
Received August 18, 2017, accepted October 15, 2017, date of publication November 9, 2017, date of current version December 5, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2771562

Constrained Interaction Testing: A Systematic
Literature Study
BESTOUN S. AHMED 1, KAMAL Z. ZAMLI2, (Member, IEEE),
WASIF AFZAL3, AND MIROSLAV BURES1
1Software Testing Intelligent Laboratory, Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague, 121
35 Prague, Czech Republic
2Faculty of Computer Systems and Software Engineering, University Malaysia Pahang, Gambang 26300, Malaysia
3School of Innovation, Design and Engineering, Mälardalen University, 72123 Västerås, Sweden

Corresponding author: Bestoun S. Ahmed (albeybes@fel.cvut.cz)

This work was supported in part by the Fundamental Research Grant: Reinforcement Learning Sine Cosine Based Strategy for
Combinatorial Test Suite from the Ministry of Higher Education Malaysia under Grant RDU170103.

ABSTRACT Interaction testing can be used to effectively detect faults that are otherwise difficult to find
by other testing techniques. However, in practice, the input configurations of software systems are subjected
to constraints, especially in the case of highly configurable systems. Handling constraints effectively and
efficiently in combinatorial interaction testing is a challenging problem. Nevertheless, researchers have
attacked this challenge through different techniques, andmuch progress has been achieved in the past decade.
Thus, it is useful to reflect on the current achievements and shortcomings and to identify potential areas
of improvements. This paper presents the first comprehensive and systematic literature study to structure
and categorize the research contributions for constrained interaction testing. Following the guidelines of
conducting a literature study, the relevant data are extracted from a set of 103 research papers belonging
to constrained interaction testing. The topics addressed in constrained interaction testing research are
classified into four categories of constraint test generation, application, generation and application, and
model validation studies. The papers within each of these categories are extensively reviewed. Apart
from answering several other research questions, this paper also discusses the applications of constrained
interaction testing in several domains, such as software product lines, fault detection and characterization,
test selection, security, and graphical user interface testing. This paper ends with a discussion of limitations,
challenges, and future work in the area.

INDEX TERMS Constrained interaction testing, constrained combinatorial testing, software testing, test
generation tools, test case design techniques.

I. INTRODUCTION
Software has become an innovative key for many applications
and methods in science and engineering. Ensuring the quality
and correctness of software is challenging because of the
different configurations and input domains of each program.
Ensuring the quality of software demands the exhaustive eval-
uation of all possible configurations and input interactions
against their expected outputs. However, such an exhaustive
testing effort is impractical because of time and resource
limitations. Thus, different sampling techniques have been
used to sample these input domains and configurations. The
use of these sampling techniques for black box system testing
is usually called as interaction testing, which can be used
to detect faults that are otherwise undetectable effectively.
Interaction testing has been given other alternative names

such as combinatorial testing (CT), combinatorial interaction
testing (CIT), and t−way, t−wise, or n−wise testing (where
t or n indicate the interaction strength). However, throughout
this paper, the term ‘‘interaction testing’’ is used as a rep-
resentative term as it is a popular name in existing software
testing literature.

Interaction testing has been used successfully for test-
ing different configurable software systems. Several review
and survey papers exist on the topic that covers developed
strategies and their applications (see e.g. [1]–[3]). Although
useful, interaction testing has suffered from a limitation of
efficiently handling constraints. The ability to handle con-
straints is a crucial aspect for the real-world applicability of
interaction testing techniques since most of the real-world
systems are subjected to constraints among input parameters

25706
2169-3536
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 5, 2017

https://orcid.org/0000-0001-9051-7609

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

or among particular system configurations. Hence, recent
times have seen a shift in interaction testing research that
concerns the handling of constraints and is typically called as
constrained interaction testing [4]. Adding this feature opens
up several new directions for research that promises to guide
further development of interaction testing [5]. However, there
exists no comprehensive and dedicated review paper in this
direction.

Although many interaction testing strategies have been
developed in the past, only a few of them can satisfy the
constraints in the final generated test suite. Handling con-
straints add extra complexity in designing efficient interac-
tion testing strategies. Hence, in the last decade, researchers
have looked into different ways of supporting the generation
of constrained interaction test suites. Besides, application
of constrained interaction testing on various software sys-
tems and the associated empirical evaluations have started
to surface. To this end, this paper provides a comprehensive
systematic literature study to structure and categorize the
available evidence for constrained interaction testing research
during the last decade. The goal of the study is to identify the
relevant papers, their results and the type of research such
that one can discuss future research opportunities in the area.
The study uses a systematic method to collect and analyze the
related research published during the last decade. In doing so,
methods and approaches for the generation as well as their
applications are addressed.

The remainder of this paper is organized as follows:
Section II presents the motivation and the overview of related
work for this study. Section III describes the methodology
of the literature study. Section IV presents the results and
outcomes of the study. Section V discusses the threats to
validity. Finally, Section VI concludes the work.

II. MOTIVATION AND RELATED WORK
Multiple factors motivated the decision to carry out a liter-
ature study in this paper. First, no existing paper aggregates
available research in constrained interaction testing (although
several review papers exist on interaction testing in gen-
eral). Second, constrained interaction testing is an upcoming
research direction in interaction testing [6]; so it is interesting
to investigate this topic. Third, a literature study paper is a
community service that potentially saves significant time for
interested researchers in getting to know about a research
topic such as constrained interaction testing.

Nie and Lueng [2] conducted one of the first com-
prehensive reviews covering combinatorial testing and its
applications. The study focuses on the basic concepts of
combinatorial testing, the detailed methods of combinatorial
test suite construction and the associated applications. The
article also reviews constrained interaction testing methods.
Kuliamin and Petukhov [7] also presented various methods
of constructing combinatorial interaction test suites. On sim-
ilar lines, Ahmed and Zamli [8] conducted a review study on
the application of interaction testing. This paper is a useful
complement to these existing review papers as it presents

a more complete and recent review of the field. The pre-
vious review papers are not exhaustive in its coverage of
constrained interaction testing. They are also not conducted
as systematic literature studies.

Focusing on search-based test generation, Afzal et al. [1]
and Ali et al. [9] have dedicated parts in their systematic
literature reviews for interaction testing. More recently,
Lopez-Herrejon et al. [3] published the first literature study
on interaction testing for software product lines (SPL). Here,
due to the presence of different constraints in SPL testing,
the study has included and reviewed the constrained inter-
action testing. However, the study has only discussed con-
straints from the SPL application point-of-view.

This study considers the above-mentioned review papers as
an excellent source of information since some of them include
papers on constrained interaction testing. Our study further
takes inspiration from other recently published systematic
literature studies, e.g., [10], [11].

III. METHOD
This section illustrates the method that this literature study
follows. This study follows the methodology recommenda-
tions given by [12]. The methodology has six stages. First
is the definition of the research questions. Second is to
undertake the search process, in which the search strategy
is established, and the primary research papers are selected.
The third stage is the selection and the quality assessment;
this stage acts as a screening stage in which irrelevant papers
are excluded based on the title, abstract, full-text reading and
quality assessments. Data extraction is the fourth stage to
extract data from the remaining papers. The fifth stage is the
analysis and the data classification to classify the extracted
information from the papers by tabulating and analyzing
them. The last stage is the validity evaluation in which the
threats to validity are evaluated and presented. For better
illustration and organization of these steps, they were further
classified into three main phases, as shown in Figure 1.

• Phase 1. Searching: The research questions that deter-
mine the focus of the study are defined in this phase.
Based on these research questions, the search string is
designed. The search string has undergone an experi-
mental refinement process to identify and return only
closely relevant papers.

• Phase 2. Filtering: Here, the relevant papers are
selected, and their quality is assessed. Irrelevant papers
are excluded based on the title, abstract, full-text reading
and quality assessments.

• Phase 3. Analysis: The relevant data answering the
research questions are extracted from the primary set of
papers in this phase (in the case of this study 103 papers).
The extracted data from the primary papers are classified
and analyzed to visualize and understand the outcome.
Here, Tables and Figures are used. Threats to validity are
also analyzed and presented in this phase with the aim
to disclose possible limitations of this study.

VOLUME 5, 2017 25707

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

FIGURE 1. The systematic literature detail steps.

The following sections illustrate different stages covering
the phases mentioned above that have been undertaken in
detail. Input and output of each step are depicted in Figure 1.
Some of the following subsections describe more steps
joined. For example, defining research questions needs the
research scope to be defined first. Hence, they are included
in one subsection. In addition, the design, selection, and
optimization of the search string are merged into one section.

A. RESEARCH QUESTIONS
As mentioned before, this study is a systematic literature
study, and the goal is to structure and categorize the available
evidence for constrained interaction testing research during
the last decade. A number of research questions (RQs) were
formulated to help achieve our goal:
• RQ1:What is the evolution in the number of published
studies over the last decade in constrained interaction
testing?

• RQ2: Which individuals, organizations, and countries
are active in conducting constrained interaction testing
research?

• RQ3: What topics/subjects have been addressed in the
constrained interaction testing research and what is their
distribution?

• RQ4: What are the existing strategies, tools, and tech-
niques that support the generation of constrained inter-
action test suites?

• RQ5: What kinds of benchmarks (industrial or other-
wise) are used to evaluate constrained interaction testing
techniques and what is their provenance?

• RQ6: What are the applications of constrained interac-
tion in software testing?

• RQ7:What are the current limitations and challenges in
constrained interaction test generation?

• RQ8: What are the possible directions for future
research?

B. SEARCH STRATEGY
Identifying the keywords for textual search is a challenging
task. Kitchenham and Charters [12] established the PICO

(Population, Intervention, Comparison, and Outcomes) cri-
teria to identify the keywords formally. ‘Population’ refers to
a role in software engineering, an application area or a disci-
pline in the field, while the ‘intervention’ refers to software
engineering tools, methodologies, procedures or strategies to
address a specific issue. ‘Comparison’ identifies the different
procedures or methods that have been used for comparison.
‘Outcomes’ deal with those keywords that are outcomes of
the research and development, which are essential for practi-
tioners such as improving performance or reliability.

Based on the research questions and the PICO guidelines,
the keywords were categorized into three sets. The first set
is related to the scoping the search for constrained interaction
testing, i.e., ‘‘constrained interaction testing’’ or ‘‘constrained
combinatorial interaction.’’ To make the search broader,
the second set of keywords is constructed to form terms and
strings related to the generation of constrained test suites such
as ‘‘strategy.’’ The third set is related to the application of
constrained interaction testing. These strings were combined
to form one string but with different trials. To combine the
search terms, Boolean AND is used, whereas Boolean OR is
used to join alternate terms.

A preliminary string was constructed and then it took sev-
eral trials to form the final search string (Set # 5 in Table 1).
These trials were needed mainly due to the close relationship
between combinatorial interaction testing and constrained
interaction testing. Since constrained interaction testing is the
scope of this paper, a search string is required that returns only
those combinatorial interaction strategies that support con-
straints. In doing so, these search stringswere evaluated based
on how much the returned results were related to the scope.
In order to make sure that the search string is not missing
out relevant papers, 20 ‘‘pilot’’ papers were selected, to make
sure that different changes to the search (when experimented
on IEEExplore and ScienceDirect indexing databases) are
always able to find these 20 core/pilot set of studies. Finally,
the string that is more related to the study area and can return
these studies was selected.

Table 1 shows the result of five trials of different search
strings. The first three sets of the search strings were excluded

25708 VOLUME 5, 2017

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

TABLE 1. Search strings tries on the indexing data bases.

in the selection process since there were many irrelevant
results returned by them, even though they returned the pilot
papers also. The reason behind these results is the general
terms in the strings that led to return many irrelevant papers.
In addition, during the trials, it has been found that the
term ‘‘constraint’’ is used in different ways depending on
its situation in the sentences. To this end, three different
terms were used, (constraint OR constrained OR constraints),
which led to covering more papers. Additionally, it was also
found that these synonyms were used with different terms of
interaction testing. As a result, those terms were observed in
the literature and used in different ways (‘‘interaction testing’’
OR ‘‘combinatorial testing’’ OR ‘‘combinatorial interaction’’
OR ‘‘combinatorial test design’’ OR ‘‘covering array’’ OR
‘‘t-way testing”). To make sure that the scope was fully cov-
ered in the research questions, additional terms were added
such as (‘‘strategy,’’ ‘‘technique,’’ ‘‘method,’’ ‘‘approach’’
and ‘‘tool”).

The databases were selected based on the guidelines and
suggestions provided by [13] and [14]. Based on these guide-
lines, the following databases were selected:

• IEEE Xplore
• ScienceDirect
• ACM Digital Library
• Scopus
• SpringerLink

During searching, indexing, and sorting of a large number of
references, different duplicate references appeared due to the
slight differences in the reference indexing in the databases.
To manage the references and to remove duplicates, the well-
known reference management software EndNote X7 was
used. For more accuracy, Mendeley v1.16 reference manager
software was also used. As mentioned earlier, this is a litera-
ture study covering the last decade starting from 2005 as there
has been increasing research trends from that time. It should
be mentioned here that this study started in early 2016 and
finished early 2017. The papers from 2017 are not included

TABLE 2. Number of published research.

in this study. To figure out the number of published research
in this direction, Table 2 summarizes the number of research
papers published in the mentioned period for each considered
database.

C. PAPER SELECTION CRITERIA AND QUALITY
ASSURANCE
The papers were excluded or selected based on the title,
abstract and full-text reading. The quality of the papers was
also considered for the selection. To increase the reliability
of selection, this process was conducted by the first author
and reviewed again by other authors of the study. It should
be mentioned that some papers can be selected or excluded
based on the title and abstract. However, rest of them required
full-text reading for deciding on their selection. For better
understanding, the studies with the following criteria were
selected:

• Studies for interaction testing with the support of con-
straints.

