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ABSTRACT In this paper, we propose a machine learning-based approach to detect malicious mobile
malware in Android applications. This paper is able to capture instantaneous attacks that cannot be effectively
detected in the past work. Based on the proposed approach, we implemented a malicious app detection tool,
named Androidetect. First, we analyze the relationship between system functions, sensitive permissions,
and sensitive application programming interfaces. The combination of system functions has been used to
describe the application behaviors and construct eigenvectors. Subsequently, based on the eigenvectors,
we compare the methodologies of naive Bayesian, J48 decision tree, and application functions decision
algorithm regarding effective detection of malicious Android applications. Androidetect is then applied to
test sample programs and real-world applications. The experimental results prove that Androidetect can
better detect malicious applications of Android by using a combination of system functions compared with
the previous work.

INDEX TERMS Malicious applications of Android, machine learning, system function.

I. INTRODUCTION
Android has become the most widely used operation system
today which takes about two-third of the mobile terminal
market by the end of 2016 [1] and has attracted a lot of
attention. It has been applied in more than 2.3 billion terminal
platforms in the world, including computers, panel computers
and mobile phones. A report in [2] showed that Android sys-
tem has occupied 60.39%market share and is still expanding.
However, Android system suffers from attacks of various

malicious applications due to its being an open platform.
The cumulative samples of Android malicious application
have reached 18.74 million [3], [4]. The newly increased
number of malicious attacks threaten the security of Android
system and lead to information leakage of Android users.
Therefore, ensuring the security and effectiveness of Android
applications is urgent.

At present, malicious application detection of Android
based on machine learning becomes a hot topic in this field.
Many researchers are devoted to improving the efficiency

and effectiveness of detection by using machine learning to
construct eigenvectors. Sanz et al. [5] proposed a malicious
application detection method for Android based on appli-
cation usage rights by using machine learning applied in
static analysis. The machine learning can be used to train
characteristics which are application usage rights, and get
training models. Android malicious application process can
be detected using the training model. However, a large num-
ber of Android applications have ‘‘spillovers’’. Moreover,
a single feature will reduce the effectivenss of the system
classification, which results in high false positive rates. In [6],
a detection method based on contrast right mode is proposed.
The enclamald classifier can be used to detect the existence of
malicious applications. However, the deformation technology
such as code obfuscation and dynamic loading, impairs the
accuracy of the analysis. Edkrantz et al. [7] proposed a mal-
ware detection method based on parallel machine learning.
The method converts the system call feature into vectors
including the selected permission, the usage right and the sys-
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FIGURE 1. Schematic diagram of Androidetect detection system.

tem call sequence. The rbf and the shortest path graph kernel
function are used to construct the dynamic model, which has
high classification precision, but the false positive rate is high.
In [8], a malicious software detection method is proposed
based on system call. In this paper, the vector characteristics
is generated by collecting the system invocation information
and the corresponding frequency information variable con-
struction model in the Android environment. The kNN classi-
fication algorithm is used to identify the normal behavior and
the malicious behavior. The method can build the dynamic
running characteristics of the application, but suffers from
high false positive rate. Isohara et al. [9] proposed an Android
malware detection method based on kernel behavior analysis.
A rule base is created by extracting the names and parameters
of malicious system calls. The invocation to rule base of the
application is used to detect unknown malicious samples.
The method is relatively simple, and therefore the test results
are imprecise. The shortcomings of these two analytical
methods are that they can not simulate the dynamic opera-
tion of the application or the constructed eigenvectors can
not effectively detect the instantaneous attacks. Therefore,
Qin et al. [10] proposed a MNDAM system, which can detect
the abnormalities of Android system status, and analyze the
existence of malicious applications. In [11], the DroidRanger
tool [12] was developed to detect the variants of malware.
Li et al. [13] proposed a dynamic stain detection method
based on control dependency analysis. The malicious appli-
cation software can be detected by analyzing the dependence
of sensitive operation and pollution data. These methods can
detect anomaly in the system, but can not determine which
application has caused the problem [15], [16].

