂l ≥ τE
∣∣αl ≥ τ )

= eτ̄
[
e−τ̄Q1

(
a
√
τ ,
√
ν
)
+ e
−

ν

2+a2σ2H

×

1−Q1


√√√√τ ( 2

σ 2
H

+ a2
)
,

a
√
ν√

2
σ 2H
+ a2

],
(18)

where

a =

√
2|ρ|2

σ 2
U

,

ν =
2τE

σ 2
Uψ

2|ρ|2
,

and Qm (a, b) is the Marcum Q-function that is defined as

Qm(a, b) =
∫
∞

b x
( x
a

)m−1 e− x2+a2
2 Im−1 (ax) dx. Here, In (x)

is the modified Bessel function of order n.
Proof: See Appendix C.

2) AVERAGE NUMBER OF KNOWN ELEMENTS OF KEY
SUBSEQUENCE
For convenience, let K denote the number of the elements
of x that are chosen and all correctly decided from z by
Eve (for a given τE) by the known plain-text attack. If K
is sufficiently large, Eve can successfully decide the initial
vector of the PN generator. Thus, for Alice and Bob, a small
K is desirable so that Eve cannot find the initial vector. In
general, if Gl and Hl are highly correlated and τE ≈ τ ,
K = M with a high probability. Note that if τE is too small,
there could also be random bits (of the indices in Ic) within
the selected K elements. In this case, the attack becomes
unsuccessful. To avoid this, Eve can consider a large τE. In

this case, however, K becomes small although the probability
of successful attack is high. Consequently, τE could play a
crucial role in the known plain-text attack with the channel
estimation attack.

Since K is a random variable and depends on τE, we
now consider the average of K and derive a closed-form
expression for it in terms of τE and other parameters. Suppose
that the lth element of x, xl , is chosen by Eve. Then, the con-
ditional probability that this element is correctly determined
becomes

φ = (1− θ̄ ) Pr(αl ≥ τ | α̂l ≥ τE)

+
1
2
Pr(αl < τ | α̂l ≥ τE), (19)

where θ̄ is the conditional error probability for given α̂l ≥
τE or |Gl |2 = βl ≥ τ̄E. That is, if αl ≥ τ , the conditional
probability that xl can be correctly decided becomes 1 − θ̄ .
On the other hand, if αl < τ , cl is a randomized bit. Thus,
the conditional probability that xl can be correctly decided
becomes 1

2 .
We can derive a closed-form expression for the expectation

of K with φ as follows.
Lemma 4: Under A1 and A2, we have

K̄ (τ, τE) = E[K ]

= LB(B+ 1− ϕ)L−1. (20)

where

ϕ = Pr(α̂l ≥ τE) = e
−
τE
σ2
Ĥ

B =
ϕ

2
+

(
1
2
− θ̄

)
P(τ, τE)e−τ̄ .

Proof: See Appendix D.
The average of K in (20) is a function of τ and τE. Eve

wants to choose τE to maximize K̄ (τ, τE).
In (20), we need to know θ̄ . Unfortunately, it is not easy to

find an exact closed-form expression for θ̄ , but a lower-bound
on θ̄ can be found as follows.
Lemma 5: Under A1, the conditional error probability, θ̄

is lower-bounded as

θ̄ ≥ max
κ≥1

C(κ)e−
Pτ̄Eκ
N0

1+ κγE
, (21)

where C(κ) is a function of κ , which is given by [33]

C(κ) =
e(π (κ−1)+2)

−1

2κ

√
(κ − 1)(π (κ − 1)+ 2)

π
. (22)

Proof: See Appendix E.
Note that we can find an upper-bound on E[K ] using (21)

in a closed-form.

IV. NUMERICAL RESULTS
In this section, we present numerical results for the probabil-
ity of successful attack when the known plain-text attack is
carried out by Eve under A1 and A2a (i.e., σ 2

H = σ
2
G or γB =

γE in this case). In particular, we assume that σ 2
H = σ

2
G = 1.
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FIGURE 2. Probability of successful attack: (a) PSA versus L when
γE = 10 dB; (b) PSA versus γE when M ∈ {32,64} and L = 128.