• Studies dealing with the applications of constrained
interaction.

• Studies that are in the field of Software Engineer-
ing/Computer Science.

• Studies that are published online in the last decade (i.e.,
from 2005 when the first constraint-related paper got
published).

VOLUME 5, 2017 25709

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

FIGURE 2. Number of included papers in the selection and filtering process.

It is also worth mentioning here the excluding criteria for the
studies. Following the guidelines provided by [14], the pub-
lished studies were excluded based on the following criteria:
• Studies dealing with interaction testing but without the
support of constraints.

• Application of constrained interaction in fields other
than Software Engineering/Computer Science.

• Studies not published in the English language.
• Studies without full text.
• Books and gray literature.
• Studies from non-peer reviewed sources.

Applying these criteria helped to capture better the number
of papers that should be included in the study scope. As men-
tioned previously, many of these papers were duplicated, and
they were removed finally. For example, some of those pub-
lished papers in ScienceDirect were also indexed in Scopus
database. In fact, Scopus acted as a valuable resource for
double checking the results from other databases. Figure 2
shows these studies and the selection stages clearly.

As can be seen from Figure 2, to choose papers from a large
set given by the selected databases, four filtering stages were
applied. These stages have also been used in other literature
studies [10], [15]. First, the related papers were identified
in the selected databases (i.e., IEEE Xplore, ScienceDirect,
ACM Digital Library, Scopus, SpringerLink). As mentioned
previously, the outcome of this stage is 2,668 papers. It should
be mentioned here that different papers were shared between
these databases. Hence, ‘‘Filter 1’’ stage was performed in
which all the duplicated titles, proceeding abstracts, and Pow-
erPoint presentations were excluded. In the ‘‘Filter 2’’ stage,
the papers were analyzed by reading the titles, abstracts,
and if necessary the introduction sections of the papers. The
selected papers were based on the exclusion and inclusion
criteria provided earlier. In the ‘‘Filter 3’’ stage, the authors
read the full-text of the chosen papers. Here, another set of
papers was excluded due to multiple reasons. For example,
many conference papers described an idea for research but
do not include study results. In addition, the focus of some
published papers was not entirely in software engineering and
also not falling within the scope of the research questions.
Finally, a snowballing stage was conducted by checking the
references of the selected studies to not miss any relevant
papers. Here, 14 more papers were added as an outcome of
this stage. Hence, at the last stage, 103 papers were selected to
answer the research questions by extracting information from

TABLE 3. Data extraction template.

FIGURE 3. Publication per year.

them. AppendixA lists the studied papers. Appendix A shows
the references for these papers along with their full names and
the publication years.

D. DATA EXTRACTION AND ANALYSIS
This phase aims to extract data from the selected studies and
analyze them to answer the research questions. A spread-
sheet was created to retrieve the required data from these
identified studies. The template developed by [14] and [16]
was followed and adopted to construct the sheet. More fields
of data were also added to the table. Table 3 shows the
template that was used. General information about the paper
was recorded, including paper ID, publication title, publi-
cation year, authors’ names and countries, venue, and area

25710 VOLUME 5, 2017

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

FIGURE 4. Publication ratio and number categorized by source.

of research. More specific data was extracted by including
the research approach for the study, evaluation process, case
study, applied techniques and challenges addressed. The data
extraction process helped to understand each paper’s aim
better and to get answers to the posed research questions.
At the end of the process, the frequencies of papers were also
calculated.

Each paper has a table with the information specified
in Table 3. To extract and analyze the information for all
papers, a reliable method was followed. The information is
extracted first by the first author and then double checked by
the other authors separately. For better reliability, automatic
text analyzer also used to verify the obtained information.

IV. RESULTS
This section is dedicated to answering the research ques-
tions in detail. Each research question from section III-A is
addressed here individually. A short title is used for each
section that is extracted from the main research questions in
section III-A.

A. FREQUENCY OF PUBLICATIONS (RQ1)
The identified studies were analyzed over the last
decade (2005–2016) to know the frequency and evolution
of the number of publications. Figure 3 shows the results of
this analysis process. As mentioned earlier, 103 publications
were considered in which the average number of publications
per year is of 10 papers. The average number is influenced
strongly by the growth of publication numbers after 2009.

It should be mentioned here that the first model of con-
strained interaction for interaction testing purposes is pro-
posed in a Ph.D. thesis in 2004 by Cohen [17]. However,
this study did not appear in any database and was only
published on the author (and university) website. In 2005,
Hnich et al. [18] showed how to model handle constraints
in Covering Array (CA); however, they did not explicitly
address the constraints among the values of the input param-
eters, and they mention this as a problem to be solved in
the future. In 2006, Bryce and Colbourn [19] formalized the
constrained interaction testing with CA mathematical object,

while Hnich et al. [20] also defined and formalized the
constraint models for CA in the same year. In the same
time, Cohen et al. [21] tried to investigate the application of
constrained interaction testing for SPL testing.

The interest in constrained interaction testing moder-
ately increased between 2005–2007, whereas, a significant
increase of research can be observed in 2008 and beyond.
This increase in the publication number is an indication of the
increasing interest in researching constrained interaction test-
ing in the software engineering community. Another potential
reason behind this increase is a shift of constrained interaction
testing from theory to practice, with more and more papers
investigating the application of this testing technique in dif-
ferent case studies.

Regarding the type of the publication venue, Figure 4
shows this information. Majority of publications (around
70%) are conference publications, about 22% are journal pub-
lications, and around 8% are workshop publications. It should
be mentioned here that some conference publications are
ultimately published as book chapters; however, their original
venues, which are conferences, were considered.

Given these results, it is also important to know the popu-
lar peer-reviewed journal, conference and workshop venues
for constrained interaction testing. Figure 5 shows those
active peer-reviewed journals where relevant papers are pub-
lished. Journals names are given in abbreviations of Thomson
Reuters Science Citation Index1 due to their long names.
The full journal names corresponding to those abbrevia-
tions are given in Appendix B. Respectively, Figure 6 shows
active conferences involved in constrained interaction testing
research. The conference names are given in abbreviations,
and the full names can be found in Appendix C.

Figures 5 and 6 gives a clear picture of targeted venues for
publication by authors of the considered studies. Looking at
the journal publications specifically, it is clear that ‘‘Software
Quality,’’ ‘‘Information and Software Technology,’’ ‘‘IEEE
Transactions on Software Engineering,’’ and ‘‘Systems and
Software,’’ journals are the most active and top four journals

1https://apps.webofknowledge.com

VOLUME 5, 2017 25711

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

FIGURE 5. Number of Published Papers vs. Journal Name.

in terms of publication target (more than 52% of the journal
publications). Considering the conference publications, it be
can noted that many papers have been published in individual
conferences, however, ‘‘Software Testing, Verification and
Validation (ICST)’’ and ‘‘Software Product Lines (SPLC)’’
are the most targeted venues for the authors (more than 36%
of conference papers; 19 in ICST and 7 in SPLC). However,
if we consider those conferences which published more than
two papers, more than 68% of the papers were published
in annual conferences. The remainder of the papers were
published in 30 individual conferences (represented as others
in Figure 6).

B. ACTIVE INDIVIDUALS, ORGANIZATIONS AND
COUNTRIES (RQ2)
This research question aims to identify active researchers
publishing studies about constrained interaction testing.
A quick analysis reveals that many researchers are engaged
in researching constrained interaction testing. In fact, it is
clear that many authors were participating in a single
research paper. Most active researchers were designated as
those who author/co-author more than three research papers.
Such researchers are producing more than 83% (86/103)
of the publications. Figure 7 shows the ranking of these
researchers based on them being authors or co-authors of the
papers. From the ranking, it is clear that ‘‘Myra B. Cohen”,
‘‘Angelo Gargantini’’ and ‘‘Andrea Calvagna’’ are top three
researchers with 13, 10 and 6 published papers respectively.
These three authors participated in almost more than 28%
(29/103) of the total publications.

Table 4 shows the ranking of the organizations and active
research groups based on the published papers. The name
of the group, participating researchers, reference to the pub-
lished papers and the total number of papers is also pre-
sented in the table. The table complements the observations
from Figure 7. In addition to the organizational ranking,
the table also shows the collaboration among the authors.
From the analysis of the table, it is clear that the research

FIGURE 6. Amount of Published Papers vs. Conference Venues.

group from University of Nebraska - Lincoln (a collaboration
between ‘‘Myra B. Cohen’’ and ‘‘Matthew B. Dwyer”) is the
most active research group in constrained interaction testing.
In addition, that the group from Chinese Academy of Sci-
ences (a collaboration between Jian Zhang and Feifei Ma)
and the group from Technischen Universität Darmstadt
(a collaboration between Malte Lochau and Sebastian Oster)
are second active research groups since they are collaborating
with other researchers in publishing 7 papers for each group.
There are two active groups in the third rank. The group from
Università di Bergamo (a collaboration between ‘‘Angelo
Gargantini”, and ‘‘Paolo Vavassori”), and University of Cata-
nia (active author ‘‘Andrea Calvagna”) have participated in 6
published papers.

Another analysis can be drawn from the active countries in
published papers. Figure 8 shows the most active countries
in the publishing of constrained interaction testing papers.
The figure shows the participation of each country in pub-
lished papers based on the organizational affiliation of the
authors. It is clear that USA, Germany, and Italy are top three
countries in publications, with 28, 14, and 12 publications
respectively. For example, 13 papers out of those published

25712 VOLUME 5, 2017

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

FIGURE 7. Active researchers.

TABLE 4. Researchers and organizations involved in constrained interaction testing research.

from the USA comes from a collaboration between ‘‘Myra
B. Cohen’’ and ‘‘Matthew B. Dwyer”. Germany is the sec-
ond most active country in constrained interaction testing
publications. This comes from the collaboration of three
German universities with other groups. These organiza-
tions are, ‘‘Technischen Universität Darmstadt’’ (active
researchers: Malte Lochau and Sebastian Oster),

‘‘Technischen Universität Braunschweig’’ (active researcher:
Thomas Thüm) and the ‘‘University of Magdeburg’’ (active
researchers: Gunter Saake and Mustafa Al-Hajjaji).

Important observations can be made from the output of
this research question. Although the topic is important and
promising, few researchers participate in constrained interac-
tion testing publications. For instance, 31 active authors are

VOLUME 5, 2017 25713

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

FIGURE 8. Active countries.

TABLE 5. Distribution of papers by research type (high level classification).

participating in more than two research papers, and they are
responsible for more than 83% (86/103) of the publications.
In fact, many more authors are participating in combinatorial
interaction testing without constraint’s support.

C. DISTRIBUTION OF THE STUDIES AND TOPICS
ADDRESSED (RQ3)
Full-text of the considered papers was scanned carefully to
answer this research question. Different topics and subjects
have been addressed. Although the topics are broad in range,
this study distributed the topics into four main high-level cat-
egories. Within each category, many topics can be discussed.
Table 5 shows these four high-level categories and refers
to the papers in each category. Based on a careful analysis,
the studies are placed into the following categories:
• Constraint Test Generation Studies: Papers in this
category discuss the generation strategies, methods,
and approaches for constrained interaction testing. The
papers are addressing the problem of generation by using
different approaches including, exact methods, compu-
tational algorithms, meta-heuristic algorithms, and con-
straint solvers.

• Application Studies: Papers in this category consider
only the application of constrained interaction testing for
a specific domain of research (such as Graphical User
Interface (GUI) testing).

• Generation and Application Studies: Papers in this
category shows those studies that are considering

a combination of generation and application. Here,
the research papers are introducing a generation
approach for a specific application(s).

• Model Validation Studies: Papers in this category either
introduce models of constrained interaction testing, for-
malize the constrained interaction testing mathemati-
cally, or introducemodels of problems that can be solved
by constrained interaction testing.

Figure 9 shows the detail distribution of the papers accord-
ing to the classified topics. The following sub-sections illus-
trate these categories and the papers related to them in detail.

1) CONSTRAINT TEST GENERATION STUDIES
As can be seen from Table 5, 36 papers are proposing and
evaluating different generation strategies of constrained inter-
action test suites. In addition, there are also 21 papers propos-
ing customized generation strategies for specific applications.
Hence, in total, there are 57 papers containing generation
methods in some form. Here, it is essential to know the used
methods for solving and dealing with constraints and also the
generation strategies. In fact, the generation strategies will be
addressed in RQ4, while this section addresses the constraint
solving methods.

As can be seen from Figure 10, different methods have
been used to solve the constraints during the generation
of constrained interaction test suites. By analyzing those
57 papers, a classification for those constraint solving meth-
ods can be made. Out of those 57 papers, 43 papers (75.43%)

25714 VOLUME 5, 2017

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

FIGURE 9. Distribution of papers according to classification.

FIGURE 10. Constraint solving methods.

used a constraint solver package. Those constraint solvers are,
SAT, SMT, CSP, PBO and Clasp solvers. SAT solver has the
highest usage rate 69.7% (30/43) [5], [18], [20], [22]–[26],
[28], [30], [31], [34], [38], [40], [41], [44], [45], [56]–[59],
[65], [72], [73], [78], [79], [85], [95], [100], [113] then SMT
solver 13.9% (6/43) [33], [44], [51], [54]–[56], then CSP
solver 9.3% (4/43) [5], [42], [60], [99], and then PBO solver
4.6% (2/43) [37], [39]. Recently, one paper uses Clasp solver
also [36]. The use of SAT solver seems to attract researchers
because of its performance, accuracy, and simplicity for solv-
ing the constraints. Henard et al. [56] validated this result
recently by conducting a comparative study between SAT and
SMT solvers in case of flattening the CIT into a Boolean
model. The research found that the SAT solver can process
the flattening models faster than the SMT solver.