This paper presents an Android malicious application
detection method based on machine learning, which identi-
fies instantaneous attacks with low false positive rates. Our
method constructs a feature vector based on the system call
function and classifies Android applications based on source,
where the feature vector is used as training data of the classi-

fier. Compared with the above methods, the behavior descrip-
tion method of dynamic fine-grained application solves the
problem of static detection against code obfuscation and poor
encryption ability, and can also identify the instantaneous
attack and better describe the application behavior in the
stage of constructing eigenvector. In the application testing,
the Android application is classified in accordance with the
functional types to increase the success rate of detection and
reduce false positives by improving the quality of data.

The structure of this paper is as follows. Androidetect
system is given in Sec. II. Key technologies and algorithms
is presented in Sec. III. Experimental design and analysis
is showed in IV. In the end, the conclusions are provided
in Sec. V.

II. ANDROIDETECT SYSTEM
This paper presents a malicious application detection method
based on machine learning, which is implemented as the
Androidetect tool that can automatically detect malicious
applications. The system uses the process injection technol-
ogy, Hook technology and inter-procedural communication
that constructs the eigenvectors by extracting the characteris-
tics of the Android application. An algorithm for application
function class judgment algorithm is designed to establish the
classification of normal and malicious applications. The two
machine learning algorithms, namely the naive Bayesian and
decision tree, are used to train and test classifiers.

The structure of Androidetect detection system is shown
in Fig. 1. The system consists of a log access module and
a log analysis module, where the log access module is used
to obtain the behavior log corresponding to each sample and
transform it into eigenvectors. The security threaten uses
the transformed eigenvector to train classifier which detects
malicious Android applications.

A. LOG ACCESS MODULE
1) Code injection. We adopt the code injection technol-

ogy and Hook technology to complete the intercep-
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tion process of a calling system function during the
operation of malicious samples. In particular, the .so
file is injected into the system_server to replace the
function IOCTL and complete the interception.

2) Function analysis. We employ the Binder communi-
cation mechanism in Android processes to complete
the analysis of system calls. The progress communi-
cation using the Binder mechanism is the process of
system calling functions to perform sensitive behav-
ior. According to the Binder protocol, by analyzing
the command code BINDER_WRITE_READ, we can
obtain two kinds of parameters of the intercepted sys-
tem function ioctl command code and data to realize
the analysis of the ioctl function.

3) Behavior logging. In this paper, the log protocol is used
to output the analysis information by extracting and
combining the underlying information. In the applica-
tion layer, a specific program gets permission to open
the service monitor log information and record log
operations.

4) Log analysis. Since the output information is spliced
by customized rules, we can import the informa-
tion by using the Java string processing method to
analyse and obtain data adopting the customize rules
line-by-line.

B. LOG ANALYSIS MODULE
1) Vector construction. In the stage of feature descrip-

tion, the combination of system functions are used
to describe the application behavior. Considering the
relationship of system functions and permissions, sen-
sitive permissions and sensitive APIs, they can also be
considered as a combination of sensitive behaviors to
describe the application behavior. At the same time,
the combinations of sensitive behaviors are obtained
dynamically from the log information to construct
34 different eigenvectors.

2) Classifier training. We use simple algorithms, naive
Bayesian and decision tree to train the eigenvectors of
the samples. The combination of sensitive behaviors in
the log information are counted and used to construct
the eigenvectors, where these eigenvectors are trained
as input data.

3) Application detection. We adopt the training classi-
fier to detect a large number of applications. We can
classify the applications based on k nearest neighbor
algorithm and 13 functional types, and then incorporate
them into the training classifier which then use them to
detect and determine security threaten.

III. KEY TECHNOLOGIES AND ALGORITHMS
A. FEATURE EXTRACTION TECHNOLOGY
The application behavior description method, process injec-
tion technology and Hook technology are combined to extract
features from different types of Android applications includ-
ing instantaneous attack behavior.

FIGURE 2. Schematic diagram of Android malicious behavior.

1) DESCRIPTION OF ANDROID APPLICATION BEHAVIOR
Different description of Android application behaviormethod
affects the accuracy of behavior characteristics. Malicious
behavior may send text messages until obtaining permission
rights of SEND_SMS and RECEIVE_SMS before calling the
functions sendTextMessage() and sendDataMessage() in the
API layer. In order to prevent users from sending text mes-
sages in the background, malicious applications receive prior-
ity messages via registered SMS receiver SMS_RECEIVED,
and call abortBroadcast() system functions to avoid sending
text messages. The implementation principles of malicious
behavior are shown in Fig. 2.

