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ABSTRACT In this paper, we propose an novel interactive outlier detection system called feature-rich
interactive outlier detection (FRIOD), which features a deep integration of human interaction to improve
detection performance and greatly streamline the detection process. A user-friendly interactive mechanism
is developed to allow easy and intuitive user interaction in all the major stages of the underlying outlier
detection algorithm which includes dense cell selection, location-aware distance thresholding, and final top
outlier validation. By doing so, we can mitigate the major difficulty of the competitive outlier detection
methods in specifying the key parameter values, such as the density and distance thresholds. An innovative
optimization approach is also proposed to optimize the grid-based space partitioning, which is a critical
step of FRIOD. Such optimization fully considers the high-quality outliers it detects with the aid of human
interaction. The experimental evaluation demonstrates that FRIOD can improve the quality of the detected
outliers and make the detection process more intuitive, effective, and efficient.

INDEX TERMS Outlier detection, space partitioning, human interaction, visualization.

I. INTRODUCTION
Outlier detection has been an important research problem in
data management, particularly in the the areas of data mining
and knowledge discovery. It aims to detect those data or
objects from the given data source which, when compared
with the major population of the data source, exhibit signifi-
cantly abnormal, inconsistent or suspicious patterns. Outliers
are usually important, or even critical, objects for the appli-
cations involved which requires special attentions or actions
from users. Given its inherent importance, the problem of out-
lier detection has been intensively studied for the past decades
and has enjoined a wide range of important applications such
as network intrusion detection, environmental monitoring,
financial and telecommunication fraud detection, to name a
few.

The problem of outlier detection first originated from the
area of statistics where outliers are primarily detected using

statistical approaches. A certain data distribution needs to be
assumed for the normal data in the data source and outliers are
defined as those data which clearly do not fit in the assumed
data assumption. This type of methods work reasonably well
for simple, small datasets, but quickly suffers a performance
degradation when the data scale increases. As the volume
and dimensionality of data increases, the traditional statistical
approaches quickly become insufficient to deal with this
problem efficiently and effectively. Consequently, most of the
recent research in outlier detection focuses on investigating
various detectionmechanisms from, for example, the distance
and/or density perspectives, to model and detect outliers more
effectively and efficiently.

In the era of big data when the volume and complexity
of data are increased at an unprecedented rate, user-friendly
human interaction together with the use of data visualiza-
tion have been very useful to understand and interpret the
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data in question. They are capable of offering effective and
efficient support to various data analytical tasks including
outlier detection. Despite the intensive research work on out-
lier detection we have witnessed in literature during the past
several decades, there is much less attention being paid on
integrating human interaction as an effective means to assist
and improve outlier detection.

In this paper, we propose FRIOD, an innovative outlier
detection system. The technical contributions of FRIOD are
summarized as follows.
• FRIOD integrates a rich set of interaction features in all
the major stages of the underlying outlier detection algo-
rithm it uses, contributing to its promising effectiveness
and efficiency;

• Human interaction effectively helps FRIODmitigate the
long-standing difficulty of the existing outlier detection
methods, especially in specifying appropriate values of
the key parameters such as the density and distance
thresholds;

• A novel approach is also proposed in FRIOD to optimize
the grid-based space partitioning which fully leverages
the good outliers detected by itself thanks to the human
interaction integrated;

• The last but not least, the experimental evaluation results
demonstrate that, through a deep integration of human
interaction in FRIOD, the outlier detection process can
be greatly streamlined and the detection performance
can be improved noticeably when compared with the
existing interactive and non-interactive outlier detection
methods.

The remainder of this paper is organized as follows.
In Section 2, we discuss the related work on outlier detection,
covering both the traditional outlier detectionmethods as well
as those integrating features of visualization and/or human
interaction. Section 3 presents the basic outer detection algo-
rithm that FRIOD uses. The rich set of human interaction
features integrated into all themajor stages of the basic outlier
detection algorithm of FRIOD are elaborated in Section 4.
The experimental results are reported in Section 5. The
final section concludes this paper and highlights some future
research directions.

II. RELATED WORK
There has been a rich body of research work conducted in
the area of outlier detection. Depending on the mechanisms
used for modeling data abnormality, the existing research
work can be broadly categorized into distribution-based
methods, distance-based methods, density-based methods
and clustering-based methods. Distribution-based methods
detect outliers by assuming a pre-determined distribution or
probability model to fit the given dataset [3], [11]. Outliers
are those data that significantly deviate the underlying model
of the data. To improve the scalability of distribution-based
methods for handling large datasets, distance-based methods
use distance-based metrics to quantify the proximity between
each data point and its neighborhood such as the nearest

neighbors or dense regions/clusters [6], [7], [37], [39]. Those
data points that are far from their respective neighbors are
considered as outliers. Density-based methods use more
complex mechanisms to model the outlier-ness of data points
than distance-based methods [16], [19], [31], [35], [36], [40].
They usually involve investigating not only the local density
of the data being studied but also the local densities of its
nearest neighbors. Because of the close relationships between
data clusters and outliers, clustering analysis can also be
performed to assist the detection of outliers by defining
outliers as data that do not lie in or located far apart from
any clusters [2], [12], [21], [29], [30], [41].

Detecting outliers from increasingly large datasets is a very
computationally expensive process. To improve the efficiency
performance of outlier detection, a grid structure can be
created through a space partitioning that discretizes each con-
tinuous attribute to a few intervals. Using the grid structure
can considerably reduce the computational overhead as the
major operation of detection is now performed on the grid
cells which is typically of a much smaller number compared
to the total number of data instances in the dataset. Thismakes
the detection process much more scalable to datasets with
a large number of instances. In addition, the grid structure
can greatly facilitate the calculation of data synopsis to cap-
ture data distribution and characteristics for the purpose of
outlier detection. Some related grid-based outlier detection
and clustering methods (which can assist outlier detection)
including DISTROD [31], the sparse cube search method [1],
SPOT [32], Grid-k-Means [9] and Grid-DB [4]. Nevertheless,
these methods are not equipped with interactive mechanism
in any stage of their detection process, which limit their
efficiency and effectiveness for outlier detection that may be
achieved otherwise.

