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ABSTRACT It is well-known that ac power flows of a power system do not have a closed-form analytical
solution in general. This paper proposes a multi-dimensional holomorphic embedding method that derives
analytical multivariate power series to approach true power flow solutions. This method embeds multiple
independent variables into power flow equations and hence, can, respectively, scale power injections or
consumptions of selected buses or groups of buses. Then, via a physical germ solution, the method can
represent each bus voltage as a multivariate power series about symbolic variables on the system condition
so as to derive approximate analytical power flow solutions. This method has a non-iterative mechanism
unlike the traditional numerical methods for power flow calculation. Its solution can be derived offline and
then evaluated in real time by plugging values into symbolic variables according to the actual condition, so the
method fits better into online applications, such as voltage stability assessment. Themethod is first illustrated
in detail on a 4-bus power system and then demonstrated on the IEEE 14-bus power system considering
independent load variations in four regions.

INDEX TERMS Holomorphic embedding method, multi-dimensional holomorphic embedding method,
power flow calculation, voltage stability.

I. INTRODUCTION
Fast growing electricity markets and relatively slow upgrades
on transmission infrastructure have pushed many power sys-
tems to occasionally operate close to power transfer limits
and raised more concerns about potential voltage instabil-
ity. Voltage stability assessment is traditionally conducted
by solving AC power-flow equations (PFEs) of a power
system with or without contingencies. Iterative numerical
methods such as the Gauss-Seidel method, Newton-Raphson
(N-R) method and fast decoupled method have been widely
adopted by commercialized power system software to ana-
lyze power flows and voltage stability of power systems.
A major concern on these numerical methods is that the
divergence of their numerical iterations is often interpreted
as the happening of voltage collapse; however, theoretically
speaking, does not necessarily indicate the non-existence of
a power flow solution with acceptable bus voltages. Also,
there is a probability for these numerical methods to converge
to the ‘‘ghost’’ solutions that do not physically exist [1].

These concerns influence the performances of numerical
methods especially in online applications, e.g. real-time volt-
age stability assessment.

As an alternative, non-iterative approach for power
flow analysis, the holomorphic embedding load flow
method (HELM) was firstly proposed by Trias in [1]–[3].
Its basic idea is to design a holomorphic function and adopt
its analytical continuation in the complex plane to find an
solution of PFEs. Recently, many derivative algorithms and
applications based on the HELM were developed [4]–[14],
such as the HELM with non-linear static load models [8],
the HELM used in AC/DC power systems [9], using
HELM to find the unstable equilibrium points [10], [11],
network reduction [12] and the analysis of saddle-node bifur-
cation [13], [14].

This paper proposes a novel multi-dimensional holo-
morphic embedding method (MDHEM) to obtain an
approximate analytic solution to PFEs. This method embeds
multiple independent variables into PFEs to respectively scale
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power injections/consumptions of selected buses or groups
of buses. Then, by means of a physical germ solution, the
method represents each bus voltage as a multivariate power
series of symbolic variables on the system conditions so
as to derive the analytical solution expressed in a recursive
form. This MDHEM has a non-iterative mechanism unlike
traditional numerical methods. Its solution can be derived
offline and then evaluated in real time by plugging values into
symbolic variables according to the actual condition, so the
method fits better into online applications for power flow or
voltage stability analysis.

The rest of the paper is organized as follows. Section II
introduces the conventional HELM. Section III describes the
details of the proposed MDHEM including the physical germ
solution, the algorithms of the MDHEMwith and without PV
buses, the transformations of bus types considering reactive
power limits of generators, analysis on computational bur-
dens and the details of the multi-dimensional discrete con-
volution algorithm that is used in the MDHEM. Section IV
derives the resultant multivariate power series to multivariate
Pade approximants so as to expand the region of convergence
for the solution given by the MDHEM. Section V first uses
a four-bus system to illustrate this method in detail and then
uses the IEEE 14-bus system to verify its effectiveness and
evaluate the accuracies of its analytical solutions of different
orders. Finally, conclusions are drawn in Section VI.

II. INTRODUCTION OF THE CONVENTIONAL
HOLOMORPHIC EMBEDDING LOAD FLOW METHOD
In the context of complex analysis, a holomorphic function is
a complex function, defined on an open subset of the complex
plane, which is continuous-differentiable in the neighborhood
of every point in its domain. Define a complex function f (z)
whose domain and range are subsets of the complex plane,

f (z) = f (x + iy) = u(x, y)+ i · v(x, y) (1)

where x and y are real variables and u(x, y) and v(x, y) are
real-valued functions. The derivative of function f at z0 is

f
′

(z0) = lim
z→z0

f (z)− f (z0)
z− z0

, z ∈ C (2)

An important property that characterizes holomorphic
functions is the relationship between the partial derivatives
of their real and imaginary parts, known as Cauchy-Riemann
condition, defined in (3). However, based on Looman-
Menchoff theorem, functions satisfying Cauchy-Riemann
conditions are not necessarily holomorphic unless the
continuity is met [15].

∂f
∂x
+ i
∂f
∂y
= 0 (3)

The conventional HELM is founded on the theory of com-
plex analysis, whose main advantages are its non-iterative
nature. It can mathematically guarantee the convergence to a
set of meaningful power flow solutions (e.g. the upper branch

of the power-voltage curve on a bus) from a given correct
germ solution. Additionally, assisted by Pade approximants,
it is able to sufficiently and necessarily indicate the condition
of voltage collapse when the solution does not exist.

TABLE 1. The embedding of power flow equations for slack, PQ and
PV buses with the conventional HELM.

For power flow calculation of a power grid having PV
buses, the conventional HELM decomposes the admittance
matrix Yik to a series admittance matrix Yik,tr and a shunt
admittance matrix Yi,sh. Yik,tr is for the admittances between
different buses, while Yi,sh is for the admittances of shunt
components and off-nominal tap transformers. The advantage
of this process mainly lies on the simplification of the white
germ solution that has all bus voltages equal directly 16 0◦ for
the no-load, no-generation and no-shunt condition. See the
conventional HELM of PFEs in Table 1, where the 2nd and
3rd columns are the original PFEs and the HELM equations
for PQ, PV and slack buses respectively. The germ solution
can be obtained by plugging s = 0 into expressions on
the 3rd column of Table 1, while the final solution of PFEs
can be achieved with s = 1. Thus, under this circumstance,
if the original implicit PFEs regarding voltage vectors can be
transformed to the explicit form as a power series like (4),
the final solution can be obtained by plugging s = 1 into the
power series if only s = 1 is in the convergence region (refer
to [5] for more details).

V (s) =
∞∑
n=0

V [n]sn (4)

There are several other methods of embedding the complex
value to solve the original PFEs [7]–[10]. The embedding
method in Table 1 does not consider thePload andQload on PV
buses. For more general cases with loads on generation buses,
please refer [16]. The common idea of the solving process
is to express each quantity embedded with s by a power
series (4), e.g. V (s) and Q(s), and then equate both sides of
the complex-valued equations with the same order to solve
the coefficients of power series terms. Theoretically, similar
to the mathematical induction method, the coefficients can
be calculated term by term from low orders to high orders
under a precondition that each complex-valued nonlinear
holomorphic function embedded with s can be approximated
by a power series in s.