The schematic diagram of Fig. 2 shows that the Android
application behavior can be described by permissions rights,
API, and system functions. The research in [14] has shown
the correspondence between system functions and permis-
sions, and defined 137 permissions that may be applied. The
work of [17] and [18] further classifies Android application
permissions regarding sensitive permissions. These sensitive
permissions can better describe Android malicious behavior.
Some of the sensitive permissions are listed in TABLE 1.

The system function and the permission have the corre-
sponding relations, the sensitive authority and the sensitive
API also have the mapping relation [19]. The relationship
between them can be understood as follows. The implemen-
tation of malicious behavior must first apply for sensitive
permissions, and the granted permissions are used to call
the application layer API, in order to intercept the system
function. Therefore, the sensitive behavior of the application
can be used to characterize system functionalities. As a com-
bination of sensitive behaviors can be more dangerous than
a single sensitive behavior, we select a set of single system
behaviour and combined system behaviors, which leads to
34 items that need to be recorded, as shown in TABLE 2.

2) INTERCEPTION OF ANDROID APPLICATION BEHAVIOR
The interception of Android application behavior, in essence,
is to replace system calls in an application. During an
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TABLE 1. Some classical sensitive permissions.

TABLE 2. Sensitive Behaviors and their combination.

application run, any request of calling a system function is
sent to the system_server system process. For an important
sensitive operation API, permissions rights are needed to pass
through the system core, so it is useful to intercept calls to
all sensitive APIs. During the operation of the code, the ioctl
system function needs to be called, and process injection
and Hook technology can be used to complete the behavior
interception. At the same time, the Binder communication
mechanism in Android processes is used to complete the
analysis of system call function. This is implemented in the
log capture module as shown in Fig. 3.

i) Injection of the so base and interception of behavior
code. In the system, the log capture module employs the pro-
cess injection technology, Hook technology and behaviour
interception code. The process is shown in Fig. 4.
(a1) Call ptrace() to track and debug the target process

system_server.
(a2) Call the MMAP() function to open up a large enough

memory space in the target process space.
(a3) Copy shellcode into memory space.
(a4) Load customized so base. Call the Property function to

write ioctl’s real address and replace ioctl by the new

FIGURE 3. Schematic diagram of application system function interception.

function address. Call the get_module_base function
to load libbinder and complete the injection of so base.

(a5) Analysis of ELF files and interception of behavior
code. Open the /system/lib/libbinder.so file to get the
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FIGURE 4. Schematic diagram of injection of so base and interception of
behavior codes.

FIGURE 5. The basic form of eigenvector.

ELF head, the address, number and size of the Section
Header zone table, and get the index number of the
string table Section. The interception of the behavior
code is completed.

ii) Analysis of ioctl function. The structure binder_
transaction_data of ioctl function in the write_buffer data
stores process communication data. Stripped of these data,
we can get the application process ID and the system function
name that is to complete the analysis of the ioctl function.
iii) Behavior log and analysis. After obtaining the ioctl

function parameters, we can use specific rules to splice and
the log output. The application layer is used to operate the
log. Similarly, the application layer completes the analysis of
log in accordance with the established rules.

3) CONSTRUCTION OF CHARACTERISTIC VECTORS
We can use the combination of system functions to construct
the eigenvector of Android application, that is to construct a
34 dimensional eigenvector to describe the application sam-
ples. The basic form of a vector is shown in Fig. 5.

Specifically, we need to count the number of samples, the
types of sensitive behavior and the number of times a sensitive
behavior appearing in the sample after extracting the system
function from the log information. Each vector corresponds
to an application sample, and each dimension of the vector
corresponds to how many times a sensitive behaviour or a
combination of behaviours appear in the sample.

B. DETECTION ALGORITHM OF ANDROID APPLICATION
The detection of Android application is divided into three
stages as follows.
(b1) Preparation. The eigenvectors are constructed by

extracting the feature information of the training
samples.

(b2) Classifier training. The eigenvectors constructed by
the samples are used as input data, which can be trained
by the classifier to obtain the classifier.

(b3) Application security detection. The trained classifier is
used to classify the application and detect the security
threaten.