Another reported way of solving the constraints in the
literature is by excluding the constraints from the search
process. For instance, 4 papers [19], [42], [87], [98] of the
generation papers follow this method. The method removes
those tuples which are related to the constraints, in other
words, the meaningless tuples. In this way, there is no need
for a constraint solver. However, this method just considers
the exclusion of constraints rather than their inclusion. For
real applications, in some cases, there could be inclusion
constraints. For example, some input parameters might come
exclusively with a specific set of parameters.

Binary decision diagram [86], [115], [118] and graph
theory [27], [88], [89] methods are also used to deal with
the constraints. Within the considered papers for generation
approach, there are three papers for each of these meth-

VOLUME 5, 2017 25715

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

FIGURE 11. Application areas of constrained interaction testing.

ods. The binary decision diagram prevents the appearance
of constraints in the final test suite by considering some
form of cause-effect graph relationships. By considering this
relationship, the generation method prevents the generation
path from passing through those constraints. The graph theory
method follows the well-known graph algorithms like graph
coloring to generate test small test suites without violating the
specified constraints.

Constraint programming [61], [62], [81] and linear pro-
gramming [74] methods are also used rarely in the literature
to deal with the constraints in combinatorial interaction test-
ing. Constraint programming is mainly dedicated for solving
hard combinatorial problems. Not much different from this
definition, constraint programming is usedwithin constrained
interaction testing as an exact method to generate test suites
without violating the constraints. Although it can be usedwith
generation strategies in general, this method has been used
only with SPL testing. Linear programming is also used with
some similarities with this approach to solving the constraints
but follows certain mathematical models. In general, linear
programming is used with a mathematical model when the
inputs have a linear relationship. Lopez-Herrejon et al. [74]
followed this approach by using zero-onemathematical linear
program with a multi-objective algorithm to solve the con-
straint problem for SPL feature models. In fact, this approach
is difficult to follow for big and general constrained inter-
action testing strategies as it is a non-deterministic polyno-
mial (NP) hard problem [4], [121].

2) APPLICATION STUDIES
From the Table 5, it is clear that 37 published papers are
dealing with the application of constrained interaction testing
without addressing the details of the generation process. The
majority of these strategies used well-known and established
tools and algorithms for generating constrained test suites.

Those generation tools and algorithms are either adopted
from other studies or used without much focus on them in
the published studies due to the more significant focus on the
application itself. For generating the test suites, there is an
essential need to represent the system-under-test as amodel to
recognize the input parameters and constraints. These inputs
are then used to generate test cases. Figure 12 shows those
adopted methods in the application studies. Out of those
37 published papers in the application direction, eight papers
are using SAT solver directly to generate the test cases and
for solving the constraints. Eight papers used ACTS2 tool
for the generation since it is a well-established, efficient, and
an excellent performance tool. Specifically, those published
papers used the IPO-family algorithms inside the ACTS tool.

As can be seen from Figure 11, the applications are dis-
tributed into six main areas. Constrained interaction testing
is frequently used within five of those areas actively. Those
active areas (with the citations to them) are, SPL testing [27],
[41], [42], [44], [45], [47], [52], [57], [58], [62]–[64], [71],
[99], [101], [104], [109], [110], fault detection and charac-
terization [28], [29], [80], [95], [105], test selection [96],
[97], [107], [108], security [93], [102], and GUI testing [114].
The left-hand side of the graph shows the results of those
research papers which are presenting the application focus.
It should be mentioned here that the papers are showing
the results of the testing process without much detail about
the generation process. In fact, most of the research papers
use one or more generation tools either from their previous
research or other research. For instance, 15 research papers
show the use and the benefits of the constrained interaction
testing for the SPL. In total, 29 published papers are focusing
on the use of constrained interaction testing for SPL.

Fault detection and characterization is another active
research direction here. Fault detection has been examined

2http://csrc.nist.gov/groups/SNS/acts/index.html

25716 VOLUME 5, 2017

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

FIGURE 12. Adopted generation methods for applications.

in the literature with normal interaction testing without con-
straints.Within constrained interaction testing, fault detection
and characterization is used for different purposes. In fact,
there are five research papers published in this direction
without the generation details and two more papers with the
test generation details. In total, there are seven published
papers, but there are no frequent author names in them.

Another active research direction for application of con-
straint testing is the test selection direction. From Figure 11,
it is clear that in total there are four published papers here.
The test selection research originated from the normal com-
binatorial interaction testing. Again, there are no frequent
names in these publications. This direction of research seems
to catch less attraction by the researchers, but it still could be
a productive future research direction.

Constrained interaction testing has been used for test-
ing security issues. Security application is investigated first
for normal combinatorial interaction testing for few stud-
ies (e.g., [122], [123]). In case of constraints, so far, two stud-
ies investigated its use in security. Bozic et al. [93] assessed
the concept of constrained interaction for web security testing
and Bouquet et al. [102] assessed it with model-based testing.
Combinatorial interaction testing has been used effectively

to generate test cases for applications from the GUI point of
view. Here, the constrained interaction testing is used to solve
invalid test cases in the final generated test suite. In total, there
are three published papers in this direction.

In addition to those aforementioned frequent areas,
constrained interaction testing has been used in total
within 11 different studies to solve real-life problems. More
details on the above mentioned active applications and other
areas are given while answering RQ6 in subsection IV-F.

3) GENERATION AND APPLICATION STUDIES
Another category of research area within constrained inter-
action testing belongs to the ‘‘generation and application
studies.’’ As can be noted from Table 5, 24 published papers
are dealing with the application of constrained interaction

testing and also addressing the generation process. It is clear
from the right-hand side of Figure 11, there are still six
frequent main areas for research. The right-hand side of the
figure extends the left side by adding more papers to the
application categories.

More papers are dealing with the SPL application but
with more details about the generation of test cases. Here,
the papers considered the generation of test cases for the
SPL as a special case of constrained interaction testing due
to different constraints in the feature models used within
SPL. In addition, researchers tried to integrate the generation
algorithms with the testing tools. Some of those algorithms
were depending mainly on constraint solving solutions. For
example, Model-based Software Product Line Testing frame-
work (MoSo-PoLiTe) [66] uses CSP solver for solving the
constraints in the feature models of the SPLs. Other tools
deployed well-known algorithms for constrained interac-
tion testing to generate test cases for the SPLs. CITLAB
tool [52] deployed IPO-family algorithms that are available in
ACTS [91] tool to generate test cases for SPL. In fact, the pub-
lication in this direction aimed to increase the efficiency of the
generation algorithms. Other researchers used special algo-
rithms to reach this aim. For instance, Al-Hajjaji et al. [72]
proposes an incremental approach for product sampling for
pairwise interaction testing (called IncLing), which enables
developers to generate samples on demand in a step-wise
manner. Here, the performance of the generation algorithm
is also improved by this incremental approach since there is
no need to wait until the generation algorithm produces all the
configurations. Lopez-Herrejon et al. [75] proposed Parallel
Prioritized product line Genetic Solver (PPGS) algorithm, a
parallel genetic algorithm for the generation of prioritized
pairwise suites for SPLs. The study compared PPGS with the
greedy algorithm prioritized-ICPL and in most cases, PPGS
was found to be producing better results.

Marijan et al. [61] has also introduced an algorithm to
generate a minimal set of valid test cases for SPL that covers
2-wise feature interactions for a given time interval. Mainly,

VOLUME 5, 2017 25717

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

the algorithm is based on constraint solver and constraint
programming. The study identifies the generation of a min-
imal configuration set for SPL from the feature model as a
constraint optimization problem. The algorithm can capture
the relationships among the features in the input feature
model by a constraint model that identify these relationships
as constraints for the solvers. The algorithm then tries to
generate a set that covers the 2 − wise interactions of the
features and also satisfy the constraints.

4) MODEL VALIDATION STUDIES
Model validation studies form another category of published
research papers on constrained interaction testing. From
Table 5, it is clear that seven published papers ([21], [46],
[54], [55], [116]–[120]) address this issue for constrained
interaction testing. The papers in this category deal with input
models of an application under test. These models are then
used to generate test cases accordingly. The rationale behind
this research direction is the deployment obstacles to find the
correct set of parameters and values with the restrictions (i.e.,
constraints) among them for real-life applications.

Generally, in combinatorial interaction testing, a model
is composed of parameters and values for each of them.
Constrained interaction testing adds some complex entity to
the model validation process which is the constraint model
among the parameters. The test generation strategies start
from this model to construct the final test suite. Having a good
model for the system under test will improve the quality of the
produced test suites by the strategy and also it could help in
early defect discovery. The model will be more useful when
we want to validate the produced test suites and assess their
quality.

Calvagna and Gargantinia [55] presented a new approach
to construct constrained 2 − wise test suites. More parts
of the paper discuss the models of input domains and
how the constraints should be presented in the strategy.
The paper presented a model also to generate customized
test suites by exclusion and inclusion of ad-hoc combi-
nations of input parameters. The research also formal-
ized constrained interaction testing as a logic problem.
A model checker tool is presented in the paper to validate
the model. In line with the approach of the paper, it pre-
sented a prototype tool for implementation. In another paper
later, Calvagna and Gargantini [54] extended this approach to
include more formalization of the model with more extensive
evaluation process for the generation and validation process.

Segall et al. [118] then suggested a different approach to
handle the complex relationship models between the param-
eters. The research suggested two different constructionmod-
els. The first construction model is the type counter param-
eter, which is a special type of parameter that counts the
number of specific values appearance for each input parame-
ter in each test case. The second construction model is the
type value property, which specifies the number of prop-
erties related to each parameter and values. The research
showed that these two approaches will reduce the modeling

complexity needed significantly. The research validated the
two approaches on two real-life case studies. Although the
approach is new in this direction, significant experimental
results for validation could not be recognized.

Arcaini et al. [116] proposed a model validation approach
for the constrained interaction testing, focusing more on the
validation of the constraints rather than the interactions of
parameters. The approach checks the consistency of the con-
straint among the input parameters, to be sure that they are not
contradicted by each other, and hence the input parameters
and their values are necessary for the inclusion in the test
suite. This has been done by checking whether the produced
test suites are consistent with the provided requirements in
the beginning for the input parameters, values, and constraints
among them. The research also provides a technique to iden-
tify potential causes for any appeared error and how to fix
it. The research suggested four sets of checkpoints that each
constrained interaction test suite must have. Those check-
points are, the consistency of the constraints, the usefulness
of the parameters and values, the correctness of the final test
suite in term of constraints violation, and finally the impor-
tance of each test case in term of coverage. These checkpoints
were validated by the benchmarks available in the CITLAB
tool [49] and the constraints were validated with the help of
SMT solver.

Tzoref-Brill and Maoz [119] explore the evolution of
constrained interaction test space modeling. The research
showed that the Boolean semantics are inadequate for con-
strained interaction model evolution. The research extends
the Boolean semantics to a lattice-based semantics to provide
consistency of the interpretation for model changes. This has
been done via Galois connection to establish the connection
among the elements in an abstract domain. The research pro-
vides an extensive formulation of themodels without showing
any experimental results.

In contrast with the approachesmentioned above of general
model validation, Spichkova and Zamansky [120] proposes a
formal framework for model and validation framework of
constrained interaction testing at multiple levels of abstrac-
tion between elements. The framework is human-centric in
which it provides queries to testers for helping to analyze
and assess the quality of specific test plans, models, and
constraints to check if they are complete and valid. The study
presented a formal analysis of the framework without an
extensive experimental evaluation.

While the model validation frameworks and approaches
are feasible for constrained interaction testing,
Khalsa and Labiche [117] introduced the base choice crite-
ria to account for constraints. Specifically, the researchers
discovered two extensions for the base choice to address
complex constraints for complex systems. The criteria and
models were evaluated on industrial and academic cases
studies using different generated test suites by various test-
ing tools. The evaluation was based on cost and effective-
ness of the test suites in term of code coverage and fault
detection.

25718 VOLUME 5, 2017

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

D. EXISTING GENERATION STRATEGIES, TOOLS AND
TECHNIQUES (RQ4)
For the answering of RQ4, this study is interested in knowing
available generation strategies and tools. By answering this
question, it would also be possible to understand the fea-
tures and drawbacks of each strategy. The generation pro-
cess and the efficient algorithms of the strategies are also
essential to show here. It is clear from discussions men-
tioned above that each generation strategy of constrained
interaction testing needs a mechanism to deal with the con-
straints. In Section IV-C.1, it is illustrated that to solve the
constraints, the researchers usually either using a constraint
solver through constraint programming or they exclude the
constraints. They may also avoid the inclusion of constraints
by following a particular algorithm. Having discussed those
constraint issues, this Section is more about to know the algo-
rithms used to derive the interactions for the final constrained
interaction test suite.

There are many generation approaches for normal combi-
natorial interaction testing, with few of them supporting the
inclusion of constraints. From the examined papers, in gen-
eral, there are three approaches for the generation. The first
approach is to use a computational algorithm to construct and
optimize the test suites; the second approach is to use a meta-
heuristic algorithm to optimize the test suite. With these two
approaches, a constraint handling mechanism (explained in
Section IV-C.1) is used to handle the constraints in the final
test suite. The third approach is to use a constraint solver to
construct the final test suite directly without violating the con-
straints. The presented generation methods in the considered
studies are falling under one of these approaches.