For the sake of simplification, use a simple three-bus sys-
tem in Fig. 1 to illustrate the procedure of the conventional
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FIGURE 1. One-line diagram of the demonstrative 3-bus system.

HELM. The system is made of one slack bus, one PQ bus and
one PV bus. Quantities on both sides of the PV bus equation
(i.e. column 3 and row 4 of Table 1) can be replaced by power
series in s as shown by (5). Then by equating both sides of (5)
with the same order of sn, formula (6) is obtained to calculate
the nth terms on voltage from their (n− 1)th terms.

N∑
k=1

Yik,tr
(
Vk [0]+ Vk [1]s+ Vk [2]s2 · · ·

)
=

(
sPi − j

(
Qi[0]+ Qi[1]s+ Qi[2]s2 + · · ·

))
·

(
W ∗i [0]+W

∗
i [1]s+W

∗
i [2]s

2
+ · · ·

)
− sYi,sh

(
Vi[0]+ Vi[1]s+ Vi[2]s2 + · · ·

)
(5)

N∑
k=1

Yik,trVk [n]

= Pi ·W ∗i [n− 1]− j
(
Qi[n]+

n−1
Conv

1
(Qi ∗W ∗i )

)
−Yi,shVi[n− 1] (6)

where W ∗i (s) is defined as the reciprocal power series
of V ∗i (s

∗).

W ∗i (s) =
1

V ∗i (s
∗)
= W ∗i [0]+W

∗
i [1]s+W

∗
i [2]s

2
+ · · ·

(7)

Thus, given the germ solution V [0] = 1 for this embedding
method, the coefficients of W ∗i [n] can be calculated by the
convolution between W ∗(s) and V ∗(s∗).
W ∗i [0] = 1/V ∗i [0] for n = 0

W ∗i [n] = −
n−1∑
τ=0

W ∗i [τ ]V
∗
i [n− τ ]/V

∗
i [0] for n ≥ 1

(8)

Similarly, the coefficients ofQ(s) can also be solved by the
convolution betweenW ∗(s) andQ(s) based on (6). Finally, the
s-embedded PFEs of this three-bus system can be separated
into the real part and imaginary part, and expressed as the
mathematical induction form, where the nth term on the left
hand side is dependent on the 1st to (n − 1)th terms on the
right hand side of the equation (9), as shown at the bottom of
this page.

In (9), V2re[n] is the real part of the PV bus, also dependent
on the 1st to (n− 1)th terms of V2, expressed as (10),

V2re[n] = δn0 + δn1

(
V sp
2

)2
− 1

2
−

1
2

n−1∑
τ=1

V2[τ ]V ∗2 [n− τ ]

(10)

where δni is Kronecker delta function that equals 1 only for
the order i = n and vanishes for other orders.

δni =

1 if i = n

0 otherwise
(11)

III. THE PROPOSED MULTI-DIMENSIONAL
HOLOMORPHIC EMBEDDING METHOD
Theoretically, given enough precision digits in numeric arith-
metic, a conventional HELM can find the power flow solution
at one required operating condition with high accuracy using
the power series with a number of terms. However, the main
drawback is that it does not give the expression of the power
flow solution at any other operating condition, so the explicit
expression is not for the whole solution space of the PFEs.


1

1
G21 −B21 0 −B22 G23 −B23
B21 G21 1 G22 B23 G23
G31 −B31 0 −B32 G33 −B33
B31 G31 0 G32 B33 G33




V1re[n]
V1im[n]
Q2[n]
V2im[n]
V3re[n]
V3im[n]



=



δn0 + δn1
(
V SL
1 − 1

)
0

Re
(
P2W ∗2 [n− 1]− j

n−1
Conv

1
(Q2 ∗W ∗2 )− Y2,shV2 [n− 1]

)
Im
(
P2W ∗2 [n− 1]− j

n−1
Conv

1
(Q2 ∗W ∗2 )− Y2,shV2 [n− 1]

)
Re
(
S∗3W

∗

3 [n− 1]− Y3,shV3 [n− 1]
)

Im
(
S∗3W

∗

3 [n− 1]− Y3,shV3 [n− 1]
)


−


0
0
G22
B22
G32
B32

V2re [n] (9)
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The proposed new MDHEM first finds a physical germ
solution, which serves as an original point in the solution
space instead of a virtual germ solution with voltage 1 6 0◦.
In this way, it can extend from the physical germ solution by
endowing the embedded variables with physical meanings,
e.g. the loading scales to control the loading levels of load
buses. Each loading scale can be either bound with each
power, each load or each group of loads. A detailed procedure
of the MDHEM is introduced as follows.

A. PHYSICAL GERM SOLUTION
The proposed physical germ solution is an original point of
the solution at an operating condition with physical mean-
ing. Theoretically, any power flow solution can be defined
as a physical germ solution. In this paper, the physical
germ solution is the operating condition in which each load
bus (PQ bus) has neither load nor generation and each gen-
erator bus (PV bus) has specified active power output with
reactive power output adjusted to control the voltage mag-
nitude to the specified value. Such a physical germ solution
has two advantages although other germ solutions can also
be defined. First, it represents a condition having no load at
all PQ buses. Second, the embedded variables can represent
physical loading scales starting from zero and extendable to
the whole solution space. If such a solution violates trans-
mission capacity limits or bus voltage limits of the network,
an acceptable light-load condition whose PQ buses have low
consumptions may be used as a physical germ solution.

Therefore, to find the physical germ, the s-embedded equa-
tions on PQ buses, PV buses and SL buses are expressed
as in (12)-(14) respectively, where notations with sub-
script gi indicates the physical germ solution of bus i and
SSS, PPP , VVV stand for the set of slack buses, PQ buses and PV
buses, respectively.

Vgi(s) = V SL
i , ∀i ∈ SSS (12)

N∑
k=1

YikVgk (s) = 0, ∀i ∈ PPP (13)
N∑
k=1

YikVgk (s) =
sPgi − jQgi(s)

V ∗gi(s
∗)

Vgi(s)V ∗gi(s
∗) = |VSTi|2 +

(∣∣V sp
i

∣∣2 − |VSTi|2) s, ∀i ∈ VVV

(14)

The physical germ solution can be found by two steps
illustrated in Fig. 2. The first step is to assume all PV and
PQ buses injecting zero power to the network and find the
initial voltage VSTi of every PV or PQ bus, which is indicated
by Point A in Fig. 2(a) for a PV bus and Fig. 2(b) for a PQ bus.
VSTi is calculated by (15)-(16).

VSTk = V SL
k , ∀k ∈ SSS (15)

N∑
k=1

YikVSTk = 0, ∀k /∈ SSS (16)

FIGURE 2. The procedure of finding the physical germ solution.
(a) PV bus (∀i ∈ V ). (b) PQ bus (∀i ∈ P).

The second step is to replace ‘‘0’’ in (16) by injected reactive
power as a form of s-embedded function, i.e. Qgi(s), for all
PV buses to control their voltagemagnitudes from the starting
voltage |VSTi| towards the specified voltage |V

sp
i |, i.e. point B

in Fig. 2(a). Meanwhile, the active power of each PV bus is
controlled to the specified value, i.e. PGi.

Substitute power series for Vgi(s) and Wgi(s) in (13)
and (14) and expand them as (17) and (18) for PQ buses and
PV buses, respectively.