Although have being relatively sophisticated in the mecha-
nism and procedure for detecting outliers, the existing outlier
detection techniques mostly lack the facilities to support
human interaction to effectively assist the detection process.
This is somehow to our surprise since there has been little
research in the area of interactive outlier detection, compared
to the depth and width of the research in outlier detection
that we have witnessed for decades. Furthermore, most of
the existing interactive outlier detectionmethods provide very
limited support for human interaction in the outlier detection
process. Typically, they merely incorporate visualization and
minimum human interaction on the final outliers detected.
In [27], the final detected outliers are classified as explainable
and unexplainable outliers. Those expendable outliers are
removed immediately whereas the unexplainable ones will be
further examined by human users. 2D and 3D visualization
tools are developed to visualize the detected subspace out-
liers which are embedded in the low dimensional subspaces
with two or three dimensions [28]. A few different types of
view on the final outliers are presented by VSOutlier [23]
which shows the outliers based on a query, displays a visual
comparison of the qualified outliers of different queries and
monitors the key performance metrics of the outlier detection
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algorithms. An outlier detection method incorporated with
user feedback was proposed in [33], which allows users to
decide the suspicious objects which are not directly classified
as outliers by the system but each features a relatively high
outlier-ness score. Visualization and interaction are also pro-
vided for feature selection using the evolutionary algorithm
for subspace outlier detection [25], [26]. An exploration and
visualization method for outlier detection was also proposed
for dealing with log data [24] but it lacks the generality that
cannot be directly applied to other types of data.

SODIT [34] is a recently proposed interactive outlier detec-
tion system which features mechanisms of human interaction
inside the detection process, rather than only on the final
detection result as in the above-referenced work. Interac-
tive interfaces were developed to support the selection of
dense regions of the dataset and distance calculation. It also
mitigates the problem of using a single universal distance
parameter for the whole dataset (as the case in many other
methods) and introduced the concept of localized thresh-
olding. Yet, it only provides some preliminary features of
human interaction and suffers the following several major
limitations: 1) The detailed data of the whole dataset are used
to visualize the dense regions selected by users when they are
scrolling through the bar-like control on the interface to select
the optimal density threshold. This may be very slow and
could seriously affect the experience and efficiency of human
interaction in selecting the dense regions; 2) The coefficient
of the distance threshold used in SODIT is not location aware.
As the result, an appropriate value of the coefficient for one
region of the dataset may not be appropriate for other regions.
This may adversely affect the accuracy of outlier detection;
3) SODIT doesn’t provide the advanced features such as the
final outlier visual validation and the optimization of the
space partitioning.

In summary, a deep integration of human interaction in
supporting efficient and effective outlier detection hasn’t
yet been adequately addressed in the current literature and
FRIOD is developed aiming to fill this research gap. FRIOD,
the interactive outlier detection system proposed in this paper,
can effectively solve the limitation of the system proposed
by [34]. It improves the efficiency and accuracy of the selec-
tion of dense regions formed by the dataset and enhances
the effectiveness of the location-aware distance thresholding.
Besides that, our system offers additional important features
such as interactive validation of the final detected outliers
with advanced learning capacity and the optimization of the
grid-based space partitioning.

III. THE BASIC OUTLIER DETECTION ALGORITHM
We first introduce the basic outlier detection method used in
FRIOD, which serves as an ideal algorithmic framework for
an deep integration of human interaction.

As the pre-processing step in FRIOD, the data space of
the given dataset is undergone grid-based space partitioning
which involves superimposing a grid structure into the data
space under study. This partitioning results in a number of

cells being created in the grid structure and each data in the
dataset is mapped into one and only one cell. In FRIOD, we
choose to utilize the grid-based equal-width space partition-
ing that partitions each dimension into intervals with an equal
width. Compared to the alternative equal-depth partitioning
method that partitions each dimension into a number of inter-
vals such that each contains an equal number of data points,
equal-width space partitioning is more advantageous in that it
offers a more spatially balanced partitioning of the data space
involved and is much easier and more efficient to implement
than the equal-depth space partitioning and, therefore, con-
tributes to the better efficiency for outlier detection.

In FRIOD, each dimension is partitioned proportionally
into intervals with an equal width, meaning that the number of
intervals generated for the dimension is in the right proportion
to its range. Take the case of a two-dimensional data space for
example which is represented by X and Y axis, we have

g(X )
g(Y )

=
Range(X )
Range(Y )

(1)

where Range(X ) and Range(Y ) can be calculated based on
the minimum and maximum values in the dataset as

Range(X ) = Max(X )−Min(X ) (2)

and

Range(Y ) = Max(Y )−Min(Y ) (3)

For the ease of presentation, we only specify the granular-
ity forX axis asX = g in the rest of this paper. The granularity
for Y axis can be obtained proportionally.

Once data partitioning is completed, the basic outlier detec-
tion algorithm is ready to perform, which will take the follow-
ing several steps:

1) Each data in the input dataset is mapped into one and
only one cell in the grid. Cell density is calculated and
maintained for all the populated cells. That is, when a
data point is assigned to a cell, then the density of this
cell will be incremented by 1;

2) The populated cells will be ranked based on their den-
sity in a descending order and a specific number of
most dense cells selected whose total number of data
points have exceeded r% (for example 80%) of the
number of data in the whole dataset. These cells are
called dense cells. The centroids of these dense cells
are called representative data. The data points that do
not fall into the dense cells are called outlier candidates
that require further evaluation in order to detect true
outliers from them;

3) Using the extracted representative data, the outlier
score of each outlier candidate will be calculated which
is defined as the distance between each data and its
nearest representative data;

4) The top n outlier candidates which have the highest
outlier score are returned to users as the final result.
The value of n is specified by end users which reflects
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their requirement as to how many top outliers they are
seeking.