1) TRAINING ALGORITHM OF CLASSIFIER
The classifier training algorithm is used to train the eigen-
vectors of the samples to obtain classifier. In order to validate
the efficiency of application behavior description method, we
adopts the Naive Bayesian algorithm and the decision tree
algorithms to train the classifier respectively. The best clas-
sification performance algorithm is as the classifier training
algorithm of the system.

a: NAIVE BAYESIAN ALGORITHM
Naive Bayesian is based on the Bias principle, which is to
calculate the posterior probability of each category under
concrete condition. The maximum posterior probability is
considered as items to be classified subordinate category.

Assume a set of items to be classified X = {xi|i =
1, 2, . . . , l}. Every item xi have n attributions A1, A2, . . ., An
expressed as xi = {a1, a2, . . . , an}. Let the set of categories
be Y = {yh|h = 1, 2, . . . ,m}. Then judge the category of
each xi, that is

p(yh|xi) = argmax{P(y1|xi), . . . ,P(ym|xi)} (1)

According to Bayes’ rule, we get

p(yh|xi) =
p(xi|yh) · p(yh)

p(xi)
(2)

Considering the independence of the attributes in the
item xi, the conditional probability of each characteristic
attribute in the class yh is obtained from

p(xi|yh) = p(a1|yh) · p(a2|yh) . . . p(an|yh) (3)

Considering the higher computing performance of the
naive Bayes algorithm and the decision of Android appli-
cation security, a large number of applications need to be
detected, so the algorithm can be used to train the classifier.
The steps are as follows.
Step 1: Statistical analysis of the training samples, we get

the set of category samples {y1, y2, . . . , ym} and the corre-
sponding condition probability set (p(y1), p(y2), . . . , p(ym)}.
Step 2: The eigenvector set {x1, x2, . . . , xl} can be

constructed by running training samples and analyzing
the log information of these samples, where the related
eigenvector is {a1, a2, . . . , an} and the probabilities are
{p(x1), p(x2) . . . , p(xi)}. We get the condition probabilities of
each feature attribute {y1, y2, . . . , ym} as follows.

p(a1|y1) · p(a2|y1) . . . p(an|y1)
p(a1|y2) · p(a2|y2) . . . p(an|y2)

...

p(a1|ym) · p(a2|ym) . . . p(an|ym)

(4)
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Step 3: Combined Eqs. (2) and (3), we get the probability
p(y1|xi), . . . , p(ym|xi).
Step 4:We get the maximum posterior probability of cate-

gory yh from Eq. (1).

p(yh|xi) = argmax{p(y1|xi), . . . , p(ym|xi)} (5)

Some behavior can not be performed in Android applica-
tion process which will causes P(A/yh) = 0 to affect the per-
formance of the classifier. Therefore, the Laplace calibration
is introduced in step 2, and the number of all characteristic
attributes in each class is added 1 to improve the classification
efficiency.

b: DECISION TREE CLASSIFICATION ALGORITHM
ID3 and C4.5 are widely used in decision tree classification
algorithms. C4.5 uses information gain rates to select proper-
ties to overcome the shortcomings of the multi-attribute value
selection in ID3 algorithm contributing to a higher efficiency.
So C4.5 is used as a selection algorithm of the attribute
decision tree classifier.

In the category item set X and Y, the X is divided into m
subsets {Xh|h = 1, 2, . . . ,m}. Thus, the average information
of X is

I (X ) = −
m∑
h=1

Ph · log2Ph (6)

where Ph =
|Xh|
|X | , |Xh| and |X | represent the number of

elements in Xh and X, respectively.
In the set {A1,A2, . . . ,An}, suppose that Aj has q attribute

values. Based on the attribute Aj, the classification item set X
can be divided into q subsets {X ′1,X

′

2, . . . ,X
′
q}. The average

information quantity of X is

IAj (X ) =
q∑
j=1

|X ′j |

|X |
I (X ′j ) (7)

Divide X by using the attribute set Aj, we get the informa-
tion gain as follows.