N∑
k=1

Yik
(
VSTk + Vgk [1]s+ Vgk [2]s2 + · · ·

)
= 0, ∀i ∈ PPP

(17)

N∑
k=1

Yik
(
VSTk + Vgk [1]s+ Vgk [2]s2 + · · ·

)
=
[
sPGi − j

(
Qgi[1]s+ Qgi[2]s2 + · · ·

)](
W ∗gi[0]+W

∗
gi[1]s+ · · ·

)
∀i ∈ VVV(

VSTi + Vgi[1]s+ Vgi[2]s2 + · · ·
)(

V ∗STi + V
∗
gi[1]s+ V

∗
gi[2]s

2
+ · · ·

)
= |VSTi|2 +

(∣∣V sp
i

∣∣2 − |VSTi|2) s

(18)

Equate the coefficients of s, s2, . . . up to sn on both sides
of (17) and (18), and then obtain Vgi[n],Wgi[n] and Qgi[n] by
the terms 0 to n − 1 of Wgi(s) and Qgi(s) from (19) and (20)
for PQ buses and PV buses, respectively.

N∑
k=1

YikVgk [n] = 0, ∀i ∈ PPP (19)

N∑
k=1

YikVgk [n] = PGiW ∗gi[n− 1]

−j

(
Qgi[n]W ∗gi[0]+

n−1∑
τ=1

Qgi[τ ]W ∗gi[n− τ ]

)
Vgi[n]V ∗gi[0]+ V

∗
gi[n]Vgi[0] = εi[n− 1]

, ∀i ∈ VVV

(20)

where the voltage error of PV bus εi[n−1] is defined by (21).
It will quickly converge within a small number of terms n,
since it contains the high order terms of Vgi[n]sn.

εi[n− 1] = δn1 ·
(∣∣V sp

i

∣∣2 − |VSTi|2)
−

(
n−1∑
τ=1

Vgi[τ ]V ∗gi[n− τ ]

)
(21)
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In (20), Vgi[n] and Wgi[n] are unknown complex values,
and Qgi[n] is an unknown real value. Move all unknowns
of the nth order coefficients to the left hand side and also
break the PFEs into the equations respectively about real and
imaginary parts. Then, a matrix equation similar to (9) is
created containing all Vgi[n], Wgi[n] and Qgi[n]. Given the
N -bus network with s slack buses, p PQ buses and v PV buses,
the total number of equations is increased from 2s+ 2p+ 2v
of (9) to 2s+2p+5v since a complex valued power seriesW (s)
and a real valued power series Q(s) are added for each PV
bus. The above method of finding a physical germ solution
multiplies the active power generation at each PV bus by s
and no-load at each PQ bus. If such a no-load germ solution
does not exist due to the transmission capacity limits or bus
voltage limits mentioned above, then an acceptable light-load
condition may be used that sets a low active load Pli 6= 0
at each PQ bus. Then the number of equations is extended
to 2s + 4p + 5v since W (s) is also added for each PQ bus.
A 3-bus system is used to illustrate how to find a physical
germ solution in detail in Appendix-B.

B. FROM SINGLE-DIMENSION TO MULTI-DIMENSION
The conventional HELM only embeds one s into PFEs, so it
may be considered a single-dimensional method. As a major
drawback, it scales all loads in the system uniformly at the
same rate. Loads cannot decrease, keep constant or grow at
separate rates. Also, the power factor of each load is fixed.
Therefore, its solutions are unable to cover all the operating
conditions. Reference [23] proposes a bivariate holomorphic
embedding method, which extends the single-dimensional
HELM to a two-dimensional method.

This paper proposes an MDHEM to obtain a wide variety
of power flow solutions in the space about multiple embedded
variables, i.e. s1, s2, . . . , sD. Here D is the number of dimen-
sions. The analytical expression is derived from a physical
germ solution by defining embedded variables as individual
scaling factors. For instance, each sj (j = 1 ∼ D) can control
the scale of the active power or reactive power of either one
load or a group of loads of interests. Thus, the conventional
HELM is a special case of the MDHEM. In the following,
the MDHEM will firstly be presented for a power network
without a PV bus and then be introduced for general networks
in next sub-sections.

Suppose a network has D dimensions to scale, so a
D-dimensional HEM is defined in (22), where the embedding
can be done by scaling each sj separately,

N∑
k=1

YikVk (s1, s2, · · · , sj, · · · , sD)

=
sjS∗i

Vi(s1, s2, · · · , sj, · · · , sD)
, i ∈ PPP (22)

where Vi(s1, s2, . . . , sj, . . . , sD) is the multivariate power
series on bus i voltage given by (23). Its reciprocal is another

multivariate power series Wi(s1, s2, . . . , sj, . . . , sD).

Vi(s1, s2, · · · , sj, · · · , sD)

=

∞∑
nD=0

· · ·

∞∑
nj=0

· · ·

∞∑
n1=0

V [n1, · · · , nj, · · · , nD]

× sn11 · · · s
nj
j · · · s

nD
D

= Vi[0, 0, · · · , 0︸ ︷︷ ︸
D-dimensions

]+ Vi[1, 0, · · · , 0]s1 + Vi[0, 1, · · · , 0]

× s2 + · · · + Vi[2, 0, · · · , 0]s21 + Vi[1, 1, · · · , 0]

× s1s2 + Vi[0, 2 · · · , 0]s22 + · · · (23)

The conventional single-dimensional HELM has three
properties [3], which needs to be verified for a multi-
dimensional HEM as well.

1) SCALE INVARIANCE OF THE MDHEM
As shown by (24), if every voltage Vk (s1, s2, . . . , sj, . . . , sD)
is scaled to V

′

k = ηVk , the resulting equations can be
recovered to the same form just with scaled injection Si by
sj = |η|2. Therefore, scaling the power injection is equivalent
to scaling all voltages by the same factor, which satisfies the
property of scale invariance.

N∑
k=1

Yik
V ′k (s1, s2, · · · , sj, · · · , sD)

η

=
S∗i[

V ′i (s1, s2, · · · , sj, · · · , sD)/η
]∗

⇔

N∑
k=1

YikV ′k (s1, s2, · · · , sj, · · · , sD)

=
|η|2 S∗i[

V ′i (s1, s2, · · · , sj, · · · , sD)
]∗ , i ∈ PPP (24)

2) HOLOMORPHICITY OF THE MDHEM
According to the generalized Cauchy-Riemann equations, if
a multivariate continuous function f (z1, z2, . . . , zn) defined
in domain U ⊂ Cn satisfies (25) for each zλ, then
f (z1, z2, . . . , zn) is holomorphic.

∂f
∂z∗λ
= 0 (25)

This is also known asWirtinger’s derivative, meaning that the
function f has to be independent of z∗λ for holomorphicity.
Obviously, Vi in (22) does not depend on any s∗i since[

Vi(s1, s2, · · · , sj, · · · , sD)
]∗

= V ∗i (s
∗

1, s
∗

2, · · · , s
∗
j , · · · , s

∗
D)

=

∞∑
nD=0

· · ·

∞∑
nj=0

· · ·

∞∑
n1=0

V [n1, · · · , nj, · · · , nD]

× sn11 · · · s
nj
j · · · s

nD
D (26)

A detailed proof of holomorphicity with theD-dimensional
HEM is given in Appendix-A.
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3) REFLECTION CONDITION OF THE MDHEM
Since the complex conjugate of Vi unnecessarily preserves
holomorphicity unless (26) holds. Under that circumstance,
an image equation on conjugates should be added to (22), i.e.