We first consider the case that Eve does not consider the
channel estimation attack. In Fig. 2 (a), when γE = 10 dB,
the probability of successful attack for various values of L is
shown with fixed δ, which is shown in (12). We can confirm
that it is beneficial to have a large L as the probability of
successful attack decreases exponentially with L for a fixed δ.
In Fig. 2 (b), the probability of successful attack is shown for
various values of γE. Clearly, a better known plain-text attack
can be carried out as γE is high.

We now consider the case that Eve performs the channel
estimation attack to improve the performance of the known
plain-text attack. To see the performance, we consider the nor-
malized average number of known elements of x, i.e., E[K ]

L .
Fig. 3 shows the normalized average number of known

elements of x, E[K ]
L , for various values of τE when L = 128,

τ = 2, and ρ = 0.9. As expected, it is possible for Eve to
choose the optimal value of τE that maximizes E[K ]. Note
that the theoretical results in Fig. 3 are obtained with the
lower-bound on θ̄ in (21).

FIGURE 3. Normalized average number of known elements of x, E[K ]
L , for

various values of τE when L = 128, γB = γE = 10 dB, τ = 1, and ρ = 0.9.

FIGURE 4. Normalized average number of known elements of x, E[K ]
L , for

various values of ρ when L = 128, γB = γE = 10 dB, and τ = 1. For fixed
τE, we assume τE = τ = 1.

In Fig. 4, E[K ]
L is shown for various values of ρ when L =

128, γB = γE = 10 dB, and τ = 1. For fixed τE, we assume
τE = τ = 1. We can see that as ρ increases, E[K ]

L becomes
larger. Thus, for a better channel estimation attack to improve
the performance of the known plain-text attack, Eve’s antenna
should physically approach Bob’s antenna to increase the
correlation. This also implies that Bob has to prevent Eve
from approaching him for secure communications with Alice.
For example, in Fig. 4, if ρ < 0.6, Eve can only know up to
2% of the key subsequence by the known-plain text attack.

V. CONCLUDING REMARKS
In this paper, we studied a simple physical-layer encryp-
tion scheme based on CA randomization. To see the perfor-
mance gain of CA randomization, the known plain-text attack
was considered and the probability of successful attack was
derived as a closed-form expression. Since CA randomization
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is vulnerable to the channel estimation attack, its impact on
the average number of known elements of a key subsequence
was analyzed when the known plain-text attack is carried out.
From the analysis, we observed that it is important to keep a
low correlation between Bob’s and Eve’ channels for secure
transmissions.

APPENDIX A
PROOF OF LEMMA 1
If Eve can have t correctly selected t subcarriers out of M
randomly chosen subcarriers, the probability of successful

attack is (1 − θ )t
(
1
2

)M−t
. Thus, the average probability of

successful attack is given by

PSA =
M∑
t=0

(
M
t

)
(1− θ )t

(
1
2

)M−t
η(t), (23)

where η(t) is the probability that Eve can choose t correct
indices among M selected received signals out of z. Since
Eve performs a random selection as H is not available, η(t)
becomes

η(t) =
(
M
L

)t (
1−

M
L

)M−t
. (24)

Substituting (24) into (23), we have (12).

APPENDIX B
PROOF OF LEMMA 2
Consider the logarithm of PSA(M ), which is given by

A(M ) = lnPSA(M )

= M ln (c1 + c2 M ),

where c1 = 1
2 and c2 = 1−2θ

2L . We can show that

A′(M ) =
dA(M )
dM

= ln(c1 + c2M )+
c2M

c1 + c2M
, (25)

which is an increasing function ofM ∈ [0,L]. Thus, the sec-
ond derivative of A(M ) is positive, which means that A(M ) is
convex and PSA(M ) has log-convex.

It can be shown that A′ (0) = ln (c1) = − ln 2 < 0 and

A′ (L) =
1
2−θ

1−θ + ln (1−θ ). Since x
1+x ≤ ln (1+x) ≤ x, x >

−1, we can show that A′(L) > 0 if
1
2−θ

1−θ −
θ

1−θ =
1
2−2θ
1−θ > 0.

Thus, if θ < 1
4 , A
′(L) > 0, which implies that the minimum

point of A(M ) lies between 0 and L, because A′(0) < 0 and
A′(L) > 0.