Please note that, in the grid-based algorithm, the total
number of cells will grow exponentially with regard to the
partitioning granularity (i.e., the numbers of intervals for
each dimension). Nevertheless, the actual number of pop-
ulated cells only grows modestly with regard to the parti-
tioning granularity. This ensures the efficiency of the outlier
detection.

Thanks to the grid-based space partitioning which signifi-
cantly reduces the computational complexity, the above basic
outlier detection algorithm is highly efficient. It also serves as
a very good platform for integrating deep human interaction
to assist outlier detection in every stage of the algorithm,
which will be detailed in the next section.

IV. INTEGRATION OF HUMAN INTERACTION IN FRIOD
In this section, we first present an overview of the architecture
of FRIOD, followed by detailed discussions on the rich set
of interactive features of FRIOD in all its major stages of
outlier detection. The space partitioning optimization is also
presented which considers the good set of outliers detected
interactively by FRIOD.

Thanks to its interactive nature, FRIOD, like the existing
interactive outlier detection systems, is very effective for
outlier detection from datasets with two or three dimensions
such as the spatial databases. For the datasets with more than
three dimensions, there can be two scenarios where FRIOD
can be applied for outlier detection. First, FRIOD can be used
to carry out the detection of so-called subspace outliers from
the given dataset. Due to the curse of dimensionality, outliers
can only be detected in those low dimensional data spaces,
many of which have two or three dimensions. Second, we
can perform dimensionality reduction or feature selection to
reduce its dimension to two or three in order to use FRIOD for
interactive detection. Based on the identification information
of data in the dataset, the detected outliers can be re-mapped
to its original dimensionality if necessary at the end of the
detection process. These two strategies ensure the general
applicability of FRIOD in handling datasets with varying
dimensions.

A. AN OVERVIEW OF FRIOD
FRIOD is an innovative interactive outlier detection system
with deeply integrated human interaction modules to provide
a rich set of interactive features for outlier detection. An
overview of the system architecture of FRIOD is presented in
Figure 1 where the interactive functional modules are partic-
ularly highlighted in the orange color. Those modules include
dense cell selection, location-aware distance thresholding,
final top outlier validation and grid-based space partitioning
optimization.

In FRIOD, users are able to get instant feedback through
visualization at the end of each stage regarding how well this
stage has been performed towards producing a good outlier
detection result in the end. This allows users to timely adjust

FIGURE 1. System architecture of FRIOD.

the values of the key parameters of the algorithm as early as
possible in the detection process to enable FRIOD to detect
outliers in a more efficient and effective manner.

In real-life situations, users can choose to engage in all or
some of the three interactive stages in FRIOD depending on
their interests and availability of time. This can make FRIOD
more flexible and adaptive to different situations and users.
Based on our experience, if users can be involved in the earlier
stages, the workload in the later stages, such as final outlier
validation, can be somehow reduced due to the higher quality
of outliers detected earlier in the process.

B. DENSE CELL SELECTION
Identifying dense cells is an important early step in FRIOD.
Those dense cells are used to generate the representative
data and calculate the outlier-ness score for each data point.
Nevertheless, the term ‘‘dense’’ is a relative, subjective term
which needs to be precisely defined, but this is not easy. The
basic outlier detection algorithm defines the dense cells as
those high-density cells whose total density reaches a certain
fixed percentage (e.g., 80%). However, this definition may
not be universally accurate for different datasets in question.

Human interaction is very helpful to provide an effective
visual aid to determine the dense cells in the grid. In order
to facilitate this process, we designed on the user interface a
bar-like controller where users can scroll through to spec-
ify an appropriate density threshold. To enhance the user
experience, whenever he releases the click of the mouse
on the scrolling bar, FRIOD will immediately apply the
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corresponding selected value as the density threshold without
the need to click another bottom to start this process. This
simple design is quite effective in giving users a real-time
feeling of the system and making the density threshold
selection more efficient and streamlined.

SODIT, an existing interactive outlier detection system,
also leverages human interaction to specify the dense cells.
Nevertheless, for each selected density threshold, the whole
dataset has to be loaded for visualization in SODIT. This
renders this step very slow in practice when we are dealing
with large datasets and compromises the user experience and
efficiency in selecting dense cells. It is possible to build
an index of the dataset for a speedup. However, such an
index (which maintains the information regarding the cell
which each data in the dataset belongs to) will incur a high
computational and space overhead given the possibly very
large size of the dataset. In addition, the workload of color
coding the data points in the selected dense regions is almost
equivalent to dealing with the whole dataset.

To solve this problem, we develop in FRIOD a more
efficient mechanism for improving the real-timeliness of
the human interaction in selecting dense cells. Instead of
using the detailed data for visualization under each speci-
fied density threshold, we choose to display the dense cells
of a sample generated from the original dataset for human
inspection when users are scrolling through the bar control
to tuning the value of the density threshold. A theorem has
been derived by Guha et al. [5] to determine the minimum
sample size required to ensure that a fraction of the cluster
is always included in the sample with probability δ, which
is ideal for the generation of dense cells and the extraction
of representative data in FRIOD. Specifically, for a cluster u,
if the sample size s satisfies

s ≥ fN +
N
|u|
log(

1
δ
)+

N
|u|

√
(log(

1
δ
))2 + 2f |u|log(

1
δ
) (4)

then the probability that the sample contains fewer than
f |u| points belonging to cluster u is less than σ , whereN is the
size of the dataset, |u| is the size of the cluster u, 0 ≤ f ≤ 1,
0 ≤ δ ≤ 1. FRIOD uses this theorem to determine the
sample size and performs uniform sampling on large datasets
to obtain a smaller sample. This theorem gives an insight on
the minimum size of the randomly generated sample in order
to ensure the representativeness of the sample. In FRIOD, we
treat the data in each grid cell as forming a micro cluster in
order to apply the above sampling theorem. This is important
in our work to correctly visualize the dense regions formed
by the dataset involved.

This sampling approach effectively waivers the need to
carry out a possibly expensive clustering operation on the
dataset. In the case that the sample generated is still be too
large to fit entirely into the main memory, FRIOD can divide
the sample into several smaller partitions, each of which can
be loaded into the main memory sequentially for processing.
This makes FRIOD flexible and yet effective in handling
samples of all sizes.