N∑
k=1

YikVk (s1, s2, · · · , sj, · · · , sD)

=
sjS∗i[

Vi(s1, s2, · · · , sj, · · · , sD)
]∗

N∑
k=1

Y ∗ik
[
Vi(s1, s2, · · · , sj, · · · , sD)

]∗
=

sjSi
Vi(s1, s2, · · · , sj, · · · , sD)

(27)

where Vk (s1, s2, · · · , sj, · · · , sD) and[
Vi(s1, s2, · · · , sj, · · · , sD)

]∗ are two sets of independent
holomorphic functions and should be conjugates of each
other. Each sj must be a real value for any physical solution.
Their solutions can both exist only if eq. (28) holds:[
Vi(s1, s2, · · · , sj, · · · , sD)

]∗
= V ∗i (s

∗

1, s
∗

2, · · · , s
∗
j , · · · , s

∗
D)

(28)

Hence, the reflection condition is verified.
After verifications of the above properties, the following

equation can be obtained from (22) and (23) with power series

appear on both sides.

N∑
k=1

Yik (Vk [0, 0, · · · 0]+ Vk [1, 0, · · · , 0]s1

+Vk [0, 1, · · · , 0]s2 + · · · )

= sjS∗i • (W
∗
i [0, 0, · · · 0]+W

∗
i [1, 0, · · · , 0]s1

+W ∗i [0, 1, · · · , 0]s2 + · · · ) (29)

LetM = n1+ n2+ . . .+ nD denote the order of recursion,
so Vk [0, 0, . . . , 0] is the physical germ solution for M = 0.
Equate both sides of (29) and then extend the matrix equation
to theM th order as (30), as shown at the bottom of this page,
where V1 is the slack bus.

Unlike the matrix equation of the conventional HELM,
the number of its columns denoted by Ncol is a D-polytope
number expanding with the increase of order M . For a
D-dimensional HEM at the M th order,

Ncol =

M+D−1
5

i=M+1
i

(D− 1)!
=
(M + D− 1)!
M ! (D− 1)!

. (31)

Take a 2-D HEM for example. A 2-bus system with one
slack bus and one PQ bus is demonstrated. s1 and s2 are
selected to scale the active and reactive powers of the PQ
bus, respectively. TheM th recursion of the matrix calculation
is (32), as shown at the bottom of this page, where the
2-D discrete convolution between W (s1, s2) and V (s1, s2)

[Yik ]N×N



V1[M , 0, · · · 0] V1[M − 1, 1, 0, · · · 0] · · · · · · V1[0, 0, · · ·M ]

V2[M , 0, · · · 0]
. . . Vk−1[· · · , nj, · · · ]

... V2[0, 0, · · ·M ]
... · · · Vk [· · · , nj, · · · ]

...
...

...
. . . Vk+1[· · · , nj, · · · ]

. . . VN−1[0, 0, · · ·M ]
VN [M , 0, · · · 0] VN [M − 1, 1, 0, · · · 0] · · · · · · VN [0, 0, · · ·M ]


N×Ncol

=



0 0 0 0 0

S∗2W
∗
i [M − 1, 0, · · · 0] S∗2W

∗
i [M − 2, 1, · · · 0]

...
... 0

0 S∗3W
∗
i [M − 1, 0, · · · 0]

. . .
... 0

0 0
... S∗i W

∗
i [· · · , nj − 1, · · · ] 0

0 0 · · · · · · S∗NW
∗
N [0, 0, · · ·M − 1]


(30)


1 0 0 0
0 1 0 0
G21 −B21 G22 −B22
B21 G21 G21 G22


4×4


V1re[M , 0] V1re[M − 1, 1] · · · V1re[n1, n2] · · · V1re[0,M ]
V1im[M , 0] V1im[M − 1, 1] · · · V1im[n1, n2] · · · V1im[0,M ]
V2re[M , 0] V2re[M − 1, 1] · · · V2re[n1, n2] · · · V2re[0,M ]
V2im[M , 0] V2im[M − 1, 1] · · · V2im[n1, n2] · · · V2im[0,M ]


4×(M+1)

=


0 · · · 0 · · · 0
0 · · · 0 · · · 0

Re
(
P2W ∗2 [M − 1, 0]

)
· · · Re

(
P2W ∗2 [n1 − 1, n2]− jQ2W ∗2 [n1, n2 − 1]

)
· · · Re

(
−jQ2W ∗2 [0,M − 1]

)
Im
(
P2W ∗2 [M − 1, 0]

)
· · · Im

(
P2W ∗2 [n1 − 1, n2]− jQ2W ∗2 [n1, n2 − 1]

)
· · · Im

(
−jQ2W ∗2 [0,M − 1]

)

4×(M+1)

(32)
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from 0 toM − 1 is equal to 1. Therefore, the (M − 1)th order
of W [n1, n2] can be calculated from the obtained terms 0
to M − 1 of V [n1, n2]. The matrix equation is divided into
real and imaginary parts to be in consistent with the network
with PV buses. The details of multi-dimensional discrete
convolution used to calculateW [n1, n2] are described below.

C. MULTI-DIMENSIONAL DISCRETE CONVOLUTION
For the transition towards a multi-dimensional HEM and cal-
culation ofW [n1, n2, . . . , nD] in (30), the single-dimensional
discrete convolution on the right hand side of (9) needs to
be replaced bymulti-dimensional discrete convolution, which
refers to rolling multiplications of two functions (e.g. f and g)
on an high-dimensional lattice to produce a third function.
Generally, ‘‘∗’’ is used for the convolution operation. The
number of dimensions in the given operation is reflected
in the number of ‘‘∗’’. Take the D-dimensional HEM for
example. A D-dimensional convolution is written as (33) and
can be computed by summating products of corresponding
terms.

y (n1, n2, · · · nD)

= f (n1, n2, · · · nD)
D︷ ︸︸ ︷
∗ · · · ∗ g (n1, n2, · · · nD)

=

∞∑
τ1=−∞

∞∑
τ2=−∞

· · ·

∞∑
τD=−∞

f (n1 − τ1, n2 − τ2, · · · , nD − τD)

· g (τ1, τ2 · · · , τD)

(33)

FIGURE 3. The illustration of W ∗V (2, 2, . . . , 2) (a) 1-dimensional
(b) 2-dimensional (c) 3-dimensional discrete convolution.

Different from the conventional multi-dimensional convo-
lution taking terms from negative infinity to positive infinity,
the D-dimensional convolution used in the MDHEM only
keeps the 1st to (n − 1)th terms. Therefore, the convolutions
of W [n1, n2] on the right hand side of (32) are calculated
by multiplication of two-dimensional arrays. Fig. 3 illustrates

the 1-, 2- and 3-dimensional discrete convolutions of term 0
to term 2, in which the blue and red lattices move and overlap
with each other.