Following the first approach, Yu et al. [91] presented
ACTS tool for generating different instances of combinatorial
interaction test suites including the support for constraint
handling. In fact, ACTS is a composition of many algo-
rithms, mainly the IPO-family algorithms like IPOG [124],
IPOG-D [125], and IPOG-F [126]. To handle the constraints,
the ACTS tool relies on the Choco3 solver. The tool can
handle large configurations with a large set of constraints
and large values of interaction strength, especially in the
command line script. As mentioned previously, the tool has
been used as a base for many applications in the literature.

Garvin et al. [25] followed the second approach and pre-
sented an improved implementation of the original simulated
annealing-based (SA) constrained test suite generator [26]
called CASA. The tool includes the original implementation
of the SA generator algorithm with some improvements.
The improvement is concentrated in the long run time for
highly configurable systems with large constraint support.
The research reformulated the search algorithm in the SA
to efficiently incorporate the constraints. The tool uses SAT
solver to handle the constraints. Through the evaluation pro-
cess in the study, the tools performwell for the 35 benchmarks
used. However, the tool becomes slow, and the performance

3http://www.choco-solver.org/

degrades as the configuration benchmarks become large and
it is not able to generate test cases for some complex config-
urations. In addition, it could be noted that the tool does not
scale well when the interaction strength grows. As mentioned
earlier, the tool has been used in other studies to investigate
the application of constrained interaction test suites for real-
world problems.

Remaining with the second approach, Kalaee and
Rafe [115] presented an algorithm to generate constrained
interaction test suites using the PSO algorithm. The con-
straints are handled by an ROBDD graph that helps to prevent
them appearing during the construction. In the same way,
Alsariera et al. [70] presented an algorithm to generate the test
suites using the Bat-inspired algorithm for SPL. The study
handled the constraints by excluding them from the final test
suite. Both studies need more extensive evaluation, and also
their performance is not comparable with ACTS and CASA.

Following the third approach, Banbara et al. [113] pre-
sented an algorithm and a method to generate constrained
interaction test suites using SAT solver directly. The study
proposed modern CDCL SAT solvers with two encodings,
one is order encoding while the other is a combination of
order encoding. The use of these encodings helps to enhance
the efficiency of generating better constrained interaction test
suites in terms of size. The evaluation experiment showed
this enhancement by generating better test suites sizes as
compared with well-known results in the literature.

E. USED BENCHMARKS FOR EVALUATION (RQ5)
By analyzing the considered papers for this study, it is clear
that different studies are using standard benchmarks or what
one can call ‘‘custom’’ benchmarks. As in the case of any
benchmark, the aim of using it is to evaluate a particular
approach within constrained interaction testing. In addition,
it is also used to compare different approaches. Mainly, there
are two types of benchmarks: benchmarks used to evaluate
constrained interaction test generation efficiency in general
and benchmarks used to evaluate the constrained interaction
test generation efficiency for SPL.

Cohen et al. [26] used a set of experiments that have been
used as a benchmark to evaluate a strategy for generating
constrained interaction testing suites. Later in her study [23],
Cohen has extended the set to includemore real-world config-
urations generated fromwell-known software systems. These
benchmarks are input models of Apache, GCC, Bugzilla,
SPIN simulator and SPIN verifier. Apache HTTP Server4

is an open source software system that works on different
platforms to feed web services. GCC5 is a multiple input
language infrastructure for supporting many programming
languages like C, C++, Java, and Fortran. Bugzilla6 is a defect
tracker fromMozilla that comes in open source to be used by
software developers. SPIN model checker [127] is a software

4httpd.apache.org/docs/2.2/mod/quickreference.html
5http://gcc.gnu.org/onlinedocs/gcc-4.1.1
6https://bugzilla.readthedocs.org/en/latest

VOLUME 5, 2017 25719

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

tool that is used as a case study for evaluation. In addition to
these systems, 30more system configurations were generated
from the above systems to be used as benchmarks. These
models are used as configuration benchmarks for 15 more
published papers (see [22], [24]–[26], [36], [37], [54], [55],
[68], [78], [79], [82], [85], [86], [90]). Other published papers
rely on custom benchmarks, which are normally random
configurations to simulate different scenarios of inputs.

Benchmarks for SPL test generation are commonly feature
model files like XML files and contain different features and
the constraints among them. These benchmarks may come
from industry partners that use SPLs or may come from previ-
ously constructed sets for experimental use. In general, many
papers use SPLOT,7 which is a website for SPL tools and
repositories. In fact, 8 of the considered studies in this paper
have been using the features models available on SPLOT for
benchmarks. These papers are: [44], [45], [58], [59], [62],
[75], [99], [101].

F. APPLICATIONS OF CONSTRAINED INTERACTION
TESTING (RQ6)
As can be seen from Figure 11, there are mainly five areas
in which the constrained interaction testing has frequently
been used. In addition, there are 11 different areas where the
constrained interaction testing has shown significant results
concerning the application. Hence, in total, there are 16 areas
of the application so far for constrained interaction testing.
The following subsections discuss these application areas
with more details.

1) SPL
SPL engineering is getting more attention recently due to
considerable industrial interest. The approach of SPL is to
establish a platform for common products in a product line
by identifying variability and commonality of features during
the development of individual products [128]. The testing
foundation in the SPL is to produce test assets that can be
reused by the products during the process of product line
development. The test case includes entities that form com-
mon parts related to a variety of possible products that must
be realized by the domain engineer. The testing process of
the SPL is getting more and more attention in the last decade.
Many approaches have been published for testing SPL. da
Mota Silveira Neto et al. [10] summarized different test-
ing approaches for SPL in an extensive systematic literature
study.

Due to huge features of modern products, it is very hard
to generate a complete and feasible test suite and configura-
tions. Here, combinatorial interaction testing can be a useful
approach to construct an optimal and practical configuration
for different potential products from a large set of features.
However, in reality, there are different constraints among
these features that tend to produce infeasible product config-
urations. Constrained interaction testing can be an excellent

7http://www.splot-research.org/

solution for this problem by generating an optimal configura-
tion set without violating the constraints among the features.

To apply the constrained interaction testing for SPL, a set
of activities need to be followed, as in the 29 papers identified
earlier in Figure 11. These activities are the feature model
adaptation including the constraints identification, interaction
testing adaptation, and configuration set generation.

Feature model adaptation and constraint identification
probably is the starting point in any approach. This step starts
by taking a standard input file that can also be represented in
a feature diagram. For instance, Perrouin et al. [57] formal-
ized different types of potential constraints from the feature
models. The study also proposed a toolset to generate the
final test suite for SPL. Calvagna et al. [52] presented a more
extensive and mature method to translate the feature models
into combinatorial interaction models in a framework named
CITLAB. The framework gives many advantages for a tool
to generate constrained interaction testing such as editing
facilities, seeding, and generation algorithms.

Interaction testing adaptation is an important stage to use
the constrained interaction testing for SPL. In fact, the major-
ity of the published papers are converting the feature models
to the CAmathematical object using the combinatorial model
obtained by conversion. As previously mentioned, the CA
consist of a set of t − wise sub-array, where t indicates
the strength of feature combination. The t is the number of
features that we want to test in combination.

Because the number of possible features to be combined
grows exponentially with the number of features designed for
a particular SPL, there is a need for an efficient and practical
strategy for t − wise generation to get the most optimum set
of combinations within an affordable testing cost. The adap-
tation takes care of four main entities for the CA which are
input parameters, number of features, the constraints among
the features and the combination strength. This stage is tied
to the configuration set generation stage because the CA is an
outcome of the stage. Here, different studies have proposed
various algorithms for the generation. Majority of the studies
used well-known algorithms for constrained interaction test-
ing like ACTS, CASA, IPO-family algorithms and AETG.
For example, Matnei Filho and Vergilio [101] developed a
strategy that relies on the AETG for multi-objective test data
generation for feature models’ mutation testing. Following
the same approach, Lamancha and Usaola [104] proposed a
strategy to generate 2−wise test products to cover all feature
in the feature model using AETG. Johansen et al. [66] pro-
posed a strategy for generating t − wise test suites for SPLs
from large feature models using CASA algorithms.

On the other hand, other studies proposed specialized tools
for generating constrained interaction test suites for SPL.
For example, PLEDGE is an editor and test generation tool
developed by Henard et al. [59] for SPL that rely on special
algorithms based on SAT solver. PACOGEN [61], [81] is
another tool for generating 2−wise test suites for SPL using
constraint programming. Researchers are also using heuristic
algorithms to generate optimum test suites. For example,

25720 VOLUME 5, 2017

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

Alsariera et al. [70] developed a strategy called SPLBA that
relies on the bat-inspired algorithm to generate constrained
interaction test suites. The strategy depends on constraint
exclusion to resolve the constraints among the feature mod-
els. Jia et al. [31] developed a Hyperheuristic strategy to gen-
erate test suites for SPL. The strategy depends on SAT solver
to resolve the constraints.

2) FAULT DETECTION AND CHARACTERIZATION
Here, the straight-forward aim is to construct test cases for
possible fault detection. The characterization process is used
within fault detection for drawing a better understanding of
the faults in the system and to enable fault avoidance in the
future development. Another purpose is to design test cases
for regression testing purposes. It could also be used for test
case prioritization. Fault detection has been examined in the
literature with normal interaction testing without constraints.
For example, Yilmaz et al. [129] uses normal t − wise
approach with covering array to generate test cases to detect
faults. The approach is integrated in the Skoll system [130] to
allow parallel execution of test cases across a grid of comput-
ers. The results of the executed test cases were returned to a
central server. The central server then classified the faults to
cover and uncover faults. This classification of faults during
the detection process helped the developers for providing
descriptions of failing configurations to find the causes of the
faults. In fact, this method can be used even with other test
generation methods; however, Yilmaz found that interaction
testing can produce better classification models.

3) TEST SELECTION
With the recent growing complexity of applications, it has
appeared that constrained interaction testing is a more practi-
cal testing approach. The research in this direction considers
the complex and large number of inputs and generating test
cases from these inputs. Taking which values of these inputs
and how to take them is a primary question here. Constrained
interaction testing can sample these inputs systematically
and take care of the constraints available between input val-
ues during the generation of the test cases. As previously
mentioned, the test selection applications are more assessed
within the normal combinatorial interaction testing. More
recently, the focus of research has also shifted to consider
the constraints among the input values due to the large and
complex input variables and complex structures (e.g., JSON)
in the real-world systems. For large scale modern software
systems like commercial applications, selecting input for a
test case is a difficult task due to the large input domain.
In this case, exhaustive testing usually is impractical and not
possible. One possible solution is to select one test design
method (like boundary-value analysis or cause and effect) to
select the inputs for test cases. However, these test design
methods are not applicable for every situation. Constrained
interaction testing could form another test design method that
is suitable for sampling test cases based on their interactions
among them while also considering the constraints among
them.

Zhong et al. [108] generated constrained interaction
test suites for large and complex software systems using
comKorat, which is a combination of Korat and ACTS algo-
rithms. Four systems were used to test the effectiveness
of the generated test suites. These four systems are large-
scale software systems developed at eBay and Yahoo!. The
approach detected almost 59 bugs that were not detected by
other approaches.

Nakornburi and Suwannasart [107] use a different
approach to select entities necessary for test generation like
the input parameters and values and then identify the con-
straints among them. The approach depends on the statisti-
cal profile of the software’s user for selecting the entities.
By selecting those entities, the study proposes a flow to
generate an optimal 2 − wise test suite for the software
under test by eliminating the unrealistic combinations from
the final test suite. However, the study did not mention the
algorithm for the generation, and the presented approach is
just for resolving constraints by excluding them. The study
shows preliminary evaluation results for small size software
under testing, and there is still need to show an extensive
experiment.

For the case of large and complex software under test,
Yilmaz [97] introduced a new combinatorial interaction
object called test case-aware covering array, which is a refine-
ment to the original covering array mathematical object used
traditionally with constrained interaction testing but with dif-
ferent coverage criteria of the interactions. The study selects
the input configurations of the software under test and con-
siders a set of test cases for these algorithms to satisfy all
test case-specific constraints. The study presented three algo-
rithms, two algorithms for test generation and minimization
and the other algorithm is dedicated to minimize the number
of test runs. The evaluation experiments used two highly
configurable software systems (Apache and MySQL). The
results of the evaluation showed that the test case-aware cov-
ering array is practically better than the traditional covering
array due to the consideration of handling real-world and test
case-specific constraints.

Finally, Kruse et al. [96] presented in a short paper an
approach to handle constraints in the numerical constrained
interaction test suites using the classification tree method.
The study showed a prototype for the implementation without
giving a complete description of the final solution.

4) SECURITY
As previously mentioned, two studies were focusing on the
application of constrained interactions for security testing.
These studies are by Bozic et al. [93] and Bouquet et al. [102].

Bozic et al. [93] assessed the concept of constrained inter-
action for web security testing using the IPO-family algo-
rithm. Specifically, the author evaluated IPOG and IPOG-F
algorithms which are available within the ACTS tool. The
algorithms generate test cases for exploring and detecting
injection attacks which are remote exploits that can lead
to security breaches. Specifically, the study focused on the

VOLUME 5, 2017 25721

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

cross-site scripting (XSS) vulnerabilities detection. Here, the
inputs have been modeled using XSS attack vectors’ mod-
eling method to identify the number of inputs. The model
is also used to identify the relations and constraints among
the input parameter values. Four test sets are generated using
ACTS tool, each two of these test sets were generated for
IPOG and IPOG-F respectively. Then, these generated test
suites are applied on a set of web applications that are used as
cases studies. These applications are included in Open Web
Application Security Project (OWASP)8 and in the Exploit
Database Project.9 In general, the results of the study indicate
that constrained interaction test suite can significantly reveal
security leaks in web applications. The consideration of con-
straints during the modeling process of attack grammars will
increase the number of test cases that can detect more vul-
nerabilities by examining more security breaches. The study
also investigated that the quality of the test suites generated
by IPOG-F is slightly better as compared to IPOG.