This sampling approach is also very efficient as the density
information of all the populated cells in the grid has already
been obtained prior to the selection of dense cells. The sample
size can be much smaller than that of the original dataset. The
complexity of this interaction under each specified density
threshold value is O(|Cp| + s), where |Cp| and s are the total
number of the populated cells in the grid and the size of
the sample, respectively, which are both considerably smaller
than the number of data points in the dataset. Furthermore,
this interactive process doesn’t require any indexing to be
built.

After a good set of dense cells have been selected using
the data sample, users can optionally proceed to conduct
the final validation by loading the whole dataset. This only
requires at most one scan of the whole dataset. The data
points in the dataset can be read into the main memory for
processing sequentially like a data stream, thus this step can
be completed with ease under system platforms with varying
memory constraints.

To further assist the selection of dense regions on the cell
level and improve its accuracy, we also use the density plot,
presented in Figure 2, to display the density of all the popu-
lated cells in the grid and highlight the cells and their density
in the plot in a real-time manner when they are selected by
users. This can effectively provide a visual assistance to users
to better understand the density transition from the densest
cells to the sparsest ones in the selection process. This plot
only includes the density information of the populated cells
and does not include any empty cells as they are not involved
in the dense cell selection process. The cells in the plot are
sorted in a descending order based on their density, with the
high-density cells being positioned on the left of the plot.
Please note that the density of the last four cells (with the cell
IDs of 13, 8, 15 and 6) in Figure 2 are not visible from the
plot as their density are very low ranging from 0.01-0.06%.
The cells in the density plot are synchronized in a real-time
fashionwith the selected dense cells and are highlighted using
a darker color in the plot. Users can crosscheck the density
of the cells that have been selected, together with their total
density, through this plot tomake sure that no dense cells have

FIGURE 2. Density plot of populated cells.
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been left out or excessively sparse cells have been included in
the process. This can greatly facilitate the selection of good
set of dense cells. Based on our experience, the selection of
dense cells using a sample of the original dataset, coupled
with an optional validation based on the whole dataset and
the use of the density plot, is well adequate for accurate dense
cell selection.

C. LOCATION-AWARE DISTANCE THRESHOLDING
Zhang et. al introduced the concept of localized distance
thresholding in SODIT to consider the possibly different data
characteristics in different regions formed by the dataset in
question [34]. It quantifies the standard deviation for the
data in populated cells and a data is labeled as an outlier if
the distance from itself to its nearest representative data is
q times as the standard deviation of the data in the cell where
the nearest representative data is located. The coefficient q
typically takes a value in the range of (1.5, 3). The major
problem of this method is that whenever correction is made
on the detection result through human interaction, the value
of q might be changed as well. Unfortunately, the scope of
this change is global in SODIT which will not only affect
the current local region where the corrections made but also
all the other regions of the dataset. A possible unwanted
consequence of this global adjustment of the value of q is that
it may adversely affect the correct detection results in other
regions.

Our idea in FRIOD to solve this problem is to not only
utilize the statistical information of different regions but
also render q itself location aware. Under this principle, the
adjustment of q is restricted only to the local region where
the correction is performed and, therefore, will not adversely
impact outlier detection results in other regions.

For a data point p whose labeling needs to be corrected
in this step, the locally affected data points which require a
re-evaluation in FRIOD include both those in the same cell
of p and those in other cells which share the same nearest
representative data as p. Mathematically, the set of all the
affected data points can be presented as follows:

CorrectionSet = {pi|pi ∈ cell(p)} ∪ {pj|nearestRep(pj)

= nearestRep(p)} (5)

Depending on how the labeling of p is corrected, the value
of q will be updated in one of the following two ways:

1) p should be an outlier but incorrectly labeled as a normal
data point by FRIOD. In this case, the value of q needs to be
decreased as

q =
dist(p, nearestRep(p))
SD(nearestCell(p))

− ε (6)

where ε it is a small constant in the range of (0, 1) (such as
ε = 0.1) used for a minor value adjustment for q and SD()
calculates the standard deviations of the data in a cell;

2) p should be a normal data point but incorrectly labeled
as an outlier by FRIOD. The value of q has to be increased in

this situation as

q =
dist(p, nearestRep(p))
SD(nearestCell(p))

+ ε (7)

After q is updated, the labeling of the set of affected data
will be re-evaluated automatically and updated if necessary
using the new value of q. This process is very efficient as
typically only a (very) small number of data points need to be
re-evaluated. By making both the coefficient and the standard
deviation location aware, we are able to effectively solve the
limitation of SODIT and make the human interaction process
more effective.

D. FINAL TOP OUTLIER VALIDATION WITH
LEARNING CAPACITY
Validating the correctness of outliers through visualization is
fairly straightforward, intuitive and accurate. Human percep-
tion excels in identifying the dense data regions as well as
outliers. Given the relatively small value of n (the number
of top outliers sought) in most scenarios, validating all the
top outliers produced by FRIOD is well manageable. In case
that a relatively large number of outliers are requested by
human users, FRIOD can request human attentions to verify
only those weaker outliers in the top n list (i.e., the margin
outliers), which feature relatively smaller outlier-ness scores.
The stronger outliers in the top n list can be usually detected
by FRIOD very accurately, thus they are not the top priorities
for human validation. Users can also choose the percentage of
the weak outliers to validate through our system easily based
on his or her availability. In this validation process, if users
think one particular outlier should not be in the top list, they
can exclude it from the list and the (n+ 1)th strongest outlier
will be added into the list. When outliers are validated, users
only focus on visually evaluating whether they are outliers
or not. Therefore, outlier validation, in theory, can be carried
out simultaneously bymultiple users if necessary tomake this
process more efficient.