The convolution is the summation of multiplications
between geometrically super-positioned red lattices and blue
lattices. The discrete convolution for higher dimensions is
similar but in higher-dimensional spaces.

ki=ni−1
Conv

ki=1,i=1∼D
(W ∗V )[k1, k2, · · · , kD]

=

n1−1∑
τ1=1

n2−1∑
τ2=1

· · ·

nD−1∑
τD=1

W [k1 − τ1, k2 − τ2, · · · , kD − τD]

×V [τ1, τ2, · · · , τD] (34)

D. MULTI-DIMENSIONAL HEM WITH PV BUSES
For a N -bus network with v PV buses, the PFEs for PV buses
are in (35), with reactive power Q(si) also represented as a
form of multivariate power series but with real coefficients

N∑
k=1

YikVk (s1, s2, · · · , sD)

=
Pi − jQi(s1, s2, · · · , sD)
V ∗i (s

∗

1, s
∗

2, · · · , s
∗
D)

, i ∈ VVV (35)

The following equation is thus obtained from (35), where
multivariate power series appear on both sides.

N∑
k=1

Yik (Vk [0, 0, · · · 0]+ Vk [1, 0, · · · , 0]s1

+Vk [0, 1, · · · , 0]s2 + · · · )

= (Pi − j(Qi[0, 0, · · · 0]+ Qi[1, 0, · · · , 0]s1

+Qi[0, 1, · · · , 0]s2 + · · · ))

• (W ∗i [0, 0, · · · 0]+W
∗
i [1, 0, · · · , 0]s1

+W ∗i [0, 1, · · · , 0]s2 + · · · ) (36)

Then, (36) can be reformed to a recursive function about
Vk [n1, n2, . . . , nD].

N∑
k=1

YikVk [n1, n2, · · · , nD]

= PiW ∗i [n1, n2, · · · , nD]− jQi[0, 0, · · · 0]

·W ∗i [n1, n2, · · · , nD]− jQi[n1, n2, · · · , nD]

·W ∗i [0, 0, · · · 0]− j
ki=ni−1
Conv

ki=1,i=1∼D
(QW ∗i )[k1, k2, · · · , kD]

(37)

where Qi[0, 0, . . . , 0] and Wi[0, 0, . . . , 0] are the obtained
reactive power and the reciprocal of the voltage of the phys-
ical germ solution. Note that in (37), Vk [n1, n2, . . . , nD]
also depends on extra unknowns W ∗i [n1, n2, . . . , nD] and
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FIGURE 4. The procedure of finding analytical solution of PFEs using the MDHEM.

Qi[n1, n2, . . . , nD] of the same order. Thus three additional
equations need to be added and all unknowns are moved
to the left hand side: two for real and imaginary parts
of W ∗i [n1, n2, . . . , nD] and the third for the real value of
Qi[n1, n2, . . . , nD]. For each PQ bus in the D-dimensional
HEM, only one D-dimensional discrete convolution W ∗V
is induced. However, for each PV bus in the D-dimensional
HEM, threeD-dimensional discrete convolutions, i.e.Q∗W ∗,
W ∗V andV ∗V ∗ are induced. As an example, the 3-bus system
in Fig. 1 for the MDHEM, having one slack bus, one PQ bus
and one PV bus, is introduced in detail in Appendix-C.

E. CONSIDERING REACTIVE POWER LIMITS
Reactive power limits of generators introduce discontinuity
into the holomorphic functions. That is addressed in the
proposed MDHEM as following. Let QGiMin and QGiMax
represent the upper and lower limits of the reactive power
output QGi of the generator at bus i. If QGi(s) < QGiMin
or QGi(s) > QGiMax happen, the type of bus i is changed
from PV to PQ and its the reactive power output is then
fixed at the violated limit. Since the PFEs lose holomor-
phicity due to such discontinuity, the MDHEM needs to
be rebuilt and resolved with altered bus types. In fact, the
proposed MDHEM can predict violations of reactive power
limits at PV buses beforehand from Q(si) with tested values
of si.

Finally, the whole MDHEM flowchart for finding a power
flow solution considering reactive power limits on PV buses
is shown in Fig. 4.

F. COMPUTER RESOURCES REQUIRED BY THE MDHEM
The computational resources depend on the computation bur-
den, i.e. the number of steps necessary to solve the prob-
lem, as well as memory space, i.e. the amount of required

memory storage. For a D-dimensional HEM applied to an
N -bus network with s slack buses, p PQ buses and v PV
buses, Ncol terms in eq. (31) are needed to find a solution
in the form of M th-order multivariate power series. Put the
unknown coefficients for M th order power series on the left
hand side and known variables on the right hand side of a
matrix equation. Therefore, the left hand side of the matrix
equation is a (2s + 2p + 5v) × (2s + 2p + 5v) extended
admittance matrix multiplies with a (2s + 2p + 5v) × Ncol
matrix for the unknown coefficients. The right hand side of
the matrix equation is also a (2s + 2p + 5v) × Ncol matrix.
For an M th order truncation of the multivariate power series,
the number of coefficients for each of V (si), W (si) and Q(si)
is

Nterm =
M∑
m=0

(m+ D− 1)!
m! (D− 1)!

. (38)

Here,V (si) andW (si) are complex valued andQ(si) are real
valued. The memory to save each of their elements depends
on the digits of precision used in calculation, e.g. an element
in the double-precision floating-point format taking 8 bytes.
Sparse techniques can help reduce memory usage.

Most of computation burden is with multi-dimensional
discrete convolution, which has totally (p+ 3v)×Ncol terms
for theM th order matrix equation. Each convolution involves
(M − 1)D − 1 multiplications. However, that can be sig-
nificantly speeded up by using the row-column decompo-
sition [17] or direct matrix multiplication based on Helix
transform [18], [19].

IV. MULTIVARIATE PADE APPROXIMANTS
The above-mentioned procedure can create truncated mul-
tivariate power series for all the quantities, such as voltage
Vi(s1, s2, . . . , sD) and reactive powerQi(s1, s2, . . . , sD). Each
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multivariate power series has its convergence region, in which
the power series can converge to the actual power flow solu-
tion. However, by just summing up these truncated power
series, the convergence region usually can not be extended to
the edge of the solution space about s1, s2, . . . , sD, especially
close to the voltage stability boundary. The Pade approxi-
mants method is an effective tool to significantly extend the
convergence region. According to Stahl’s theory, the diag-
onal Pade approximants can ensure the maximum analytic
continuation of a power series to approximate an analytical
function [20], [21].

For a bivariate power series, the method of Chisholm
approximants is adopted to calculate the coefficients of a
bivariate Pade approximants [22]. For example, [23] uses
the Chisholm approximants in a two-dimensional HEM. For
more general multivariate power series, the multivariate Pade
approximants (MPA) method is introduced in [24] and will
be used in the proposed MDHEM.