G(Aj) = I (X )− IAj (X ) (8)

The information gain rate R(Aj) is obtained by using C4.5
algorithm

R(Aj) =
G(Aj)
S(Aj)

(9)

where S(Aj) = −
q∑
j=1

|X ′j |
|X | · log2

|X ′j |
|X | . The information gain

rate R(Aj) can be used as the basis for attribute selection. The
process of training classifier using the C4.5 algorithm are as
follows.
Step 1: Statistical analysis of the sample in the training

stage, and the set of samples is obtained {y1, y2, . . . , ym}.
Step 2: Run the training samples, and analyze the log

information of these samples to construct the eigenvec-
tor set {x1, x2, . . . , xl} which corresponds to eigenvector
{a1, a2, . . . , an}.

Step 3: The eigenvector set {x1, x2, . . . , xl} is divided into
{X1,X2, . . . ,Xm} according to {y1, y2, . . . , ym}.
Step 4: Calculating the average amount of information

−

m∑
h=1

Phlog2Ph of {x1, x2, . . . , xl}.

Step 5: Combined with Eqs. (5-7), we calculate
the information gain rate of each attribute information
{R(A1),R(A2), . . . ,R(An)} in the set A = {A1,A2, . . . ,An}.
Step 6: The max information gain rate Rmax(A∗j ) is chosen

from {R(A1),R(A2), . . . ,R(An)} as split attribute to construct
nodes of a decision tree.
Step 7: Cut the A∗j attribute in set A, repeat the steps.
Step 8: Judge whether the set A is Ø, and if it is Ø, the

decision tree is output. Otherwise, it returns to steps 5-7.

2) THE APPLICATION SECURITY DETECTION ALGORITHM
FUNCTIONAL CLASSIFICATION METHODS
The method used for classification of Android applications
has a great impact on the classification effect at the classifier
training stage, as well as on the detection result at the security
detection stage.

In order to reduce false positive rates, the system adopts the
application function classification method to divide Android
applications into 13 categories, as shown in TABLE 3.

TABLE 3. Function categories of android application.

In the classifier training stage, we need to classify the
adopted sample according to the functional classification
methods, and then distinguish benign and malicious appli-
cations. In the security testing stage, we need to classify
the applications according to the known categories. A large
number of applications needs to be detected in the security
detection stage. Since the sample class domains intersect
and overlap, the system automatically discriminates appli-
cation function categories based on the k nearest neighbor
algorithm.

The k nearest neighbor classification algorithm works on
the commonality of adjacent samples, that is, if most of k
samples, which is nearest to a given sample to be classified,
belong to a certain category, then the sample also belongs to
the category. In the Android system permissions mechanism,
we can find commonness based on the similarity of applica-
tion permissions between similar applications.

Assume that the set of the category is X = {xi|i =
1, 2, . . . , l}. Each application item xi to be classified
applies the permission with an n dimension vector xi =
{x i1, x

i
2, . . . , x

i
n} (where n is the total number of permissions

in the Android system, and in this test n = 137). The v-th
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dimension element x iv in the permission vector of xi represents
the v-th application permission. If x iv = 1 holds, then the
permission is applied, and vice versa.

In order to obtain a vector of estimated similarity, the
latitude values in the vector are adjusted are as follows.

x iv =
piv
n
log2

D
d + 1

, (10)

where piv represents whether the i-th application has the
v-th dimensional permission, n stands for the total number
of Android system, D represents the number of applications
to be tested in the sample, and d indicates that the number of
application in the v-th permission.
Furthermore, the cosine of the vector denotes the similarity

between the two applications as follows.

Sxi,yj =

n∑
v=1

x ivy
j
v√

n∑
v=1

(x iv)2 ·

√
n∑
v=1

(yjv)2
(11)

where S(xi,yj) represents the similarity between xi and yj. The
vector of xi is (x i1, x

i
2, . . . , x

i
n), and the vector of yj is (y

j
1, y

j
2,

. . . , yjn). The function classification algorithm based on the
application of k nearest neighbor classification method is as
follows.
Step 1: Analyze the permission of application to be

detected, we get X = {xi|i = 1, 2, . . . , l}, and the set of
n-dimensional vectors{(p11, p

1
2, . . . , p

1
n), (p

2
1, p

2
2, . . . , p

2
n), . . . ,

(pl1, p
l
2, . . . , p

l
n)} generated by the corresponding set of per-

missions.
Step 2: The set of n-dimensional vectors is calculated com-

bined with Eq. (8) to obtain a corresponding set of permission
vectors of calculating the similarity