We also developed a learning module to train FRIOD on
the corrected top outliers in the human validation process.
Several major characteristic features are captured for each
corrected outlier, if any, which are archived in FRIOD. For
a corrected outlier oc, the characteristics that are captured
include the normalized density of the cell where oc is located,
the normalized density of the cell where the nearest rep-
resentative data of oc is located, the distance between oc
and its nearest representative data, and finally the average
distance of the other data points in the same cell of oc,
if any, with respect to their own nearest representative data.
These features captured describe the density and distance
characteristics of each corrected outlier and its neighborhood.
This training process can be performed off-line, which will
not interfere with the human interaction process in FRIOD.
The same set of features of the future top outliers can be
compared with those of the previously corrected outliers. If a
future outlier features has a high similarity with one or more
of the corrected outliers archived, then it will be assigned a
higher priority for human validation.
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E. GRID PARTITIONING OPTIMIZATION
It has been well known that an improperly specified granu-
larity for space partitioning may lead to a significant degra-
dation of the detection performance for various grid-based
data analytical methods (including FRIOD). On one hand,
if the granularity is too small, the density of the cells where
the normal data are located get increasingly close to that of
the cells which contain outliers. On the other hand, if the
granularity is too big, the outliers will be assigned to some
high-density cells containing a large number of normal data,
making them undetectable from the normal data. Specifying
the appropriate granularity for space partitioning has become
a long-standing problem for the existing grid-based data
analytic methods. They lack this important feature and rely
entirely on users to specify a predetermined, fixed granularity
value for space partitioning.

Based on our observations, the granularity value in the
middle ground of its reasonable range can generally produce
better detection result than the extreme values on both ends of
the spectrum. Thus, the aim of such optimization is to achieve
a good granularity for space partitioning which is closer to the
middle ground in the range while, at the same time, achieving
the same or very similar set of the top n outliers obtained in the
previous detection round with the aid of human interaction.
In other words, the optimization is carried out by leveraging
the correctly identified outliers achieved by the use of human
interaction. The optimized space partitioning can be applied
for future datasets if they are believed to have the same or
similar distribution with the current dataset based on which
the optimization is conducted.

Based on the top n outliers produced under a granularity
value, the goodness of other possible granularity values has
to be quantified. To this end, we use the metric of accuracy
which is defined as the percentage of accurately detected
outliers among the top n outliers returned by the system under
a given granularity value. Mathematically, we have

Accuracy(g′) =
|topSet(g) ∩ topSet(g′)|

n
× 100% (8)

where topSet(g) and topSet(g′) are the top n outliers
returned by FRIOD under the granularity of x = g (g is
the granularity value used in the previous iteration) and
x = g′ (g′ is another granularity value under evaluation),
respectively. || returns the cardinality (i.e., the number of
elements) of a set. Among those top (e.g., 10%) granularity
values which have the highest accuracy, we choose their
median as the optimized granularity value. This allows users
to choose the granularity of partitioning which is closest to
the middle ground of the spectrum of granularity.

The above optimization routine can be performed con-
tinuously until the improvement of detection performance
becomes negligible for the newly optimized granularity
value, i.e., a convergence is achieved. A good feature of
our space partitioning optimization method is that the pro-
cess can be converged when multiple, if not one, optimiza-
tion iterations are performed. This ensure that even under

some poorly chosen granularity to start with, we still can,
after several iterations of optimization, obtain the optimal
or close to optimal granularity for space partitioning. This
desirable phenomenon has been demonstrated by our conver-
gence experiment. The details of the result is presented later
in Section 5.

As mentioned earlier, the optimized space partitioning can
continually be used for other datasets believed to have the
same or very similar characteristic with the current one.
At any point of time, users can also choose to opt out the opti-
mized granularity if the subsequent dataset to be processed is
believed to have significantly different characteristics. This
can be achieved based on domain knowledge or with the
help of the existing methods for detecting concept drifts in
datasets.

Please note that the optimization process is performed
entirely automatically without any involvement of human
interaction. Therefore, it can be executed in an off-line man-
ner. Depending on the number of different granularity con-
figurations to be evaluated and the size of the datasets to
be processed, this optimization process sometimes can be
time-consuming. To mitigate this issue, we develop a method
that uses progressive sampling in the optimization. We start
with a small sample for all the granularity values at the
beginning and then gradually increase the sample size for
those granularity values with a good performance. This is
able to help achieve a balance between speed and effective-
ness for the optimization. Users can decide how the sample
size is increased as the optimization progresses. In FRIOD,
the initial sample size is 10% of the original dataset and the
subsequent sample size is increased by 10% whenever the
number of the remaining granularity values for further evalu-
ation is decreased by 10%. Given this design, the relationship
between the number of granularities for further evaluation
and the sample size at different stages can be described (both
in percentage) as GranularityLeft + SampleSize = 110%.

F. PSEUDOCODE OF FRIOD
After introducing the basic outlier detection algorithm and
all the interactive features that FRIOD use, we now present
the pseudocode of FRIOD (presented in Figure 3) to give
a big picture of the system. The three functions appear-
ing in the pseudocode, denseCell(), locationAwareDist() and
validate(), represent the three interactive strategies integrated
in FRIOD.

V. EXPERIMENTAL RESULTS
We carried out extensive experiments to evaluate the per-
formance of FRIOD, with a focus on the contribution of
various interactive strategies on its performance improvement
in outlier detection. The results are reported in this section.

To cover datasets with possibly varying characteristics and
distributions, both synthetic and real-life datasets were used
for our experimental evaluation. To facilitate more efficient
evaluation, two-dimensional synthetic datasets were gener-
ated by our synthetic data generator. The advantage of our
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FIGURE 3. Pseudocode of FRIOD.

synthetic data generator is that we can easily control the
percentage of normal data and outliers in the resulting dataset.
Figure 4 presents the five synthetic datasets used. The colored
regions refer to various clusters of data in the dataset while
the black dots are outliers which are located in low-density
areas and far from the data clusters. In addition, two multi-
dimensional datasets from UCL machine learning repository,
i.e., Letter Image andMusk, were also used in the evaluation.
For each real-life dataset, we performed dimension reduction
by randomly selecting three different attribute pairs which
generated three two-dimensional datasets. In this way, we
produced a total of 11 two-dimensional datasets (consider-
ing both synthetic and real-life datasets) for the evaluation.
To facilitate the evaluation, the true top n outliers were first
obtained as the ground truth for all the datasets by runing
FRIOD by several experienced users to generate the detection
results which were agreed unanimously by all of them.