Let f (s1, s2, . . . , sD) be a function of D variables
approached by a formal power series expansion.

f (s1, s2, · · · , sD)

=

∞∑
n1=0

∞∑
n2=0

· · ·

∞∑
nD=0

c[n1, n2, · · · , nD]s
n1
1 s

n2
2 · · · s

nD
D (39)

Then the Pade approximants to f (s1, s2, . . . , sD) is

fL/L ′ (s1, s2, · · · , sD)

=

L∑
n1=0

L∑
n2=0
· · ·

L∑
nD=0

a[n1, n2, · · · , nD]s
n1
1 s

n2
2 · · · s

nD
D

L ′∑
n1=0

L ′∑
n2=0
· · ·

L ′∑
nD=0

b[n1, n2, · · · , nD]s
n1
1 s

n2
2 · · · s

nD
D

(40)

where L = L ′ for the diagonal MPA and a[n1, n2, . . . , nD]
and b[n1, n2, . . . , nD] are coefficients of term sn11 s

n2
2 . . . snDD

in the numerator and denominator, respectively. Easily from
(39) and (40), there is L∑

n1=0

· · ·

L∑
nD=0

b[n1, · · · , nD]s
n1
1 · · · s

nD
D


•

 ∞∑
n1=0

· · ·

∞∑
nD=0

c[n1, · · · , nD]s
n1
1 · · · s

nD
D


=

 L∑
n1=0

· · ·

L∑
nD=0

a[n1, · · · , nD]s
n1
1 · · · s

nD
D


+ o

 ∑
n1+···+nD>2L

sn11 · · · s
nD
D

 (41)

in which ‘‘o(·)’’ eqauls the sum of higher-order terms,
representing the truncation error of [L/L]th order Pade
approximants.

Since the orders of each si in both the numerator and
denominator in (40) are from 0 to L, a total number of
2(L + 1)D coefficients need to be determined.

FIGURE 5. Zones for (a) two-variable (b) three-variable diagonal MPA.

At the origin S0 in Fig. 5, the term 0 of eq. (41) satisfies

S0 :
{
b[0, 0, · · · , 0] • c[0, 0, · · · , 0] = a[0, 0, · · · , 0]
b[0, 0, · · · , 0] = 1

(42)

Therefore, the remaining 2(L+1)D−2 unknown coefficients
still need a number of 2(L + 1)D − 2 equations.

The following three sets of equations, i.e. eq. (43)-(45),
are necessary for determining the remaining 2(L + 1)D − 2
unknown coefficients. Eq. (43) includes (L + 1)D − 1 equa-
tions defining coefficients in Zone S1, in which all interme-
diate variables τi are between 0 and L except for the original
point (all τi are 0). Eq. (44) has L(L+1)D−1 equations defin-
ing the coefficients regarding τi in Zone S2. The additional
(L + 1)D−1 − 1 coefficients are defined by (45) to obtain
the final unique solution. Fig. 5(a) and Fig. 5(b) showcase
the zones regarding τi for two-variable and three-variable
diagonal Pade approximants, respectively. More details can
be found in [24].

S1 :
τ1∑

n1=0

· · ·

τD∑
nD=0

b[n1, · · · , nD]c[τ1 − n1, · · · , τD − nD]

= a[τ1, · · · , τD], for 0 ≤ τi ≤ L

and τ1 · · · τD 6= 0 (43)

S3 :
τ1∑

n1=0

· · ·

τD∑
nD=0

b[n1, · · · , nD]c[τ1 − n1, · · · , τD − nD]

= 0, for τ1 ≥ L + 1 or τ2 ≥ L + 1 or · · ·

or τD ≥ L + 1 (44)

S4 :
τ1∑

n1=0

· · ·

τD∑
nD=0

(b[n1, · · · , nD]c[τ1−n1, · · · , τD−nD]

+ · · · +b[nD, · · · , n1]c[τD − nD, · · · , τ1 − n1]) = 0

for τ2 + · · · + τD
= 2L + 1 or · · · or τ1 + · · · + τD−1 = 2L + 1 (45)

V. CASE STUDY
A. DEMONSTRATION ON 4-BUS POWER SYSTEM
As shown in Fig. 6, a 4-bus system is first used to illustrate
the MDHEM by two cases.
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FIGURE 6. One-line diagram of the 4-bus power system.

TABLE 2. Result of multivariate power series for Bus 2, 3, 4 (M <= 2).

FIGURE 7. Comparison of results with PV bus between N-R and MDHEM.

In Case 1, Bus 1 is the slack bus with fixed voltage 1.02pu,
Bus 2 and Bus 3 are load buses, and Bus 4 is a generator bus
maintaining its voltage magnitude at 0.98pu. Loads at Bus 2
and Bus 3 are scaled by independent s1 and s2 embedded
into PFEs, respectively. The MDHEM is implemented in
MATLAB using MATPOWER toolbox, which takes 1.04 sec
to obtain the result with maximum error of all bus voltages
less than 10−8 for this 2-D MDHEM. Comparably, it takes
24.1 sec to screen the load flow of all scenarios by using the
N-R method. The result is a 14th order multivariate power
series (i.e.M = 14) and the terms of orders up to 2 are given
in Table 2.

Fig. 7 shows the results of bus voltages by evaluating
the multivariate power series obtained by the MDHEM and
compares the results with those from the N-R method at
intervals of 1si = 0.2.

Fig. 8 shows the difference between the results from the
N-R and MDHEM. Although the continuous power flow
can also used here to circumvent the convergence issue, the
result is assigned to 0 here for simplicity if the N-R does not
converge. The non-convergence of N-R does not theoretically

FIGURE 8. Difference between MDHEM and N-R in Case 1 with PV bus.

FIGURE 9. Comparison of results with PV bus between N-R and MDHEM
with multivariate Pade approximants (MDHEM+MPA).

signify the non-existence of a power flow solutions. It can be
observed that in the N-R’s convergence region, the solutions
from the MDHEM show great consistency. The maximum
error of bus voltages is 6.522× 10−2pu at Bus 3 that appears
very close to the edge of voltage collapse, and themultivariate
power series generated by HDHEM has much less error in
most of the region before voltage collapse.

Fig. 9 shows the results of bus voltages by evaluating the
MDHEM using the MPA, which are also compared with
the results of the N-R method calculated at intervals of
1si = 0.2. Notice that for the voltages of two PQ buses, i.e.
V2 and V3 in Fig. 9(b) and Fig. 9(c), the singularities of the
MPA expression approach the actual edge of voltage collapse.
Fig. 10 shows the difference between the results from the
N-R and the MDHEM with MPA. The maximum difference
of all bus voltages is reduced to 2.221× 10−2pu at Bus 3.
Fig. 11 shows the convergence regionwith the voltage error

bound of 10−8 with order M = 14. It can be noticed that the
MPA can significantly improve the convergence region.

Fig. 12 shows the maximum voltage error of the PQ
buses in the 2D space by using the multivariate power
series and MPA. The error decreases by using a higher-order
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FIGURE 10. Difference between MDHEM and N-R in Case 1 with PV bus
using MPA.

FIGURE 11. Convergence region with error bound of 10−8 for V2 and V3.

FIGURE 12. Maximum error of V2 and V3 in the 2D-space w.r.t. the
order M.

multivariate power series and the MPA can further extend
the convergence region. Note that, the 1st order power series
analytical solution is equivalent to the linear approximation
of load flow solution.

FIGURE 13. Comparison of results without PV bus between N-R and
MDHEM.

FIGURE 14. Difference between MDHEM and N-R Case 2 without PV bus.

FIGURE 15. The (a) reactive power and (b) voltage of PV bus for
Case 1 and 2.

In Case 2, with the increase of loading scales at load buses,
the reactive power injection at the generator bus (Bus 2)
violates its upper limit of 100MVar. The PV bus will be
transformed to a fixed PQ bus. Fig. 13 shows the results of bus
voltages from the multivariate power series compared with
the results of the N-R method. Fig. 14 shows their difference.
It can be observed that V4 is no longer a PV bus with fixed
voltage magnitude and the convergence region is smaller than
that in Case 1. The maximum error increases to 0.0529pu at
Bus 2 without the voltage support from PV buses.

