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ABSTRACT Cloud-assisted Internet of Things (IoT) is a popular system model to merge the advantages of
both the cloud and IoT. In this model, IoT collects the real-world data, and the cloud maximizes the value
of these data by sharing and analyzing them. Due to the sensitivity of the collected data, maintaining the
security of these data is one of the main requirements in practice. Searchable public-key encryption is a
fundamental tool to achieve secure delegated keyword search over ciphertexts in the cloud. To accelerate
the search performance, Xu et al. propose a new concept of searchable public-key ciphertexts with hidden
structures (SPCHSs), and it constructs a SPCHS instance to achieve search complexity that is sublinear with
the total number of ciphertexts rather than the linear complexity as in the traditional works. However, this
paper cannot achieve the parallel keyword search due to its inherent limitations. Clearly, the aforementioned
instance is impractical. To address this problem, we propose a new instance of SPCHS to achieve fast and
parallel keyword search over public-key ciphertexts. In contrast to the work by Xu et al., a new type of
hidden relationship among searchable ciphertexts is constructed by the new instance, where every searchable
ciphertext has a hidden relationship with a common and public parameter. Upon receiving a keyword search
trapdoor, one can disclose all corresponding relationships in parallel and then find all matching ciphertexts.
Hence, the new relationship allows a keyword search task to be performed in parallel. In addition, due to the
limited capability of IoT, the new instance achieves a more efficient encryption algorithm to save time and
communication cost.

INDEX TERMS Cloud-assisted Internet-of-Things, searchable public-key ciphertexts, hidden relationship,
semantic security, parallel search.

I. INTRODUCTION
Internet of Things (IoT) has been a hot word in scientific and
technological fields. IoT has experienced remarkable devel-
opment not only in terms of home and consumer equipment
development but also in manufacturing, logistics, mining, oil,
utilities and agriculture and in other large assets of industry.
Moreover, with the assistance of the cloud, IoT can leverage
the unlimited capability of the cloud in terms of both storage
and computation to maximize its effectiveness. However,
the cloud-assisted IoT model also brings a variety of secu-
rity and privacy problems. In this model, the IoT devices

generally collect a considerable amount of sensitive data and
send them to the cloud to be shared and analyzed. Therefore,
protecting the security of IoT data in the cloud is a critical
requirement.

Searchable public-key encryption (SPKE) [1] is a funda-
mental tool to achieve secure delegated keyword search over
ciphertexts in the cloud. When applying SPKE in the cloud-
assisted IoT model, all IoT devices can generate searchable
ciphertexts for their data in a public-key setting and upload
them to the cloud; then, the owner of these devices can dele-
gate a secure keyword search over these ciphertexts to retrieve
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FIGURE 1. The Hidden Relationship Constructed by XW’15 [2].
(The arrows denote the hidden relations. Enc(Wi ) denotes the searchable
ciphertext of keyword Wi .)

the intended data. However, the early works of SPKE have a
high search complexity, which is linear with the total number
of ciphertexts. To address this problem, [2] proposes the con-
cept of searchable public-key ciphertexts with hidden struc-
tures (SPCHS), and it constructs a SPCHS instance (called
XW’15 in this paper) to achieve search complexity that is
linear with the number of matching ciphertexts rather than
with the number of all ciphertexts.

In XW’15, all keyword-searchable ciphertexts are orga-
nized by some hidden relations, as shown in Fig. 1. In XW’15,
all ciphertexts of the same keyword construct a hidden chain
relationship, and additionally, a hidden relation exists from a
common and public parameter Head to the first ciphertext
of each chain. Upon receiving a keyword search trapdoor,
the server seeks out the first matching ciphertext via the corre-
sponding relation from the Head. Then, another relation can
be disclosed via the found ciphertext, and it guides the server
to seek out the next matching ciphertext. By proceeding in
this way, all matching ciphertexts can be found.

Although XW’15 greatly reduces the search complexity
compared with the traditional works, it also has some signif-
icant limitations in practice. Due to the characteristic of the
hidden chain relationship, all matching ciphertexts can only
be found in series. Thus, it is impractical to employ XW’15 in
the scenario of big data. Hence, we are interested in proposing
a new instance of SPCHS to achieve fast and parallel keyword
search.