FIGURE 4. Synthetic datasets.

We recruited 20 postgraduate students to participate in
the evaluation as human interaction plays a vital role in
FRIOD. The necessary mechanism has been implemented
in our study to ensure a good selection of students being
selected to participate in the study. Prior to using FRIOD,
they did not have any knowledge about the datasets that
are involved in the evaluation or the optimal parameter val-
ues that should be applied. They haven’t had used FRIOD
before either. Information sessions were organized before the
commencement of the study to get the students familiarized
with the basic knowledge of outlier detection, along with the
ideas of all the outlier detection methods to be evaluated in

the study. Afterwards, all the students have gone through an
evaluation process which involves evaluating their knowledge
about outlier detection through a written quiz. A post-study
survey was also conducted which asked the students about
their experience in this study including whether they have
tried their best to produce the best possible outlier detection
results within the shortest possible time to ensure their eval-
uation is fair and accurate. Please note that we do not let
the participating students use all the outlier detection systems
involved in the study before the evaluation began in order to
simulate the scenario that the systems are used by new users
who haven’t have any experience with them beforehand.

The tasks that each participating user is required to com-
plete involve detecting the top n outliers from all the given
datasets using a number of different outlier detectionmethods
which include: FRIOD (our proposed method with a full suite
of human interaction features), the basic detection algorithm
used by FRIOD (presented in Section 3 of this paper which
doesn’t have any support for human interaction), SODIT
(the outlier detection system with some preliminary interac-
tion features. Two variants of SODIT were evaluated, i.e.,
SODIT equipped with and without the optimized space par-
titioning technique proposed in our work), DB-Outlier [37],
kNN-Outlier [39], LOF [38] (three arguably the most popular
outlier detection methods) and finally Grid-Outlier [40] and
k-Means-Outlier [41] (two recently proposed outlier detec-
tion methods). The aforementioned outlier detection methods
selected in our study for evaluation represent a good mixture
of methods. Both the interactive and non-interactive meth-
ods as well as the widely used methods versus the recently
proposed ones have been studied. In our evaluation, the com-
parison amongst FRIOD, the basic algorithm used by FRIOD
and SODIT are considered as the internal evaluation because
the three methods use a similar set of parameters, while
the comparison between FRIOD and other non-interactive
methods are considered as the external evaluation as they are
quite different in terms of their outlier detection mechanisms
and the parameters used.

A total of three values of n are considered in the evaluation,
i.e., n = 5, n = 15 and n = 30. For the non-interactive outlier
detection methods, only the visualization of the final detected
outliers is available for assisting users to potentially improve
the parameter values. The participating users can execute
multiple rounds of those non-interactive methods until the
satisfactory detection results are achieved. For SODIT and
FRIOD, the users were required to provide their interaction
as soon as they possibly can in order to produce an accurate
measurement of the time involved in using the systems.

We carried out two types of evaluations in our study.
We first carried out an objective, quantitative evaluation to
evaluate the efficiency and effectiveness of FRIOD. We also
conducted a subjective, qualitative evaluation on FRIOD
through a survey on the participating users.

All the methods involved in the study are implemented
using C/C++ and Microsoft Visual Studio on desktop com-
puters configured with Intel I7 processor with 8G of RAM.
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A. QUANTITATIVE EVALUATION
In the quantitative evaluation through simulation experi-
ments, we compared FRIOD with all the other competitive
methods in terms of the accuracy of the detected outliers and
the elapsed time the detection process takes.

1) DETECTION ACCURACY COMPARISON
The quality of outliers is measured by detection accuracy that
is based on the ground truth produced by experts. It is defined
as the percentage of the outliers accurately detected in the
top n outliers by an outlier detection method when compared
with the ground truth result. Its mathematical definition has
been introduced in Section 4.5. It is worthwhile pointing out
that, since we only evaluate the final detection result based
on a specific number of the top outliers detected, thus the
metric of accuracy we define here is identical to precision
and recall, two commonly used metrics in the information
retrieval domain for performance evaluation. Tominimize the
bias, the accuracy performance of each method is averaged
across all the users on all the datasets.

The internal experiment compares the accuracy perfor-
mance of FRIOD, the basic detection algorithm and SODIT
under different numbers of runs the algorithms are exe-
cuted. Figure 5 present the accuracy comparison of the three
methods. Only one run of the outlier detection algorithm
is performed in FRIOD and SODIT because both can pro-
duce a relatively good set of outliers in a single run thanks
to the human interaction incorporated. Due to this reason,
only a single horizontal line is used to present the accuracy
performance for each of them in Figure 5. With the aid of
human interaction in FRIOD and SODIT, the accuracy of the
detected outliers is noticeably higher than the basic algorithm
without any human interaction. The quality of detected out-
liers in the basic algorithm is gradually improved as more
runs of the algorithm are performed, but the accuracy is still
inferior to that of the interactive counterparts. Furthermore,
among the two interactive methods, FRIOD outperforms
SODIT in terms of accuracy even when it is equipped with the
grid space partitioning optimization mechanism developed
in this work. By making the distance coefficient q location
aware and incorporating the interaction for the final outlier

FIGURE 5. Internal detection accuracy comparison.

validation, FRIOD is generally more accurate than SODIT.
Without the grid space partitioning optimization mechanism,
the accuracy performance of SODIT is much worse than that
of FRIOD.

We also evaluated the accuracy of FRIOD under different
combinations of the interactive strategies. In this experiment,
we use 1, 2 and 3 to represent the three interactive strategies,
namely dense cell selection, location-aware distance thresh-
olding and final top outlier validation, and ? is used here as a
placeholder symbol to indicate the corresponding interactive
strategy is not used in the outlier detection method, which
can be used in the first, second or third location in the string.
For instance, 12? means that only the first two strategies
are used while the third one is left out. ??? represents the
scenario where none of the interactive strategies are utilized
in FRIOD, which effectively reduces FRIOD to the basic
detection algorithm. We can see from the results, presented
from Figure 6, that the interactive strategy employed in the
dense cell selection is the most important one in improv-
ing the accuracy of FRIOD, followed by the location-aware
distance thresholding, while the final top outlier validation
contributes the lowest portion in accuracy enhancement.