APPENDIX C
PROOF OF LEMMA 3
For convenience, we omit the index l. From (13) and (16), we
have

Ĥ = ψ |ρ|2 H + ψρ∗U ,

which shows that Ĥ becomes a scaled noncentral chi-squared
random variable with 2 degrees of freedom (for given H ), In
particular,

2

σ 2
Uψ

2|ρ|2
|Ĥ |2 =

2β

σ 2
Uψ

2|ρ|2
= ζ ∼ f (ζ ; 2, λ), (26)

where f (x; n, λ) denotes the pdf of the noncentral chi-squared
random variable with n degrees of freedom and parameter λ.
Here, λ becomes

λ =
2

σ 2
Uψ

2|ρ|2
ψ2
|ρ|4|H |2 =

2|ρ|2|H |2

σ 2
U

.

Thus, we can show that

Pr(|Ĥ |2 ≥ τE
∣∣ |H |) = Pr

(
ζ ≥ ν

∣∣ |H |)
= Q1(

√
λ,
√
ν). (27)

Letting t = |H |, from (27), we can show that

P(τ, τE) =

∫
∞
√
τ
Pr (ζ ≥ ν, t) dt∫
∞
√
τ
f|H |(t)dt

=

∫
∞
√
τ
Pr
(
ζ ≥ ν

∣∣ t) f|H |(t)dt∫
∞
√
τ
f|H |(t)dt

=

∫
∞
√
τ
Q1(
√
λ(t),
√
ν)f|H |(t)dt∫

∞
√
τ
f|H |(t)dt

, (28)

where f|H |(x) denotes the pdf of |Hl |, which is the Rayleigh

pdf as f|H |(x) = 2 x
σ 2H
e
−

x2

σ2H , x ≥ 0, and λ(t) = 2|ρ|2 t2

σ 2U
= a2 t2.

Since
√
λ(t) = at , we have∫

∞

√
τ

Q1(
√
λ(t),
√
ν)f|H |(t)dt

=
2

σ 2
H

∫
∞

√
τ

t exp

(
−
t2

σ 2
H

)
Q1(at,

√
ν)dt

= e
−

τ

σ2H Q1
(
a
√
τ ,
√
ν
)
+ e
−

ν

2+a2σ2H

×

1−Q1


√√√√τ ( 2

σ 2
H

+ a2
)
,

a
√
ν√

2
σ 2H
+ a2

,
(29)

where the last equality is due to [34, Eq. (14)].

APPENDIX D
PROOF OF LEMMA 4
For a given τE, suppose that there are N elements of {α̂l} that
are greater than or equal to τE, i.e., N = |{l | α̂l ≥ τE}|. Then,
K = N if all N elements are correctly decided. Otherwise,
K = 0. Thus, E[K |N ] ≥ NφN . Since N is a binomial
random variable, we have

E[K ] = E[NφN ] =
L∑
n=0

n
(
L
n

)
φnϕn(1− ϕ)L−n
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= φ
d
dφ

L∑
n=0

(
L
n

)
φnϕn(1− ϕ)L−n

= LB(B+ 1− ϕ)L−1, (30)

where B = φϕ.
Furthermore, from (19), we can show that

φ = (1− θ̄ ) Pr(αl ≥ τ | α̂l ≥ τE)

+
1
2

(
1− Pr(αl ≥ τ | α̂l ≥ τE)

)
=

1
2
+

(
1
2
− θ̄

)
Pr(αl ≥ τ | α̂l ≥ τE).

Thus, it can be shown that

B = φϕ =
ϕ

2
+

(
1
2
− θ̄

)
Pr(αl ≥ τ, α̂l ≥ τE)

=
ϕ

2
+

(
1
2
− θ̄

)
P(τ, τE) Pr(αl ≥ τ ). (31)

APPENDIX E
PROOF OF LEMMA 5
From (11), using the memoryless property of the exponential
random variable [35], we have

θ̄ = E

[
Q
(√

2Pβl
N0

) ∣∣∣∣ βl ≥ τ̄E
]

= E

[
Q
(√

2P(βl + τ̄E)
N0

)]

≥ E
[
C(κ) exp

(
−κ

P(βl + τ̄E)
N0

)]

= C(κ)e−
Pτ̄Eκ
N0 E

[
e
−
Pβlκ
N0

]
=
C(κ)e−

Pτ̄Eκ
N0

1+ κγE
, (32)

where the inequality is due to the following lower-bound:

Q(x) ≥ C(κ)e−
κx2
2 , κ ≥ 1,

which is derived in [33]. The maximization in (21) is used to
find a tight bound.
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