Bouquet et al. [102] discussed constrained interaction
testing with model-based testing used for security testing.
Although the paper is a general study without specific exper-
iments, many important issues are discussed regarding the
security test generation using model-based approach. In fact,
the paper illustrated and discussedmany cases studies in secu-
rity where constrained interaction testing could be applied.
Such case studies can very well form a stable base for exper-
imental investigations.

5) GUI TESTING
Constrained interaction testing principles have been used in
its simple form for GUI testing. Recently, the functional test-
ing of GUIs has shifted to an advanced process by using graph
theory and modeling concepts. The basic idea is to convert all
events and positions on the GUI into nodes and edges and
consider all possible sequences of events. This model has
been used later as an input to the generation algorithms to
generate test suites that simulate the event sequences. In fact,
this method is initiated and solved by normal combinatorial
interaction testing. However, with the normal combinatorial
interaction testing, it has appeared that many of the gen-
erated test cases were not valid since the sequences were
not visible for execution on the actual application’s GUI.
Huang et al. [32] recognized and illustrated this situation.
Huang et al. investigated that there are constraints for the
events and some events may not be available for execution.
The study proposes a method to repair the generated test
suites by avoiding those invalid combination of events and
generated new feasible test cases, which in other words,
solve the constraints. To evolve new test cases from the
repaired test suites, a genetic algorithm is used to utilized
event flow graph (EFG) for generating new test cases. The
approach is tested using different synthetic programs that
contain different GUIs with different constraints among the

8https://www.owasp.org/index.php/OWASP
9https://www.exploit-db.com/

events. Although the use of EFG has been investigated in
other research, it is not complete, and there is a need for
manual verification in different cases.

Go et al. [106] introduced a different approach to apply
2 − wise constrained interaction testing to GUI testing by
analyzing system specifications. The analysis process of the
specification will identify the class partitions of the input data
to be tested. Here, they categorized the constraints into data,
semantic rules, and GUI constraints. The data constraints
are identified from the system inputs; semantic rules con-
straints are identified from system specification documents;
while the GUI constraints can be collected from initial GUI
requirements. The constraints have been solved by using con-
ventional equivalent class partitioning without utilizing any
constraint solvers. Here, the study did notmention the 2−wise
test suite generation algorithm since the application used is
not complex, and the test suite can be generated even by
conventional methods. The study evaluated the approach on a
real-world problem. The approach showed significant results
concerning fault detection as compared to the conventional
random testing approach.

Finally, Bauersfeld et al. [114], tried to complement and
build the approach started by Huang et al. [32] for identifying
and generating test sequences for applications with GUI. The
study treated the test sequence generation of GUIs as an
optimization problem and employed ant colony optimiza-
tion (ACO) algorithm to solve it optimally. The study tries
to avoid the limitations of EFG use by using a new metric
called MCT (Maximum Call Tree) and avoids the inclusion
of those invalid interactions from the beginning thus prevent-
ing repairing process of the test suites later. The approach
is tested using an implemented Java SWT environment for
application testing. A graphical editor is used to test the
effectiveness of the approach. The study showed that the
approach can generate better sequences as compared with
the random approach. The study claimed that the approach
is better than the use of EFG; however, there is no evidence
for this claim.

6) OTHER APPLICATIONS
In addition to the applications mentioned above of con-
strained interaction testing, other applications have been
referred to in one published paper. As in the case of above
applications, the test cases were generated either using well-
known tools or by developing specific algorithms for the
generation. In fact, the application domains are broad in
range.

For instance, Sherwood [92] assessed the application
of constrained interaction testing for embedded functions
and anticipated benefits of programming languages. Here,
PHP language is used for its flexibility and prevalence.
An individual model is employed in the study to iden-
tify and validate the constraints and generate test cases.
In the same way, Salecker and Glesner [112] applied a
similar approach for grammar-based test selection and
generation.

25722 VOLUME 5, 2017

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

Li et al. [94] applied the constrained interaction testing
to big data applications. Here, two real-world big data ETL
applications are used. The ETL (Extract, Transform, and
Load) applications are common type applications in big data
employed by the developers to report and analyze data by
writing scripts in Hive, SQL, or Pig. To generate the test
cases for the SUT from the input domain models, the study
used ACTS tool. The study proved the effectiveness of the
constrained interaction testing by using a minimized sizes of
the test suites but detecting all the faults found in the original
data source. Fischer et al. [73] performed an empirical case
study to explore the application of constrained interaction
testing. Seven Java and C programs are used as subjects of the
case study in which they composed over nine million lines of
codes in total. SAT solver is used to generate and resolve the
constraints in the test suites.

Palacios et al. [98] addressed the use of constrained inter-
action testing for testing Service Level Agreements (SLAs).
In this study, the classical combinatorial interaction testing
has been combined with the Classification Tree Method to
generate test suites and resolve input constraints. For this
generation process, the study presented an automated tool
called SLACT (SLA Combinatorial Testing) that has been
applied successfully to an eHealth case study.

Arrieta et al. [100] used constrained interaction testing to
generate configurations for cyber-physical systems (CPSs).
CPSs are systems to integrate physical processes with digital
technologies. In the study, simulation-based test cases were
generated to test different configurations of CPSs. To resolve
the constraints, SAT solver is used with other approaches
for the generation to form a tool called ASTERYSCO. The
tools are used successfully with a cases study for configurable
Unmanned Aerial Vehicle.

Calvagna et al. [30] assessed the application of constrained
interaction testing in the context of random and combina-
torial effectiveness. The study uses this approach to know
the differences between random and combinatorial concern-
ing effectiveness for conformance testing. Here, the con-
formance testing used to verify components of Java Virtual
Machine (JVM). To generate test cases model checking is
applied to the considered specification.

Zhong et al. [108] applied constrained interaction testing
on four large-scale software applications. The software sys-
tems were developed by eBay and Yahoo companies. To gen-
erate the test cases, the study presented a newly developed
tool called comKorat which is an integration between Korat
and ACTS generation tools. By applying the test suites gen-
erated by comKorat, more faults were detected in the SUT.
Specifically, 59 new faults were detected while other test
suites did not detect them.

In another study, Grieskamp et al. [33] investigated
and proved the application of constrained interaction test-
ing for path coverage of software systems. To generate
the test suites, the study used SMT solver. The solver is
also sued to resolve the constants among the paths in the
software.

Finally, Kalaee and Rafe [115] used the graph theory and
Particle Swarm Optimization (PSO) to generate constrained
interaction test suites. The developed generation algorithm is
applied to a case study for a boiler system.

G. CURRENT LIMITATIONS AND CHALLENGES (RQ7)
Fundamentally, the limitations and challenges in the appli-
cation of constrained interaction test generation in practice
related to four main factors: the parameters (P), the values (v),
the interaction strength (t) as well as the constraints (C).
In line with the advancement of new technologies such

as the Internet of Things, big data analytic as well as cloud
computing, the intertwined dependencies and constraints
between components and their sub-systems can be massive.
To put this issue into perspective, Microsoft Windows source
code was merely around 4.5 million LOC in 1993. In 2003,
after ten years, Microsoft Windows source code increased
to over 50 million LOC [131], a tremendous increase. Here,
the growth of parameters (P) and the values (v) and the con-
straints (C) can be problematic (although such effect many be
controllable as far as (t) is concerned as empirical evidence
suggest that most faults are detectable at t = 6) [132]–[134]).
Two potential stumbling blocks can be attributed to the

above issues. Firstly, as the parameters (P), values (v) and
constraints (C) increase, the coverage of tuples for consid-
eration also increases tremendously. Putting constraints (C)
aside for simplicity, consider a scenario when P = 1000,
v = 5 and t = 2. Here, the search space for exhaustive testing
is 51000 and the search tuple is equal to 1.(

p
t

)
vt =

p!
t!(p− t)

vt =
1000!

2!(1000− 2)
52 (1)

Similarly, when v is large (even with small P and t), the
search space can also be large. Consider another scenario
when v = 1000, P = 2, and t = 2. In this case, the search
space for exhaustive testing is 10005 and the search tuple is
equal to 2(

p
t

)
vt =

p!
t!(p− t)

vt =
2!

2!(2− 2)
10002 (2)

Here, if both P and v are large so do the required
search space and the required tuples (even if t is bounded
at t = 6). To this end, no known strategy can handle both large
parameters (P) and large values (v) with rich constraints (C).
Currently, there is a limit on the size of the search space as
well as the number of tuples to be processed owing to limited
hardware and computational resources, rendering the need for
much research as far as scalability is concerned. Concerning
SPL as a special case of constrained interaction testing, while
the parameter (P) can be large with rich constraints (C), the
values (v) are always limited to two Boolean (true or false).

The second stumbling block relates to the process of find-
ing and specifying constraints for large parameters and val-
ues. The use of feature diagram and constraints solver appears
widespread for SPL; however, such an approach has not been
sufficiently adopted for the general constrained interaction

VOLUME 5, 2017 25723

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

TABLE 6. List of studied papers.

25724 VOLUME 5, 2017

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

TABLE 6. (Continued.) List of studied papers.

testing. If general constrained interaction testing is to be
adopted for large parameters (P) and large values (v) with
rich constraints (C), existing strategies need to integrate and
embed constraints solver (or constraints programming) as
part of their implementations.

H. POSSIBLE RESEARCH DIRECTIONS FOR FUTURE (RQ8)
Constrained interaction testing can be formulated as an opti-
mization problem, resulting in the adoption of meta-heuristic
based strategies in the literature. Meta-heuristic based strate-
gies offer superior solutions (i.e., concerning test suite size)
compared to existing approaches (i.e., owing to the systematic
exploration and exploitation of the search space). Although
useful, much-existing meta-heuristic based strategies have

explored single meta-heuristic algorithm. As such, the explo-
ration and exploitation of existing strategies have been lim-
ited based on the (local and global) search operators derived
from a particular meta-heuristic algorithm. In this case,
choosing a proper combination of search operators (termed
as hybridization) can be the key to achieving good perfor-
mance (as hybridization can capitalize on the strengths and
address the deficiencies of each algorithm collectively and
synergistically).

Hyper-heuristics have recently received considerable
attention to addressing some of the hybridization as men-
tioned earlier issues [135], [136]. Specifically, hyper-
heuristic represents an approach of using (meta)-heuristics to
choose (meta)-heuristics to solve the optimization problem

VOLUME 5, 2017 25725

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

TABLE 7. List of active journals with abbreviations.

in hand. Unlike traditional meta-heuristics, which directly
operates on the solution space, hyper-heuristics offer flexible
integration and adaptive manipulation of the complete (low-
level) meta-heuristics or merely partial adoption of a par-
ticular meta-heuristic search operator through non-domain
feedback. In this manner, the hyper-heuristic can evolve its
heuristic selection and acceptance mechanism in the search
for a high-quality solution.

Apart from adopting hybridization with hyper-heuristic,
the integration with machine learning appears to be a viable
approach to improve the state-of-the-art of existing meta-
heuristic algorithms for constrained interaction testing [137].
Machine learning relates to the study of fundamental laws
that govern the computer learning process (i.e., concerning
how to build systems that can automatically learn from expe-
rience). Machine learning techniques can be classified into
three types: supervised, unsupervised, and reinforcement.
Supervised learning involves learning the direct functional
input-output mapping based on some set of training data and
being able to perform a prediction on new data (e.g., deep
learning approaches). Unlike supervised learning, unsuper-
vised learning does not require precise training data. Specif-
ically, unsupervised learning involves learning by drawing
inferences (e.g., clustering) on the input datasets. Reinforce-
ment learning relates to learning that allowsmapping between
states and actions to maximize reward signal by experimental
discovery. This type of learning differs from supervised learn-
ing by the fact that it relies upon punish and reward mecha-
nism and never corrects pairs of input-output data (even when
dealing with sub-optimal responses).

To maximize the effectiveness of the fault finding effi-
ciency, the constrained interaction testing can also be made
as a multi-objective problem. Apart from avoiding forbidden
tuples and maximizing the tuples coverage to obtain the
most minimum test suite size, one possibility is to include
minimizing the similarity among the test cases within the test
suite. Here, the effectiveness of similarity distance metrics
such as Euclidean distance, Hamming distance, Manhattan
distance, Cosine similarity, Jaccard index and its variants can
be investigated further. With a more diverse set of test cases,
the fault detection rate may increase but potentially at the

expense of a slight increase of test suite size. Additionally,
from a different perspective, the same approach of using
similarity metrics can also be used to prioritize existing test
suite.

Finally, to leverage on the need for supporting large param-
eters (P), values (v), with rich constraints (C), there is a
need to explore the new hybrid strategy based on cloud-based
service-oriented architecture. In this manner, the user can
exploit the computing power of the cloud to generate the
constrained test suite. Additionally, the user can also explore
the generation of constrained test suite as a service without
having to purchase the actual tool.

V. THREATS TO VALIDITY
Like any other literature study, this study has threats to its
validity. Many threats were eliminated by following well-
known recommendations and advice on conducting literature
studies.

First, as can be seen in the paper, several search strings
were tried to assure maximum coverage of related papers.
Although most of the related works have been selected here,
100% coverage of the papers cannot be guaranteed. There
could be some uncovered papers by the search string; how-
ever, to overcome this threat a pilot search for several papers
and also snowball sampling search was conducted.