FIGURE 6. Detection accuracy of FRIOD when using different
combinations of interactive strategies.

The external experiment was also conducted to compare
the accuracy of FRIOD with other non-interactive methods.
The result is presented in Figure 7. It shows that the pro-

FIGURE 7. External detection accuracy comparison.
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gression of accuracy shares the same pattern with that of the
basic detection algorithm observed in the internal evaluation.
This is simply because that none of them have any interactive
features incorporated in any stages of the detection algorithm.
Users need to execute multiple rounds of the algorithms of
non-interactive methods to gradually pick up better values
of parameters used in the method, resulting in a gradually
improving accuracy performance. However, their accuracy
performance is still inferior to that of FRIOD. Looking at the
accuracy performance of the non-interactive methods them-
selves, we can further observe that they differ from each other
in terms of how the detection accuracy is improving when
more rounds of the algorithms are executed. Among them,
DB-Outlier and kNN-Outlier enjoy a faster improvement of
accuracy compared to other methods. A possible explanation
of this phenomenon is due to the fact that those two methods
are simple and they use parameters which can be better tuned
by users in the process.

2) ELAPSED TIME COMPARISON
We evaluated the elapsed time of FRIOD and the other
competitive methods under different values of n. For a fair
comparison, we do not consider the time taken in space
partitioning optimization for FRIOD.

In the internal evaluation, we evaluated the three meth-
ods under the same granularity value (Gx = 15), averaged
across all users on all the datasets used. The elapsed time
comparison is presented in Figure 8. We can see from the
result that FRIOD is more efficient than SODIT even when
it is equipped with the grid space partitioning optimization
mechanism developed in this work. This is mainly due to the
following two reasons. First and most importantly, FRIOD
visualizes the selected dense cells through a smaller data
sample, rather than the whole dataset, under each selected
density threshold. Second, the tuning of the distance coef-
ficient q through human interaction in FRIOD is more con-
venient and efficient than SODIT. Both FRIOD and SODIT
feature a considerably shorter elapsed time than the basic
detection algorithm. This is very interesting and surprising
to us at first as we know that the elapsed time will surely be
increased dramatically by considering the time involved in

FIGURE 8. Internal elapsed time comparison.

human interaction. A further investigation reveals that this
is because the users typically need to run many rounds of
the basic algorithm when human interaction is not allowed
in order to gradually pick up the optimal values of the algo-
rithm parameters in this process before the final satisfactory
detection result is produced. In comparison, users only need
to go through one run of the whole algorithm in both FRIOD
and SODIT in order to obtain the satisfactory result. Another
interesting finding we obtained from Figure 8 is that when
the value of n increases, the elapsed time for the basic detec-
tion algorithm also increased quickly. This is because that it
becomes more difficult for users to correctly adjust the value
of parameters when they are dealing with a larger value of n.
In comparison, FRIOD and SODIT aremuchmore insensitive
to n because of the integrated human interaction.
We also evaluated the contribution of individual interac-

tive strategy employed in the three stages of FRIOD to its
efficiency enhancement. Figure 9 shows the breakdown of
the elapsed execution time of FRIOD in its three interactive
stages under different values of n. It shows that the elapsed
time of the dense cell selection and location-aware distance
thresholding is independent of the value of n and, therefore,
should be identical for FRIOD under different values of n.
The variations shown in the figure is due to the average
time of different users which may slightly differ from each
other. In contrast, the execution time of the final top outlier
validation is increased when the values of n goes up. This is
because a higher workload is incurred for FRIOD to validate
a high number of the final top outliers detected. We also
present the execution time of the three stages in percentage
in Figure 10. It shows that those three stages are balanced in
terms of their execution time which suggests that there is no
salient performance bottleneck in FRIODwhen the value of n
is small. Yet, the percentage of the execution time of the final
stage, i.e., the final top outlier validation, is increased when
the values of n increases, while that of the first two stages are
reduced as a result.

FIGURE 9. Elapsed time comparison for the three stages of FRIOD.

In the external experiment, the elapsed time between
FRIOD and other non-interactive method were investigated.
The comparison result is presented in Figure 11. It shows
that FRIOD is considerably more efficient than all the
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FIGURE 10. Elapsed time comparison for the three stages of FRIOD (in
percentage).

FIGURE 11. External elapsed time comparison.

non-interactive methods evaluated in the study. Users are able
to spend a much shorter time by using FRIOD to achieve a
satisfactory detection result than the non-interactive methods.
Grid-Outlier is the most efficient non-interactive methods in
the evaluation due to its use of grid structure to accelerate the
detection process.

3) p-VALUE ANALYSIS
Besides evaluating the performance improvement achieved
by FRIOD thanks to its extensive interactive features incor-
porated, we also study the statistical significance of such
improvement using p-value analysis. In the context of our
evaluation, p-value represents the probability that the per-
formance improvement using FRIOD occurs by pure chance
against another competitive method. In this experiment,

p-values are computed for FRIOD against all the other com-
petitive methods by counting the percentage of experimental
runs where FRIOD does not perform better than another
method. Thus, the lower the p-value is, the better perfor-
mance achieved by FRIOD will be in a statistically signifi-
cant manner. Our p-value analysis was conducted under two
different experimental measures, i.e., accuracy and elapsed
time. A total of 100 experimental runs are completed for
each p-value analysis. Table 1 and 2 shows the p-value results
for the measures of accuracy and elapsed time, respectively.
The results from the tables show that, under multiple exper-
imental runs, FRIOD is 95% of chance more accurate than
the interactive method SODIT (that uses space partitioning
optimization) and above 98% of chance more accurate than
those non-interactive methods. It is also above 90% of chance
faster than other competitive methods in detecting outliers.