{(x11 , x
1
2 , . . . , x

1
n ), (x

2
1 , x

2
2 , . . . , x

2
n ), . . . , (x

l
1, x

l
2, . . . , x

l
n)}

(12)

Step 3: Set v = 1, where v is the v−th element in the
permission vectors of step 2.
Step 4: We calculate the similarity between the per-

mission vector (xv1, x
v
2, . . . , x

v
n) and the other vector

according to Eq. (11) to get the similarity set S(v,v+1),
S(v,v+1), S(v,2), . . . , S(v,v−1), S(v,v+1), S(v,v+2), . . . , S(v,l).
Step 5: We choose the first K apps of highest similarity

with the xv application with the application xv to be detected,
where p represents the number of divided by K applications,
r is application type S(v,xv(k,p))(r,w,mr )|k∈{1,2,...,v−1,v+1,...,l , i.e.
{r|r = 1, 2, . . . , p}, mr represents the number of application
types, i.e.

∑p
(r=1) mr = k , w is the w-th application of type r ,

i.e. {w|w = 1, 2, . . . ,mr }.
Step 6: Calculate the average similarity between each type

in the K applications and the xv of the application to be
detected in step 5.

u(xv) =

∑mr
w=1 Sv,xv(k,p)(R,w,mr )

mr
. (13)

Step 7: We choose the type of application of the highest
similarity by analyzing uxv .
Step 8: If v 6= n holds, then v = v + 1 and turn to step 4.

Otherwise, the result of the classification is the output.

IV. EXPERIMENTAL DESIGN AND ANALYSIS
A. EXPERIMENTAL ENVIRONMENT
In this paper, we use C/C++ and Java to implement the mali-
cious application detection tool Androidetect, where C/C++
is used in the application call function and Java is used for the
other tasks. Androidetect detects 219 malicious application
samples, where 102 applications are reading applications, and
the remaining 117 applications are of unknown types, as are
included in the virus database. The experiment is performed
on the Mils mobile phone, where the baseband version of
8660-AAABQNBYA-g4271bc1, the Android system version
of 4.4.4, and the kernel version of 3.4.0-g1ccebb5.

B. EXPERIMENTAL RESULTS AND ANALYSIS
1) ANALYSIS ON THE EFFECT OF BEHAVIOR INTERCEPTION
ON MOBILE PERFORMANCE
Behavioral interception may lead to change in mobile per-
formance, and ultimately affects the application classifica-
tion and accuracy of application detection. In this section,
we analyze the impact of behavioral interception on mobile
performance.

In the experiment, we first install and run malicious
applications that can send text messages and get private
information through the background. The behavior intercep-
tion through the inject, librecorder.so base files, behaviour-
recorder.apk to complete process injection, ioctl function
intercept and parameter analysis, and log record. The results
in Fig. 6 show that the system can successfully intercept the
application behavior.

FIGURE 6. Schematic diagram of the application behavioral interception.

In TABLE 4, the notations a and b represent the changes
in the rate of CPU usage and memory usage before and
after the injection of the System_server. The rate of CPU
usage is below 1%, while the rate of memory occupancy is
not obviously changed. The notation c represents the rate of
occupation of resources, and the rate of CPU and memory
resources are not high. Thus, application behavior intercep-
tion does not affect moblie performance.

2) ALGORITHM ANALYSIS OF CLASSIFIER TRAINING STAGE
In TABLE 5, the confusion matrix of the classification result
distribution is showed, where benign applications of the right
classification TN, benign applications of the wrong classifi-
cation FP, malicious applications of the right classification
FN, malicious applications of the wrong classification TP.
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TABLE 4. Occupation of resources in application behavior interception.

TABLE 5. The classification result distribution.

TABLE 6. The classifier evaluation parameters.

The classifier evaluation parameters are shown in
TABLE 6.

In the experiment, the J48 decision tree classifier and
the naive Bayesian classifier adopt 10-fold cross-validation
to detect 200 samples, where 100 benign applications and
100 malicious applications respectively. The benign applica-
tion categories include system security, lifestyle, shopping,
and map tourism). The results are shown in TABLE 7 and
TABLE 8.

Combined TABLE 6, 7 and 8, we get the bar graphs with
the detection rate, false positive and classification accuracy
in Fig. 7-9.