Second, systematic literature studies could suffer from
single-author bias during data extraction. To eliminate this
threat, a double-checking and reviewing process by all
authors individually were conducted. Besides, automatic
mining and extraction tools were also tried in the spreadsheet
to verify the results of the data extraction process.

Third, several papers during the study were excluded.
The selection criteria are discussed explicitly in SectionIII-
C. Some studies may also get excluded due to the scope
of the paper itself. This study is dedicated to combinato-
rial interaction testing with constraints. Hence, those papers
that cover combinatorial interaction testingwithout constraint
support are excluded. The rationale behind this selection is
that several studies cover these papers (see [2], [7], [138]).
In addition, the constraint support in combinatorial testing

25726 VOLUME 5, 2017

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

TABLE 8. List of active conferences with abbreviations.

was covered because it is an important aspect for the practical
application of combinatorial interaction testing. The papers
not published electronically were excluded; however, any
contribution in the area of constrained interaction testing that
is not published electronically is not expected.

VI. CONCLUSION
In this paper, an extensive literature study of 103 research
papers published on constrained interaction testing between
2005 and 2016 is presented. In the study, the selected
papers were analyzed from different perspectives based on
a set of research questions. The results indicate that there
is an increasing trend to address constrained interactions
for the testing purpose. There is a mix of contributions in
conferences, workshops, and journals with the majority of
papers being published in conferences. The active authors and
research groups in the field are further highlighted. Based
on the analysis, the contributions in constrained interaction
testing are grouped into four categories of constrained test
generation studies, application studies, generation and appli-
cation studies and model validation studies. The study found
that to solve constraints, the researchers usually either use
a constraint solver or exclude the constraints. The study
further showed that the applications of constrained interac-
tion testing are within software product lines, fault detection
and characterization, test selection, security and GUI testing,
among others. The study ends with a discussion of limita-
tions, challenges, and areas for future research for constrained
interaction testing.

APPENDIX A
See Table 6.

APPENDIX B
See Table 7.

APPENDIX C
See Table 8.

REFERENCES
[1] W. Afzal, R. Torkar, and R. Feldt, ‘‘A systematic review of search-based

testing for non-functional system properties,’’ Inf. Softw. Technol., vol. 51,
no. 6, pp. 957–976, 2009.

[2] C. Nie and H. Leung, ‘‘A survey of combinatorial testing,’’ ACMComput.
Surv., vol. 43, no. 2, pp. 1–29, 2011.

[3] R. E. Lopez-Herrejon, S. Fischer, R. Ramler, and A. Egyed, ‘‘A first
systematic mapping study on combinatorial interaction testing for soft-
ware product lines,’’ in Proc. IEEE 8th Int. Conf. Softw. Test., Verification
Validation Workshops (ICSTW), Apr. 2015, pp. 1–10.

[4] B. S. Ahmed, L. M. Gambardella, W. Afzal, and K. Z. Zamli, ‘‘Han-
dling constraints in combinatorial interaction testing in the presence of
multi objective particle swarm and multithreading,’’ Inf. Softw. Technol.,
vol. 86, pp. 20–36, Jun. 2017.

[5] J. Petke, M. B. Cohen, M. Harman, and S. Yoo, ‘‘Practical combinatorial
interaction testing: Empirical findings on efficiency and early fault detec-
tion,’’ IEEE Trans. Softw. Eng., vol. 41, no. 9, pp. 901–924, Sep. 2015.

[6] J. Petke, ‘‘Constraints: The future of combinatorial interaction testing,’’
in Proc. IEEE/ACM 8th Int. Workshop Search-Based Softw. Test. (SBST),
May 2015, pp. 17–18.

[7] V. Kuliamin and A. Petukhov, ‘‘A survey of methods for constructing
covering arrays,’’ Programm. Comput. Softw., vol. 37, no. 3, pp. 121–146,
2011.

[8] B. S. Ahmed and K. Z. Zamli, ‘‘A review of covering arrays and
their application to software testing,’’ J. Comput. Sci., vol. 7, no. 9,
pp. 1375–1385, 2011.

[9] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege,
‘‘A systematic review of the application and empirical investigation of
search-based test case generation,’’ IEEE Trans. Softw. Eng., vol. 36,
no. 6, pp. 742–762, Nov. 2010.

[10] P. A. da Mota Silveira Neto, I. do Carmo Machado, J. D. McGregor,
E. S. de Almeida, and S. R. de Lemos Meira, ‘‘A systematic mapping
study of software product lines testing,’’ Inf. Softw. Technol., vol. 53, no. 5,
pp. 407–423, 2011.

[11] S. Zein, N. Salleh, and J. Grundy, ‘‘A systematic mapping study of mobile
application testing techniques,’’ J. Syst. Softw., vol. 117, pp. 334–356,
Jul. 2016.

[12] B. Kitchenham and S. Charters, ‘‘Guidelines for performing systematic
literature reviews in software engineering,’’ Keele Univ., Keele, U.K.,
Tech. Rep. EBSE-2007-01, 2007.

[13] T. Dyba, T. Dingsoyr, and G. K. Hanssen, ‘‘Applying systematic reviews
to diverse study types: An experience report,’’ in Proc. 1st Int. Symp.
Empirical Softw. Eng. Meas. (ESEM), 2007, pp. 225–234.

[14] K. Petersen, S. Vakkalanka, and L. Kuzniarz, ‘‘Guidelines for conducting
systematic mapping studies in software engineering: An update,’’ Inf.
Softw. Technol., vol. 64, pp. 1–18, 2015.

[15] N. S. R. Alves, T. S. Mendes, M. G. de Mendonça, R. O. Spínola,
F. Shull, and C. Seaman, ‘‘Identification and management of techni-
cal debt: A systematic mapping study,’’ Inf. Softw. Technol., vol. 70,
pp. 100–121, Feb. 2016.

[16] C. V. C. de Magalhães, F. Q. B. da Silva, R. E. S. Santos, and
M. Suassuna, ‘‘Investigations about replication of empirical studies in
software engineering: A systematic mapping study,’’ Inf. Softw. Technol.,
vol. 64, pp. 76–101, Aug. 2015.

[17] M. B. Cohen, ‘‘Designing test suites for software interaction testing,’’
Ph.D. dissertation, Dept. Comput. Sci., Univ. Auckland, Auckland,
New Zealand, 2004.

[18] B. Hnich, S. Prestwich, and E. Selensky, Constraint-Based Approaches
to the Covering Test Problem. Berlin, Germany: Springer, 2005,
pp. 172–186.

[19] R. C. Bryce and C. J. Colbourn, ‘‘Prioritized interaction testing for pair-
wise coverage with seeding and constraints,’’ Inf. Softw. Technol., vol. 48,
no. 10, pp. 960–970, 2006.

VOLUME 5, 2017 25727

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

[20] B. Hnich, S. D. Prestwich, E. Selensky, and B. M. Smith, ‘‘Constraint
models for the covering test problem,’’ Constraints, vol. 11, no. 2,
pp. 199–219, 2006.

[21] M. B. Cohen, M. B. Dwyer, and J. Shi, ‘‘Coverage and adequacy in
software product line testing,’’ in Proc. ACM, 2006, pp. 53–63.

[22] M. B. Cohen, M. B. Dwyer, and J. Shi, ‘‘Exploiting constraint solving
history to construct interaction test suites,’’ in Proc. Test., Acad. Ind.
Conf. Pract. Res. Techn.-MUTATION (TAICPART-MUTATION), 2007,
pp. 121–132.

[23] M. B. Cohen, M. B. Dwyer, and J. Shi, ‘‘Constructing interaction
test suites for highly-configurable systems in the presence of con-
straints: A greedy approach,’’ IEEE Trans. Softw. Eng., vol. 34, no. 5,
pp. 633–650, Sep. 2008.

[24] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, ‘‘An improved meta-
heuristic search for constrained interaction testing,’’ in Proc. 1st Int.
Symp. Search Based Softw. Eng., 2009, pp. 13–22.

[25] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, ‘‘Evaluating improvements
to a meta-heuristic search for constrained interaction testing,’’ Empirical
Softw. Eng., vol. 16, no. 1, pp. 61–102, 2011.

[26] M. B. Cohen, M. B. Dwyer, and J. Shi, ‘‘Interaction testing of highly-
configurable systems in the presence of constraints,’’ in Proc. Int. Symp.
Softw. Test. Anal. (ISSTA), 2007, pp. 129–139.

[27] I. Cabral, M. B. Cohen, and G. Rothermel, ‘‘Improving the testing and
testability of software product lines,’’ in Proc. 14th Int. Conf. Softw.
Product Lines, Going Beyond (SPLC), 2010, pp. 241–255.

[28] S. Fouché, M. B. Cohen, and A. Porter, ‘‘Incremental covering array
failure characterization in large configuration spaces,’’ in Proc. 18th Int.
Symp. Softw. Test. Anal. (ISSTA), 2009, pp. 177–188.

[29] J. Petke, S. Yoo, M. B. Cohen, and M. Harman, ‘‘Efficiency and early
fault detection with lower and higher strength combinatorial interaction
testing,’’ in Proc. 9th Joint Meet. Found. Softw. Eng. (ESEC/FSE), 2013,
pp. 26–36.

[30] A. Calvagna, A. Fornaia, and E. Tramontana, ‘‘Random versus combi-
natorial effectiveness in software conformance testing: A case study,’’ in
Proc. 30th Annu. ACMSymp. Appl. Comput. (SAC), 2015, pp. 1797–1802.

[31] Y. Jia, M. B. Cohen, M. Harman, and J. Petke, ‘‘Learning combinatorial
interaction test generation strategies using hyperheuristic search,’’ in
Proc. Learn. Combinat. Interact. Test Generat. Strategies Using Hyper-
heuristic Search, 2015, pp. 540–550.

[32] S. Huang, M. B. Cohen, and A. M. Memon, ‘‘Repairing gui test suites
using a genetic algorithm,’’ in Proc. 3rd IEEE Int. Conf. Softw. Test.,
Verification Validation, Apr. 2010, pp. 245–254.

[33] W. Grieskamp, X. Qu, X. Wei, N. Kicillof, and M. B. Cohen, Interac-
tion Coverage Meets Path Coverage by SMT Constraint Solving. Berlin,
Germany: Springer, 2009, pp. 97–112.

[34] J. Lin, C. Luo, S. Cai, K. Su, D. Hao, and L. Zhang, ‘‘TCA: An effi-
cient two-mode meta-heuristic algorithm for combinatorial test genera-
tion (T),’’ in Proc. 30th IEEE/ACM Int. Conf. Autom. Softw. Eng. (ASE),
Nov. 2015, pp. 494–505.

[35] Y. Zhao, Z. Zhang, J. Yan, and J. Zhang, ‘‘Cascade: A test generation
tool for combinatorial testing,’’ in Proc. IEEE 6th Int. Conf. Softw. Test.,
Verification Validation Workshops, Mar. 2013, pp. 267–270.

[36] Z. Zhang, J. Yan, Y. Zhao, and J. Zhang, ‘‘Generating combinatorial
test suite using combinatorial optimization,’’ J. Syst. Softw., vol. 98,
pp. 191–207, Dec. 2014.

[37] H. Liu, F. Ma, and J. Zhang, Generating Covering Arrays With
Pseudo-Boolean Constraint Solving and Balancing Heuristic. Cham,
Switzerland: Springer, 2016, pp. 262–270.

[38] F. Ma and J. Zhang, Finding Orthogonal Arrays Using Satisfiabil-
ity Checkers and Symmetry Breaking Constraints. Berlin, Germany:
Springer, 2008, pp. 247–259.

[39] J. Zhang, F. Ma, and Z. Zhang, Faulty Interaction Identification Via
Constraint Solving and Optimization. Berlin, Germany: Springer, 2012,
pp. 186–199.

[40] F. Ma, ‘‘Constraint solving techniques for software testing and analysis,’’
in Proc. 32nd ACM/IEEE Int. Conf. Softw. Eng. (ICSE), vol. 2. May 2010,
pp. 417–420.

[41] M. Al-Hajjaji, T. Thüm, M. Lochau, J. Meinicke, and G. Saake, ‘‘Effec-
tive product-line testing using similarity-based product prioritization,’’
in Software & Systems Modeling. Berlin, Germany: Springer, 2016,
pp. 1–23.

[42] M. Lochau, S. Oster, U. Goltz, and A. Schürr, ‘‘Model-based pairwise
testing for feature interaction coverage in software product line engineer-
ing,’’ Softw. Quality J., vol. 20, no. 3, pp. 567–604, 2012.

[43] M. Al-Hajjaji, T. Thüm, J. Meinicke, M. Lochau, and G. Saake,
‘‘Similarity-based prioritization in software product-line testing,’’ in
Proc. 18th Int. Softw. Product Line Conf. (SPLC), vol. 1. 2014,
pp. 197–206.

[44] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry, and Y. le Traon, ‘‘Pair-
wise testing for software product lines: Comparison of two approaches,’’
Softw. Quality J., vol. 20, no. 3, pp. 605–643, 2012.

[45] S. Oster, F. Markert, and P. Ritter, Automated Incremental Pairwise
Testing of Software Product Lines. Berlin, Germany: Springer, 2010,
pp. 196–210.

[46] H. Cichos, S. Oster, M. Lochau, and A. Schürr, Model-Based Coverage-
Driven Test Suite Generation for Software Product Lines. Berlin,
Germany: Springer, 2011, pp. 425–439.

[47] S. Oster, M. Zink, M. Lochau, and M. Grechanik, Pairwise Feature-
Interaction Testing for SPLs: Potentials and Limitations. Munich,
Germany: ACM, 2011.