Fig. 15 shows the comparison of reactive powers and volt-
age magnitudes for Case 1 and Case 2. In Fig. 15(a), the
reactive power surface of the PV bus follows a multivariate
nonlinear function. Its intersection with the reactive power
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FIGURE 16. One-line diagram of the demonstrative 14-bus system.

FIGURE 17. Voltage of Bus 5 with respect to other scales for s4 = 1.

surface of the PQ bus determines the reactive power bound-
ary with respect to different loading scales (i.e. s1 and s2).
In Fig. 15(b), outside the ‘‘Qlim boundary’’, the voltage of
the PV bus type is higher than that of the PQ bus type, since
PV bus type is able to maintain the voltage of Bus 4. The
MDHEM can clearly tell the reactive power boundary in the
multi-dimensional space about scaling factors si.

B. DEMONSTRATION ON THE 14-BUS POWER SYSTEM
The MDHEM is also demonstrated on the IEEE 14-bus test
system. The number andmeanings of embedded variables can
be defined arbitrarily. Here, we group all buses geograph-
ically into 4 areas with respective loading scales s1, s2, s3
and s4, as shown in Fig. 16. Then, a 4-dimensional MDHEM
is performed and the result of a 11th order 4-D multivariate
power series is obtained in 12.56 sec in MATLAB with the
error tolerance 1 × 10−8 pu. However, it takes 121.01 sec
to screen all the 4-D scenarios by using the N-R method in
MATLAB.

A load bus, i.e. Bus 5, is arbitrarily selected to observe the
voltage with respect to s1, s2, s3 and s4, as shown in Fig. 17.
Other bus voltages are similar. Keeping the load of Area 4
unchanged (s4 = 1), the voltages of load buses decrease with
the increase of s1, s2 and s3. Here, we use X-axis and Y-axis
for s1 and s2 respectively, and the different surfaces for s3.

It can also be concluded that although computation speed
decreases with the increase of embedded variables, the con-
vergence region does not decrease. This makes maximum
order of multivariate power series to be manageable.

VI. CONCLUSION AND DISCUSSION
This paper proposed a new multi-dimensional holomorphic
embedding method (MDHEM) for solving the power flow
equations and the explicit solutions are obtained for all
operating conditions in the high-dimensional solution space.
The voltage vector and power of each bus can be explicitly
expressed by a convergent multivariate power series of all
the loads. Compared with the traditional iterative methods
for power flow calculations and inaccurate sensitivity anal-
ysis method for voltage control, the MDHEM can prepare
the algebraic variables of a power system in all operating
conditions offline and evaluate them online by only plugging
in the values of the required operating conditions into the
scales of the non-linear multivariate power series or theMPA.
The result of theMDHEM can also predict the reactive power
limits for perspective operating conditions in advance, giving
operators with enough time to take proactive actions. This
method not only provides a tool to obtain the explicit power-
flow solutions of any power systems, but may also to explore
the nonlinearity of power flow equations, e.g. optimal power
flow, nonlinear probabilistic power flow.
This new method has been demonstrated on the 4-bus

power system and the 14-bus IEEE standard power systems.
The error is acceptable and the convergence region can be
extended by using multivariate Pade approximants (MPA).

APPENDIX
A. PROOF OF HOLOMORPHICITY FOR A GENERAL
MULTIVARIATE CONTINUOUS FUNCTION
Theorem: If a multivariate continuous function
f (z1, z2, . . . , zD) defined on a domainU in theD-dimensional
complex-valued space of CD does not depend on any z∗i , i.e.

∂f
∂z∗i
= 0, i ∈ (1, 2, · · ·D) (A1)

then f (z1, z2, . . . , zD) is holomorphic.
Proof: According to Weierstrass approximation theo-

rem, the continuous function f (z1, z2, . . . , zD) can be uni-
formly approximated by a polynomial functions

f (z1, z2, · · · , zD)

=

∞∑
nD=0

· · ·

∞∑
n2=0

∞∑
n1=0

a[n1, n2, · · · , nD]z
n1
1 z

n2
2 · · · z

nD
D (A2)

According to the generalized Cauchy-Riemann equations,
if f (z1, z2, . . . , zD) satisfies

∂f
∂z∗i
=

∂
∞∑

nD=0
· · ·

∞∑
n2=0

∞∑
n1=0

a[n1, n2, · · · , nD]z
n1
1 z

n2
2 · · · z

nD
D

∂z∗i
= 0 (A3)
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Then f (z1, z2, . . . , zD) is holomorphic.
(A3) can be developed to (A4), by assuming zk (k 6= i) hold

as constant values bk in the partial derivatives with respect
to zi.

∂f
∂z∗i
=

∂
∞∑
ni=0

b[ni]z
ni
i

∂z∗i
= 0 (A4)

where b[ni] is a coefficient:

b[ni] =
∞∑

nk=0
i6=k

a[n1, n2, · · · , nk−1, nk , nk+1 · · · , nD]

× bn11 b
n2
2 · · · b

nk−1
k−1 b

nk+1
k+1 · · · b

nD
D (A5)

Set g(z) = b[ni]zni . Therefore, if g(z) is holomorphic for
any i, satisfying another Cauchy-Riemann equations (A6),
then the sum of g(z), i.e. f (z) in (A4), is holomorphic.(

∂gr
∂x
−
∂gi
∂y

)
+ j

(
∂gr
∂y
+
∂gi
∂x

)
= 0 (A6)

where zi = x + jy, g = gr + jgi.
Now set b[ni] = p+ jq, where p and q are real-valued, then

g(z) can be derived to (A7).

g(z) = b[ni]zni = (p+ jq)(x + jy)n

= (p+ jq)

(
n∑

k=0

Ck
n x

n−k (jy)k
)

(A7)

in which

gr

= p

 n∑
k1=0

C4k1
n xn−4k1y4k1 −

n∑
k2=0

C4k2+2
n xn−(4k2+2)y4k2+2


− q

 n∑
k3=0

C4k3+1
n xn−(4k3+1)y4k3+1

−

n∑
k4=0

C4k4+3
n xn−(4k4+3)y4k4+3

 (A8)

gi

= q

 n∑
k1=0

C4k1
n xn−4k1y4k1 −

n∑
k2=0

C4k2+2
n xn−(4k2+2)y4k2+2


+ p

 n∑
k3=0

C4k3+1
n xn−(4k3+1)y4k3+1

−

n∑
k4=0

C4k4+3
n xn−(4k4+3)y4k4+3

 (A9)

So the real part of Cauchy-Riemann equations (A6) is zero
by setting k1 = k3 − 1 and k2 = k4 − 1.(

∂gr
∂x
−
∂gi
∂y

)
= 0 (A10)



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
G21 −B21 G22 −B22 G23 −B23 0 0 WST2im
B21 G21 B22 G22 B23 G23 0 0 WST2re
G31 −B31 G32 −B32 G33 −B33 0 0 0
B31 G31 B32 G32 B33 G33 0 0 0
0 0 WST2re −WST2im 0 0 VST2re −VST2im 0
0 0 WST2im WST2re 0 0 VST2im VST2re 0
0 0 VST2re VST2im 0 0 0 0 0





Vg1re[n]
Vg1im[n]
Vg2re[n]
Vg2im[n]
Vg3re[n]
Vg3im[n]
Wg2re[n]
Wg2im[n]
Qg2[n]



=



0
0

Re
(
P2Wg2re[n− 1]+

n−1
Conv

1
(Q2 ∗W ∗2 )

)
Im
(
P2Wg2re[n− 1]+

n−1
Conv

1
(Q2 ∗W ∗2 )

)
0
0

−Re
(

n−1
Conv

1
(W2 ∗ V2)

)
−Im

(
n−1
Conv

1
(W2 ∗ V2)

)
1
2δn1 · ε[1]−

1
2

n−1
Conv

1
(V2 ∗ V ∗2 )



where ε[1] =
∣∣∣V sp

2pv

∣∣∣2 − |VST2|2 (A14)
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Similarly, it can be proved the imaginary part of (A6) is
also 0.