It implies that the classification accuracy of the two
algorithms reach 82.5% and 86%, respectively, and the J48
decision tree algorithm is superior to the naive Bayesian
algorithm in TPR, FPR andACC. The system function is used
to describe the behavior to distinguish benign and malicious
applications.

3) ALGORITHM ANALYSIS OF IMPLEMENTATION STAGE
In the experiment, we still use the 10-fold cross-validation to
test the selected 200 news reading (100 for benign and 100 for
malicious applications, respectively), and verify the validity
of the application function classification algorithm based on

FIGURE 7. Schematic diagram of TPR.

FIGURE 8. Schematic diagram of FPR.

FIGURE 9. Schematic diagram of ACC.

k nearest neighbor algorithm. In addition, we also selected
180 hybrid application types of the training set (90 for benign
and malicious applications, respectively) to verify the effect
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TABLE 7. The results of J48 decision tree classifier.

TABLE 8. The results of the naive Bayesian classifier.

FIGURE 10. Schematic diagram of classification accuracy of classification
algorithm.

of data training and testing in accordance with the functional
classification based on the type.

We first use the test set to classify the application function
classification algorithm. If the result of judgement is the news
reading, the classifier with the formal training set is used. If an
error appears, the classifier of alternate training set is used.

In Fig. 10, the accuracy rate of 100 benign reading appli-
cation classification reaches 95%. The accuracy rate of
100 malicious reading class application classification reaches
89%. The accuracy rate of the overall classification reaches
92%. Therefore, the proposed algorithm based on k nearest
neighbor algorithm is effective.

FIGURE 11. Schematic diagram of TPR comparison of a and b.

The comparison bar graphs of TPR, FPR, and ACC, where
a and b are two experiments in Fig. 11-13.
The results of TPR, FPR and ACC in experiment b are

better than those in the experiment a, which proves that it
is more effective to further divide the application according
to the functional type. At the same time, using this classi-
fication method can more effectively reduce the probability
that benign applications are wrongly determined as malicious
applications.

C. COMPARISON WITH RECENTLY RELATED WORK
In order to further prove the effectiveness of the proposed
method, the same test samples will be compared with some
typical testing tools.
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FIGURE 12. Schematic diagram of TPR and FPR comparison of a and b.

FIGURE 13. Schematic diagram of ACC comparison of a and b.

Comparisons with recently related work are shown in
TABLE 9. In Andromaly system [20], we use the dynamic
method to extract the API features. The disadvantage is fewer
samples and not using real malicious application validation
compared with BN, J48, K-means and other algorithms to
detect malicious applications. In PUMA system [6], we adopt
the application authority as characteristics, and use the ran-
dom forest algorithm to detect malicious applications, but the
result has high false positive rate. Peiravian and Zhu [21]
proposed the combination of permissions and Android API
calls as characteristic to improve the detection rate and the
accuracy of classification. Amos et al. [22] chose the system
state as a characteristic and used a real malware sample for
verification.

To sum up, a variety of features are used in these systems to
better reflect the behavior feature of malicious Android appli-
cations. The instantaneous attack can be accurately described
by Androidetect system using a unified relationship of sys-
tem functions, sensitive operation APIs and permissions.
While other tools cannot determine the detection of abnormal
behavior generated by which application. And Androidetect

TABLE 9. Comparisons with recently related work.

TABLE 10. The relevant results.

system uses the application of functional classification algo-
rithm with better detection effects.

Comparing with the relevant results, we find that
Androidetect system has a high classification accuracy and
low false positive rate in the detection of malicious Android
applications. Androidetect system has a better detection result
in the categories FPR and ACC, and a slightly lower TPR,
as shown in TABLE 10.

V. CONCLUSION
In this paper, the dynamic analysis technique is used to extract
the feature of system functions to construct the eigenvectors.
The classificationmodel is established by naive Bayesian, J48
decision tree and Android application function type decision
algorithm to realize the detection system Androidetect. The
advantages of the system are as follows. First, the description
method based on the system function can be used to identify
the instantaneous attack. Second, the detection method based
on the algorithm of the Android application function type can
judge the source of the detected abnormal behavior. Finally,
compared with the related work, Androidetect system has a
better performance regarding FPR and ACC. In the future, we
will improve the TPR in the Androidetect system.
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