[48] A. Gargantini and P. Vavassori, ‘‘CITLAB: A laboratory for combi-
natorial interaction testing,’’ in Proc. IEEE 5th Int. Conf. Softw. Test.,
Verification Validation, Apr. 2012, pp. 559–568.

[49] A. Calvagna, A. Gargantini, and P. Vavassori, ‘‘Combinatorial interaction
testing with citlab,’’ in Proc. IEEE 6th Int. Conf. Softw. Test., Verification
Validation, Apr. 2013, pp. 376–382.

[50] A. Gargantini and P. Vavassori, Efficient Combinatorial Test Generation
Based on Multivalued Decision Diagrams. Cham, Switzerland: Springer,
2014, pp. 220–235.

[51] A. Calvagna and A. Gargantini, Combining Satisfiability Solving and
Heuristics to Constrained Combinatorial Interaction Testing. Berlin,
Germany: Springer, 2009, pp. 27–42.

[52] A. Calvagna, A. Gargantini, and P. Vavassori, ‘‘Combinatorial testing for
feature models using CitLab,’’ in Proc. IEEE 6th Int. Conf. Softw. Test.,
Verification Validation Workshops, Mar. 2013, pp. 338–347.

[53] A. Gargantini and G. Fraser, ‘‘Generating minimal fault detecting test
suites for general Boolean specifications,’’ Inf. Softw. Technol., vol. 53,
no. 11, pp. 1263–1273, 2011.

[54] A. Calvagna and A. Gargantini, ‘‘A formal logic approach to constrained
combinatorial testing,’’ J. Automated Reason., vol. 45, no. 4, pp. 331–358,
2010.

[55] A. Calvagna andA.Gargantini, ‘‘A logic-based approach to combinatorial
testing with constraints,’’ inProc. 2nd Int. Conf. Tests Proofs (TAP), 2008,
pp. 66–83.

[56] C. Henard, M. Papadakis, and Y. L. Traon, ‘‘Flattening or not of the com-
binatorial interaction testing models?’’ in Proc. IEEE 8th Int. Conf. Softw.
Test., Verification Validation Workshops (ICSTW), Apr. 2015, pp. 1–4.

[57] G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. le Traon, ‘‘Automated
and scalable T-wise test case generation strategies for software product
lines,’’ in Proc. 3rd Int. Conf. Softw. Test., Verification Validation (ICST),
Paris, France, Apr. 2010, pp. 459–468.

[58] C. Henard, M. Papadakis, and Y. Le Traon, Mutation-Based Generation
of Software Product Line Test Configurations. Cham: Springer, 2014,
pp. 92–106.

[59] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. L. Traon,
‘‘PLEDGE: A product line editor and test generation tool,’’ in Proc.
17th Int. Softw. Product Line Conf. Co-Located Workshops (SPLC), 2013,
pp. 126–129.

[60] S. Sen, S. Di Alesio, D. Marijan, and A. Sarkar, ‘‘Evaluating reconfigu-
ration impact in self-adaptive systems—An approach based on combina-
torial interaction testing,’’ in Proc. 41st Euromicro Conf. Softw. Eng. Adv.
Appl., 2015, pp. 250–254.

[61] D. Marijan, A. Gotlieb, S. Sen, and A. Hervieu, ‘‘Practical pairwise
testing for software product lines,’’ in Proc. 17th Int. Softw. Product Line
Conf. (SPLC), 2013, pp. 227–235.

[62] A. Hervieu, B. Baudry, and A. Gotlieb, ‘‘PACOGEN: Automatic genera-
tion of pairwise test configurations from feature models,’’ in Proc. IEEE
22nd Int. Symp. Softw. Rel. Eng. (ISSRE), Nov. 2011, pp. 120–129.

[63] M. F. Johansen, Ø.Y.Haugen, F. Fleurey, A.G. Eldegard, and T. Syversen,
Generating Better Partial Covering Arrays by Modeling Weights on Sub-
Product Lines. Berlin, Germany: Springer, 2012, pp. 269–284.

[64] M. F. Johansen, Ø. Y. Haugen, F. Fleurey, E. Carlson, J. Endresen, and
T. Wien, A Technique for Agile and Automatic Interaction Testing for
Product Lines. Berlin, Germany: Springer, 2012, pp. 39–54.

[65] M. F. Johansen, Ø. Y. Haugen, and F. Fleurey, Properties of Realistic
Feature Models Make Combinatorial Testing of Product Lines Feasible.
Berlin, Germany: Springer, 2011, pp. 638–652.

25728 VOLUME 5, 2017

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

[66] M. F. Johansen, Ø. Y. Haugen, and F. Fleurey, ‘‘An algorithm for generat-
ing T-wise covering arrays from large feature models,’’ in Proc. 16th Int.
Softw. Product Line Conf. (SPLC), vol. 1. 2012, pp. 46–55.

[67] R. R. Othman and K. Z. Zamli, ‘‘Input-input relationship constraints in
T-way testing,’’ in Proc. IEEE Symp. Ind. Electron. Appl., Sep. 2011,
pp. 527–531.

[68] A. R. A. Alsewari and K. Z. Zamli, ‘‘Design and implementation of
a harmony-search-based variable-strength T-way testing strategy with
constraints support,’’ Inf. Softw. Technol., vol. 54, no. 6, pp. 553–568,
2012.

[69] A. A. Al-Sewari and K. Z. Zamli,Constraints Dependent T-Way Test Suite
Generation Using Harmony Search Strategy. Berlin, Germany: Springer,
2012, pp. 1–11.

[70] Y. A. Alsariera, M. A. Majid, and K. Z. Zamli, ‘‘SPLBA: An interaction
strategy for testing software product lines using the bat-inspired algo-
rithm,’’ in Proc. 4th Int. Conf. Softw. Eng. Comput. Syst. (ICSECS), 2015,
pp. 148–153.

[71] X. Devroey, G. Perrouin, A. Legay, M. Cordy, P.-Y. Schobbens, and
P. Heymans,Coverage Criteria for Behavioural Testing of Software Prod-
uct Lines. Berlin, Germany: Springer, 2014, pp. 336–350.

[72] M. Al-Hajjaji, S. Krieter, T. Thüm, M. Lochau, and G. Saake, ‘‘IncLing:
Efficient product-line testing using incremental pairwise sampling,’’
in Proc. ACM SIGPLAN Int. Conf. Generat. Programm., Concepts
Exper. (GPCE), 2016, pp. 144–155.

[73] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed,
‘‘A source level empirical study of features and their interactions in
variable software,’’ in Proc. IEEE 16th Int. Workshop Conf. Source Code
Anal. Manipulation (SCAM), Oct. 2016, pp. 197–206.

[74] R. E. Lopez-Herrejon, F. Chicano, J. Ferrer, A. Egyed, and E. Alba,
‘‘Multi-objective optimal test suite computation for software product line
pairwise testing,’’ in Proc. ICSM, 2013, pp. 404–407.

[75] R. E. Lopez-Herrejon, J. J. Ferrer, F. Chicano, E. N. Haslinger, A. Egyed,
and E. Alba, ‘‘A parallel evolutionary algorithm for prioritized pairwise
testing of software product lines,’’ inProc. Annu. Conf. Genet. Evol. Com-
put. (GECCO), 2014, pp. 1255–1262.

[76] W.-T. Tsai, C. J. Colbourn, J. Luo, G. Qi, Q. Li, and X. Bai, ‘‘Test
algebra for combinatorial testing,’’ in Proc. 8th Int. Workshop Autom.
Softw. Test (AST), 2013, pp. 19–25.

[77] C. J. Colbourn and D. W. McClary, ‘‘Locating and detecting arrays for
interaction faults,’’ J. Combinat. Optim., vol. 15, no. 1, pp. 17–48, 2008.

[78] A. Yamada, T. Kitamura, C. Artho, E. H. Choi, Y. Oiwa, and A. Biere,
‘‘Optimization of combinatorial testing by incremental sat solving,’’ in
Proc. IEEE 8th Int. Conf. Softw. Test., Verification Validation (ICST),
Apr. 2015, pp. 1–10.

[79] A. Yamada, A. Biere, C. Artho, T. Kitamura, and E.-H. Choi, ‘‘Greedy
combinatorial test case generation using unsatisfiable cores,’’ in Proc.
31st IEEE/ACM Int. Conf. Autom. Softw. Eng. (ASE), Sep. 2016,
pp. 614–624.

[80] E.-H. Choi, S. Kawabata, O. Mizuno, C. Artho, and T. Kitamura,
‘‘Test effectiveness evaluation of prioritized combinatorial testing:
A case study,’’ in Proc. IEEE Int. Conf. Softw. Quality, Rel. Secur. (QRS),
Aug. 2016, pp. 61–68.

[81] A. Hervieu, D. Marijan, A. Gotlieb, and B. Baudry, ‘‘Practical minimiza-
tion of pairwise-covering test configurations using constraint program-
ming,’’ Inf. Softw. Technol., vol. 71, pp. 129–146, Mar. 2016.

[82] L. Yu, F. Duan, Y. Lei, R. N. Kacker, and D. R. Kuhn, ‘‘Con-
straint handling in combinatorial test generation using forbidden tuples,’’
in Proc. IEEE 8th Int. Conf. Softw. Test., Verification Validation
Workshops (ICSTW), Apr. 2015, pp. 1–9.

[83] P. M. Kruse, ‘‘Test oracles and test script generation in combinatorial
testing,’’ in Proc. IEEE 9th Int. Conf. Softw. Test., Verification Validation
Workshops (ICSTW), Apr. 2016, pp. 75–82.

[84] S. Nakornburi and T. Suwannasart, ‘‘A tool for constrained pairwise
test case generation using statistical user profile based prioritization,’’ in
Proc. 13th Int. Joint Conf. Comput. Sci. Softw. Eng. (JCSSE), Jul. 2016,
pp. 1–6.

[85] J. Yuan, C. Jiang, and Z. Jiang, ‘‘Improved extremal optimization for con-
strained pairwise testing,’’ in Proc. Int. Conf. Res. Challenges Comput.
Sci., 2009, pp. 108–111.

[86] E. Salecker, R. Reicherdt, and S. Glesner, ‘‘Calculating prioritized inter-
action test sets with constraints using binary decision diagrams,’’ in
Proc. IEEE 4th Int. Conf. Softw. Test., Verification Validation Work-
shops (ICSTW), Mar. 2011, pp. 278–285.

[87] B. P. Lamancha, M. Polo, and M. Piattini, ‘‘PROW: A pairwise algorithm
with constraints, order and weight,’’ J. Syst. Softw., vol. 99, pp. 1–19,
Jan. 2015.

[88] S. Hallé, E. La Chance, and S. Gaboury, Graph Methods for Gener-
ating Test Cases With Universal and Existential Constraints. Cham,
Switzerland: Springer, 2015, pp. 55–70.

[89] P. Danziger, E. Mendelsohn, L. Moura, and B. Stevens, ‘‘Covering arrays
avoiding forbidden edges,’’ in Proc. Int. Conf. Combinat. Optim. Appl.,
2009, pp. 298–308.

[90] Y. Sheng, C. Wei, G. Wang, S. Jiang, and Y. Chen, ‘‘Constraint test cases
generation based on particle swarm optimization,’’ in Proc. 22nd ISSAT
Int. Conf. Rel. Quality Design, 2016, pp. 329–333.

[91] R. N. Kacker, D. R. Kuhn, Y. Lei, and J. F. Lawrence, ‘‘Combinatorial
testing for software: An adaptation of design of experiments,’’ Measure-
ment, vol. 46, no. 9, pp. 3745–3752, 2013.

[92] G. B. Sherwood, ‘‘Embedded functions in combinatorial test designs,’’
in Proc. IEEE 8th Int. Conf. Softw. Test., Verification Validation Work-
shops (ICSTW), Apr. 2015, pp. 1–10.

[93] J. Bozic, B. Garn, D. E. Simos, and F. Wotawa, ‘‘Evaluation of the
IPO-family algorithms for test case generation in Web security testing,’’
in Proc. IEEE 8th Int. Conf. Softw. Test., Verification Validation Work-
shops (ICSTW), Apr. 2015, pp. 1–10.

[94] N. Li, Y. Lei, H. R. Khan, J. Liu, and Y. Guo, ‘‘Applying combinatorial
test data generation to big data applications,’’ in Proc. 31st IEEE/ACM
Int. Conf. Autom. Softw. Eng., Aug. 2016, pp. 637–647.

[95] G. Fraser and A. Gargantini, ‘‘Generating minimal fault detecting test
suites for Boolean expressions,’’ in Proc. 3rd Int. Conf. Softw. Test.,
Verification, Validation Workshops, 2010, pp. 37–45.

[96] P. M. Kruse, J. Bauer, and J. Wegener, ‘‘Numerical constraints for com-
binatorial interaction testing,’’ in Proc. IEEE 5th Int. Conf. Softw. Test.,
Verification Validation, Apr. 2012, pp. 758–763.

[97] C. Yilmaz, ‘‘Test case-aware combinatorial interaction testing,’’ IEEE
Trans. Softw. Eng., vol. 39, no. 5, pp. 684–706, May 2013.

[98] M. Palacios, J. García-Fanjul, J. Tuya, and G. Spanoudakis, ‘‘Automatic
test case generation for ws-agreements using combinatorial testing,’’
Comput. Standards Inter., vol. 38, pp. 84–100, Feb. 2015.

[99] J. A. Galindo, H. Turner, D. Benavides, and J.White, ‘‘Testing variability-
intensive systems using automated analysis: An application to Android,’’
Softw. Quality J., vol. 24, no. 2, pp. 365–405, 2016.