4) CONVERGENCE STUDY ON THE SPACE
PARTITIONING OPTIMIZATION
In this experiment, we investigated the convergence of
FRIOD in space partitioning optimization. Comparison with
the other competitive methods is not applicable for this
experiment as none of them supports space partitioning opti-
mization. The range of granularity values evaluated in this
experiment is between 1 and 30 and we choose three groups
of initial granularity values to start the optimization process,
namely the values that are at the two ends (either very small
or very big) and in the middle ground of the granularity spec-
trum. We tested a total of nine granularity values, with three
being in each group. The values of granularity is in the range
of [3-5], [14-16] and [28-30] respectively for the three groups.
We investigated the optimized granularity value obtained as
the number of optimization iterations increases for different
granularity groups. The result, presented in Figure 12, shows
that 1) irrespective of the initial granularity value, FRIOD
exhibits a good convergence behavior after several iterations
optimization. By leveraging such an optimization process,
we can (gradually) obtain a fairly good granularity for space
partitioning, which can be used effectively on future similar
datasets; 2) for the initial granularity values in the middle
ground of the granularity spectrum, the optimization process
requires a smaller number of iterations than the other two
groups, indicating a faster convergence speed. This experi-
ment suggests that, as a rule of thumb, it is a good choice for
users to start with an initial granularity that is generally in the

TABLE 1. p-value analysis based on accuracy.

TABLE 2. p-value analysis based on elapsed time.
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FIGURE 12. Convergence of space partitioning optimization in FRIOD.

middle ground when they don’t have much knowledge about
the dataset.

We also compared the accuracy performance of FRIOD
when using the optimized granularity for space partitioning
against the cases when the poorly selected granularity (either
too large or too small) are used. The result is presented in
Figure 13. It shows that the average performance of FRIOD
using the optimized granularity for space partitioning (the
value in the middle ground of the granularity spectrum) is
significantly higher than other two groups of granularity, with
the use of the exceedingly small granularity leading to the
worst effectiveness performance.

FIGURE 13. Detection accuracy of FRIOD under different granularity for
space partitioning.

B. QUALITATIVE EVALUATION
As a qualitative evaluation, we have conducted a survey ask-
ing the participating students involved in this study for their
experience and feedback after using FRIOD. Their responses
have been very positive. The feedback from 90% of the users
shows that FRIOD is more interactive and user-friendly than
the SODIT. This is attributed to the fact that FRIOD is more
responsive in human interaction and values of the thresholds
used in FRIOD can be better controlled by users than SODIT.
100% of the users responded that FRIOD is also more effi-
cient and much more easy to use than the non-interactive
methods which human interaction is absent. The primary
reason is that, in most cases, FRIOD only needs to be run

once to acquire the satisfactory detection result while the non-
interactive methods needs to be executed multiple rounds to
achieve this, which ismore cumbersome and time consuming.

C. DISCUSSIONS
Our extensive performance evaluation of FRIOD, as well
as the comparative study between FRIOD and a number of
major existing outlier detection methods, demonstrates that
FRIOD achieves a very good performance in terms of both
effectiveness and efficiency.

The evaluation reaffirms that human interaction which
incorporates valuable human perception is very effective
in achieving highly accurate outlier detection results. The
evaluation results demonstrate that the detection accuracy of
interactive detection methods, such as FRIOD and SODIT, is
significantly higher than that of non-interactive alternatives.
It is also very interesting to find that FRIOD is more efficient
overall than the non-interactive alternatives. Non-interactive
methods are generally faster than FRIOD in a single run of the
algorithm. However, a single run of the algorithms in most
cases is inadequate to produce satisfactory detection result.
Users typically have to run multiple rounds of the algorithms
for non-interactive methods. Consequently, this leads to a
(much) longer elapsed time than FRIOD. Compared with the
latest interactive outlier detection method SODIT, FRIOD is
also advantageous by integrating more interactive features
in various stages of its algorithm, helping FRIOD achieve a
better overall performance. FRIOD has been proven to be a
very effective means to overcome the long-standing difficulty
in specifying the optimal values for various key parameters
used in outlier detection methods, which contributes to the
ease-of-use, accuracy and efficiency for the method as a
whole. The better performance of FRIOD is also statistically
significant, as evidenced by our p-value analysis.
The most important reason why FRIOD is able to achieve a

better performance compared to the existing outlier detection
methods, particular those non-interactive ones, is due to the
fact that interactive features are incorporated in all the impor-
tant stages of the detection process in FRIOD. Therefore,
users are able to have a good assurance that each stage is
completed in a high quality and can produce a good input
into the subsequent stage. This contributes to a good detection
performance overall for thewholemethod. In comparison, the
existing methods, due to their limited or lack of interactive
features, cannot guarantee a good execution of its internal
stages. This often makes their detection results difficult to
control in terms of quality of the output, which adversely
affects their overall detection performance.

The study involving actual human users (students) shows
that FRIOD, by virtue of its human-friendly and intuitive
interactive interfaces and underlying mechanisms, can be
easily used by users who have only fundamental knowledge
about outlier detection and can produce very satisfactory
detection results. This is conducive to the potentially wide
adoption of FRIODby users with varying levels of knowledge
on outlier detection.
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VI. CONCLUSIONS AND FUTURE DIRECTIONS
In this paper, we propose FRIOD, a novel interactive system
to integrate human interaction for effective and efficient out-
lier detection. In FRIOD, the long-standing difficulty in spec-
ifying threshold values can be effectively mitigated and the
space partitioning can be optimized to generate the optimal
(or close optimal optimal) setup. We are impressed by the
improvement of user-friendliness and performance of outlier
detection in FRIOD by incorporating human interaction.

In the future, we are interested in investigating how human
interactions can be integrated with other existing outlier
detection methods to establish a more general approach for
outlier detection with human interaction. We are also inter-
ested in developing a query language for outlier detection,
which can not only deliver the function of outlier detection,
but also makes the best use of interactive outlier detection
mechanisms that we have developed.
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