(
∂gr
∂y
+
∂gi
∂x

)
= 0 (A11)

Therefore, g(z) is holomorphic, then f (z1, z2, . . . , zD) is
also holomorphic.

B. EXAMPLE-1: PHYSICAL GERM SOLUTION
OF THE 3-BUS SYSTEM
A 3-bus system, shown in Fig. 1, is adopted to demonstrate
the procedure of finding the physical germ solution. The first
step is to calculate the initial no-load no-generation condition
(Point A in Fig. 2). Only the slack bus propagates its voltage

to the whole passive network.
1

1
G21 −B21 G22 −B22 G23 −B23
B21 G21 B22 G22 B23 G23
G31 −B31 G32 −B32 G33 −B33
B31 G31 B32 G32 B33 G33



×


VST1re
VST1im
VST2re
VST2im
VST3re
VST3im

 =

Re
(
V SL
1

)
Im
(
V SL
1

)
0
0
0
0

 (A12)

The second step is to find the physical germ solution by a
simple embedding, i.e. 3rd column in TABLE 1. The right
hand side of the PQ bus (i.e. Bus 3) is 0, since no-load



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
G21 −B21 G22 −B22 G23 −B23 −P2g Q2g Wg2im

B21 G21 B22 G22 B23 G23 Q2g P2g Wg2re

G31 −B31 G32 −B32 G33 −B33 0 0 0
B31 G31 B32 G32 B33 G33 0 0 0
0 0 Wg2re −Wg2im 0 0 Vg2re −Vg2im 0
0 0 Wg2im Wg2re 0 0 Vg2im Vg2re 0
0 0 Vg2re Vg2im 0 0 0 0 0



×



V1re[M , 0] V1re[M − 1, 1] · · · V1re[n1, n2] · · · V1re[0,M ]
V1im[M , 0] V1im[M − 1, 1] · · · V1im[n1, n2] · · · V1im[0,M ]
V2re[M , 0] V2re[M − 1, 1] · · · V2re[n1, n2] · · · V2re[0,M ]
V2im[M , 0] V2im[M − 1, 1] · · · V2im[n1, n2] · · · V2im[0,M ]
V3re[M , 0] V3re[M − 1, 1] · · · V3re[n1, n2] · · · V3re[0,M ]
V3im[M , 0] V3im[M − 1, 1] · · · V3im[n1, n2] · · · V3im[0,M ]
W2re[M , 0] W2re[M − 1, 1] · · · W2re[n1, n2] · · · W2re[0,M ]
W2im[M , 0] W2im[M − 1, 1] · · · W2im[n1, n2] · · · W2im[0,M ]
Q2[M , 0] Q2[M − 1, 1] · · · Q2[n1, n2] · · · Q2[0,M ]



=



0 · · · 0 · · · 0
0 · · · 0 · · · 0

Im
(
M−1
Conv
k1=1

(Q2 ∗W ∗2 )
)

· · · Im
(
n1−1,n2−1
Conv

k1=1,k2=1
(Q2 ∗W ∗2 )

)
· · · Im

(
M−1
Conv
k1=1

(Q2 ∗W ∗2 )
)

−Re
(
M−1
Conv
k1=1

(Q2 ∗W ∗2 )
)
· · · −Re

(
n1−1,n2−1
Conv

k1=1,k2=1
(Q2 ∗W ∗2 )

)
· · · −Re

(
M−1
Conv
k1=1

(Q2 ∗W ∗2 )
)

Re
(
P3W ∗3 [M − 1, 0]

)
· · · Re

(
P3W ∗3 [n1 − 1, n2]− jQ3W ∗3 [n1, n2 − 1]

)
· · · Re

(
−jQ3W ∗3 [0,M − 1]

)
Im
(
P3W ∗3 [M − 1, 0]

)
· · · Im

(
P3W ∗3 [n1 − 1, n2]− jQ3W ∗3 [n1, n2 − 1]

)
· · · Im

(
−jQ3W ∗3 [0,M − 1]

)
−Re

(
M−1
Conv
k1=1

(W2 ∗ V2)
)
· · · −Re

(
n1−1,n2−1
Conv

k1=1,k2=1
(W2 ∗ V2)

)
· · · −Re

(
M−1
Conv
k2=1

(W2 ∗ V2)
)

−Im
(
M−1
Conv
k1=1

(W2 ∗ V2)
)
· · · −Im

(
n1−1,n2−1
Conv

k1=1,k2=1
(W2 ∗ V2)

)
· · · −Im

(
M−1
Conv
k2=1

(W2 ∗ V2)
)

−
1
2

M−1
Conv
k1=1

(V2 ∗ V ∗2 ) · · · −
1
2

n1−1,n2−1
Conv

k1=1,k2=1
(V2 ∗ V ∗2 ) · · · −

1
2

M−1
Conv
k2=1

(V2 ∗ V ∗2 )


(A15)

VOLUME 5, 2017 25283



C. Liu et al.: Multi-Dimensional Holomorphic Embedding Method to Solve AC Power Flows

condition is held for the physical germ solution. Thus, the
embedding of PV bus (i.e. Bus 2) is needed to gradually adjust
its voltage magnitude to the specified value |V sp

2pv|.

N∑
k=1

YikVgk [n] = PG2W ∗g2[n− 1]− jQg2[n]W ∗ST2

−j

(
n−1∑
τ=1

Qg2[τ ]W ∗g2[n− τ ]

)
VST2V ∗g2[n]+ Vg2[n]V

∗

ST2 +
1
2

n−1
Conv

1
(V ∗V ∗)

= δn1 ·
1
2

(∣∣∣V sp
2pv

∣∣∣2 − |VST2|2)
(A13)

where δni is Kronecker delta function defined by (11).
Separate the real and imaginary parts of the matrix equa-

tion and put all the nth order terms (i.e. the unknowns) to
the left hand side and leave terms 0 to (n − 1) (i.e. the
knowns) the right hand side. The matrix equation is extended
by adding Wg2(s) and Qg2(s) to the left hand side. The error
of physical germ in PFE will quickly converge to 0 just in
several recursions, since the deviation of voltage at PV Bus 2
contains high order terms of Vg2(s). There is (A14).

C. EXAMPLE-2: MDHEM FOR THE 3-BUS SYSTEM
Assume that s1 and s2 scale the active and reactive powers of
the PQ bus respectively. The matrix equation forM th order is
shown correspondingly in (A15), as shown at the bottom of
the previous page, where n1 + n2 = M .
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