[100] A. Arrieta, G. Sagardui, L. Etxeberria, and J. Zander, ‘‘Automatic gener-
ation of test system instances for configurable cyber-physical systems,’’
Softw. Quality J., vol. 25, no. 3, pp. 1041–1083, 2016.

[101] R. A. M. Filho and S. R. Vergilio, ‘‘A multi-objective test data generation
approach for mutation testing of feature models,’’ J. Softw. Eng. Res.
Develop., vol. 4, no. 1, p. 4, 2016.

[102] F. Bouquet, F. Peureux, and F. Ambert, Model-Based Testing for Func-
tional and Security Test Generation. Cham, Switzerland: Springer, 2014,
pp. 1–33.

[103] H. Zhong, L. Zhang, and S. Khurshid, The comKorat Tool: Unified Com-
binatorial and Constraint-Based Generation of Structurally Complex
Tests. Cham, Germany: Springer, 2016, pp. 107–113.

[104] B. P. Lamancha andM. P. Usaola, Testing Product Generation in Software
Product Lines Using Pairwise for Features Coverage. Berlin, Germany:
Springer, 2010.

[105] Y. Li, Z.-A. Sun, and J.-Y. Fang, ‘‘Generating an automated test suite by
variable strength combinatorial testing for Web services,’’ J. Comput. Inf.
Technol., vol. 24, no. 3, pp. 271–282, 2016.

[106] K. Go, S. Kang, J. Baik, and M. Kim, ‘‘Pairwise testing for systems
with data derived from real-valued variable inputs,’’ Softw.-Pract. Exper.,
vol. 46, no. 3, pp. 381–403, 2016.

[107] S. Nakornburi and T. Suwannasart, ‘‘Constrained pairwise test case gen-
eration approach based on statistical user profile,’’ in Proc. Lect. Notes
Eng. Comput. Sci., vol. 1. 2016, pp. 445–448.

[108] H. Zhong, L. Zhang, and S. Khurshid, ‘‘Combinatorial generation of
structurally complex test inputs for commercial software applications,’’
in Proc. ACM SIGSOFT Symp. Found. Softw. Eng., 2016, pp. 981–986.

[109] C. H. P. Kim, D. Batory, and S. Khurshid, ‘‘Eliminating products to test
in a software product line,’’ in Proc. IEEE/ACM Int. Conf. Autom. Softw.
Eng. (ASE), 2010, pp. 139–142.

[110] C. H. P. Kim, D. S. Batory, and S. Khurshid, ‘‘Reducing combinatorics
in testing product lines,’’ in Proc. 10th Int. Conf. Aspect-Oriented Softw.
Develop. (AOSD), 2011, pp. 57–68.

VOLUME 5, 2017 25729

B. S. Ahmed et al.: Constrained Interaction Testing: A Systematic Literature Study

[111] R. Gao, L. Hu, W. E. Wong, H. L. Lu, and S. K. Huang, ‘‘Effective test
generation for combinatorial decision coverage,’’ in Proc. IEEE Int. Conf.
Softw. Quality, Rel. Secur. Companion (QRS-C), Aug. 2016, pp. 47–54.

[112] E. Salecker and S. Glesner, ‘‘Combinatorial interaction testing for test
selection in grammar-based testing,’’ in Proc. IEEE 5th Int. Conf. Softw.
Test., Verification Validation (ICST), Apr. 2012, pp. 610–619.

[113] M. Banbara, H. Matsunaka, N. Tamura, and K. Inoue, Generating Com-
binatorial Test Cases by Efficient SAT Encodings Suitable for CDCL SAT
Solvers. Berlin, Germany: Springer, 2010, pp. 112–126.

[114] S. Bauersfeld, S. Wappler, and J. Wegener, A Metaheuristic Approach to
Test Sequence Generation for Applications With a GUI. Berlin, Germany:
Springer, 2011, pp. 173–187.

[115] A. Kalaee andV. Rafe, ‘‘An optimal solution for test case generation using
ROBDD graph and PSO algorithm,’’Quality Rel. Eng. Int., vol. 32, no. 7,
pp. 2263–2279, 2016.

[116] P. Arcaini, A. Gargantini, and P. Vavassori, ‘‘Validation of models and
tests for constrained combinatorial interaction testing,’’ in Proc. IEEE
7th Int. Conf. Softw. Test., Verification Validation Workshops, Mar. 2014,
pp. 98–107.

[117] S. K. Khalsa and Y. Labiche, ‘‘An extension of category partition testing
for highly constrained systems,’’ in Proc. IEEE 17th Int. Symp. High
Assurance Syst. Eng. (HASE), Jan. 2016, pp. 47–54.

[118] I. Segall, R. Tzoref-Brill, and A. Zlotnick, ‘‘Simplified modeling of
combinatorial test spaces,’’ in Proc. IEEE 5th Int. Conf. Softw. Test.,
Verification Validation, Apr. 2012, pp. 573–579.

[119] R. Tzoref-Brill and S. Maoz, Lattice-Based Semantics for Combinatorial
Model Evolution. Cham, Switzerland: Springer, 2015, pp. 276–292.

[120] M. Spichkova and A. Zamansky, ‘‘A human-centred framework for
combinatorial test design,’’ in Proc. 11th Int. Conf. Eval. Novel Softw.
Approaches Softw. Eng. (ENASE), Apr. 2016, pp. 228–233.

[121] K. C. Tai and Y. Lie, ‘‘In-parameter-order: A test generation strategy for
pairwise testing,’’ in Proc. 3rd IEEE Int. Symp. High-Assurance Syst.
Eng., Nov. 1998, pp. 254–261.

[122] J. Bozic, D. E. Simos, and F. Wotawa, ‘‘Attack pattern-based combinato-
rial testing,’’ in Proc. 9th Int. Workshop Autom. Softw. Test (AST), 2014,
pp. 1–7.

[123] B. Garn, I. Kapsalis, D. E. Simos, and S.Winkler, ‘‘On the applicability of
combinatorial testing to Web application security testing: A case study,’’
in Proc. Workshop Joining AcadeMiA Ind. Contrib. Test Autom. Model-
Based Test. (JAMAICA), 2014, pp. 16–21.

[124] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, ‘‘IPOG:
A general strategy for T-way software testing,’’ in Proc. 4th Annu. IEEE
Int. Conf. Workshops Eng. Comput.-Based Syst., Mar. 2007, pp. 549–556.

[125] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, ‘‘IPOG-IPOG-
D: Efficient test generation for multi-way combinatorial testing,’’ Softw.
Test. Verification Rel., vol. 18, no. 3, pp. 125–148, Sep. 2008.

[126] M. Forbes, J. Lawrence, Y. Lei, R. N. Kacker, and D. R. Kuhn, ‘‘Refining
the in-parameter-order strategy for constructing covering arrays,’’ J. Res.
Nat. Inst. Standards Technol., vol. 113, no. 5, pp. 287–297, 2008.

[127] G. J. Holzmann, ‘‘The model checker SPIN,’’ IEEE Trans. Softw. Eng.,
vol. 23, no. 5, pp. 279–295, May 1997.

[128] J. Lee, S. Kang, and D. Lee, ‘‘A survey on software product line test-
ing,’’ in Proc. 16th Int. Softw. Product Line Conf. (SPLC), vol. 1. 2012,
pp. 31–40.

[129] C. Yilmaz, M. B. Cohen, and A. A. Porter, ‘‘Covering arrays for efficient
fault characterization in complex configuration spaces,’’ IEEE Trans.
Softw. Eng., vol. 32, no. 1, pp. 20–34, Jan. 2006.

[130] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. Schmidt, and
B. Natarajan, ‘‘Skoll: Distributed continuous quality assurance,’’ in Proc.
26th Int. Conf. Softw. Eng., May 2004, pp. 459–468.

[131] A. Deshpande and D. Riehle, The Total Growth of Open Source. Boston,
MA, USA: Springer, 2008, pp. 197–209.

[132] D. R. Kuhn and M. J. Reilly, ‘‘An investigation of the applicability of
design of experiments to software testing,’’ in Proc. 27th Annu. NASA
Goddard Softw. Eng. Workshop (SEW), 2002, pp. 91–95.

[133] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, ‘‘Software fault interactions
and implications for software testing,’’ IEEE Trans. Softw. Eng., vol. 30,
no. 6, pp. 418–421, Jun. 2004.

[134] R. C. Bryce and C. J. Colbourn, ‘‘Test prioritization for pairwise
interaction coverage,’’ in Proc. 1st Int. Workshop Adv. Model-Based
Test. (A-MOST), 2005, pp. 1–7.

[135] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and
J. R. Woodward, A Classification of Hyper-Heuristic Approaches.
Boston, MA, USA: Springer, 2010, pp. 449–468.

[136] E. K. Burke, G. Kendall, and E. Soubeiga, ‘‘A tabu-search hyperheuristic
for timetabling and rostering,’’ J. Heuristics, vol. 9, no. 6, pp. 451–470,
Dec. 2003.

[137] K. Z. Zamli, F. Din, G. Kendall, andB. S. Ahmed, ‘‘An experimental study
of hyper-heuristic selection and acceptance mechanism for combinatorial
T-way test suite generation,’’ Inf. Sci., vol. 399, pp. 121–153, Aug. 2017.

[138] S. K. Khalsa and Y. Labiche, ‘‘An orchestrated survey of available algo-
rithms and tools for combinatorial testing,’’ in Proc. IEEE 25th Int. Symp.
Softw. Rel. Eng. (ISSRE), Nov. 2014, pp. 323–334.

BESTOUN S. AHMED received the B.Sc. degree
in electrical and electronic engineering from the
University of Salahaddin-Erbil in 2004, the M.Sc.
degree from University Putra Malaysia in 2009,
and the Ph.D. degree in software engineering from
University Sains Malaysia (USM) in 2012. He was
a Research Fellow with the Software Engineer-
ing Research Group, USM. He was as a Senior
Lecturer with Salahaddin University. He spent one
year doing his post-doctoral research in the Swiss

AI Laboratory, Istituto Dalle Molle di Studi sull’Intelligenza Artificiale,
Switzerland. He is currently an Assistant Professor with the Department of
Computer Science and the Co-Founder of the Software Testing Intelligent
Laboratory, Czech Technical University in Prague. His primary research
interest includes software testing, search-based software testing, and applied
soft computing. He serves as a reviewer and an editorial member for many
international journals and an organizing committee member of many inter-
national conferences.

KAMAL Z. ZAMLI (M’17) received the
B.Sc. degree in electrical engineering from the
Worcester Polytechnic Institute, USA, in 1992,
theM.Sc. degree in real-time software engineering
from Universiti Teknologi Malaysia in 2000, and
the Ph.D. degree in software engineering from
Newcastle University, Newcastle upon Tyne, U.K.,
in 2003. He is currently the Dean and a Professor
with the Faculty of Computer Systems and Soft-
ware Engineering, University Malaysia Pahang.

His main research interests include search-based software engineering,
combinatorial software testing, and computational intelligence. He is a
member of MySEIG.

WASIF AFZAL received the Ph.D. degree in soft-
ware engineering from the Blekinge Institute of
Technology. He is currently a Senior Lecturer
with the Software Testing Laboratory, Mälardalen
University. His research interests include soft-
ware testing, empirical software engineering, and
decision-support tools for software verification
and validation.

MIROSLAV BURES received the Ph.D. degree
from the Faculty of Electrical Engineering, Czech
Technical University in Prague. He is currently
a Researcher and a Senior Lecturer in software
testing and quality assurance with the Faculty
of Electrical Engineering, Czech Technical Uni-
versity in Prague. His research interests include
model-based testing (process and workflow test-
ing and data consistency testing) efficiency of test
automation (test automation architectures, assess-

ment of automated testability, and economic aspects) and quality assurance
methods for the Internet of Things solutions, reflecting specifics of this
technology. In these areas, he also leads several research and development
and experimental projects. He is a member of the Czech Chapter of the
ACM, CaSTB, and ISTQB Academia Workgroup and participates in broad
activities in the professional testing community.

25730 VOLUME 5, 2017

	INTRODUCTION
	MOTIVATION AND RELATED WORK
	METHOD
	RESEARCH QUESTIONS
	SEARCH STRATEGY
	PAPER SELECTION CRITERIA AND QUALITY ASSURANCE
	DATA EXTRACTION AND ANALYSIS

	RESULTS
	FREQUENCY OF PUBLICATIONS (RQ1)
	ACTIVE INDIVIDUALS, ORGANIZATIONS AND COUNTRIES (RQ2)
	DISTRIBUTION OF THE STUDIES AND TOPICS ADDRESSED (RQ3)
	CONSTRAINT TEST GENERATION STUDIES
	APPLICATION STUDIES
	GENERATION AND APPLICATION STUDIES
	MODEL VALIDATION STUDIES

	EXISTING GENERATION STRATEGIES, TOOLS AND TECHNIQUES (RQ4)
	USED BENCHMARKS FOR EVALUATION (RQ5)
	APPLICATIONS OF CONSTRAINED INTERACTION TESTING (RQ6)
	SPL
	FAULT DETECTION AND CHARACTERIZATION
	TEST SELECTION
	SECURITY
	GUI TESTING
	OTHER APPLICATIONS

	CURRENT LIMITATIONS AND CHALLENGES (RQ7)
	POSSIBLE RESEARCH DIRECTIONS FOR FUTURE (RQ8)

	THREATS TO VALIDITY
	CONCLUSION
	REFERENCES
	Biographies
	BESTOUN S. AHMED
	KAMAL Z. ZAMLI
	WASIF AFZAL
	MIROSLAV BURES