A. OUR IDEA AND ITS CLASSICAL APPLICATION
As mentioned above, the hidden chain relationship among
searchable ciphertexts is the main obstacle to achieve the
parallel search. Hence, we attempt to construct a new type of
hidden relationship such that the new one allows the server to
disclose all corresponding relations in parallel when receiving
a keyword search trapdoor. Fig. 2 shows an example of the
new hidden relationship. In this relationship, each keyword

FIGURE 2. Our New Hidden Relationship. (The dashed arrows denote the
hidden relations. Enc(Wi ||KWi

) denotes the searchable ciphertext of
keyword Wi and its current counter value KWi

.)

has a private counter to record the number of generated
ciphertexts of the keyword. Each ciphertext is generated by
taking a keyword and its current counter value as inputs.
Through this method, all ciphertexts will have a hidden
relation from a common and public parameter Head. Upon
receiving the keyword search trapdoor of a keyword, one can
independently disclose all corresponding relations by iterat-
ing all possible values of the keyword’s counter, where each
disclosed relation points to a matching ciphertext. Since the
above iteration process can be achieved in parallel, a complete
search task can also be achieved in parallel.

When applying our above idea in the cloud-assisted IoT
scenario, the owner of IoT devices sets up the public and pri-
vate keys and stores the public key in all his devices. An IoT
device sets up its public parameter Head and uploads the
parameter to the cloud. To generate the keyword-searchable
ciphertext of keyword W for file F , the device initializes the
counter as KW = 1 if it is the first time to generate the
ciphertext ofW , and it takesW and KW as inputs to generate
the ciphertext CW ,KW . Finally, he uploads CW ,KW ||CF to the
cloud, where CF denotes the public-key ciphertext of file
F via any traditional public-key encryption schemes, such
as RSA and so on. To delegate the keyword search task of
keyword W to the cloud, the owner takes his private key
and W as inputs and generates a keyword search trapdoor.
Upon receiving the trapdoor, the cloud computes a number
of indices by iterating all possible counter values in par-
allel and finds all matching ciphertexts such as CW ,KW by
those indices. Finally, the cloud returns the corresponding
encrypted files such as CF to the receiver. Since the cloud
can complete a keyword search task in parallel, our new idea
enables the time cost of the search to be considerably more
practical compared to the performance of previous works.

B. OUR CONTRIBUTIONS
According to our above idea, we construct a new SPCHS
instance. Comparedwith the instanceXW’15 proposed in [2],
our new instance generates keyword-searchable ciphertexts
that have the same hidden relationship, as shown in Fig. 2,
and it allows the one with a keyword search trapdoor to search
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a keyword over the generated ciphertexts in parallel. Hence,
it is considerably more practical than XW’15. For example,
when applying the new instance in the cloud-assisted IoT
scenario, all IoT data are stored as ciphertexts in the cloud to
keep their confidentiality. Upon receiving a keyword search
task from the data owner, the cloud can find the matching
ciphertexts in parallel. In addition, the new instance has a
more efficient encryption algorithm to save the time and
communication costs of IoT devices in practice.

In addition, the new instance is provably secure based on
the computational bilinear Diffie-Hellman (CBDH) assump-
tion [1] in the random oracle (RO) model. Hence, it has the
same security as XW’15. In other words, without any key-
word search trapdoor, no one knows the semantic information
of keywords encrypted by those searchable ciphertexts, and
no hidden relationship among those searchable ciphertexts
is leaked. With a keyword search trapdoor, only the corre-
sponding hidden relationship is disclosed, and the matching
ciphertexts can be found.

Finally, we experimentally test the time cost of our new
instance in terms of generating ciphertexts and searching key-
words, and we evaluate the communication cost to transfer
ciphertexts. The results show that our new instance is more
practical than XW’15.

C. ORGANIZATION
Before constructing our new instance, Section II reviews
the concepts of SPCHS and its semantic security. Our new
instance is proposed in Section III. Section IV applies our
new instance in the cloud-assisted IoT model. Section V
experimentally shows the advantages of our new instance.
Other related works are introduced in Section VI. Section VII
concludes this paper.

II. REVIEWING THE CONCEPTS OF SPCHS AND ITS
SEMANTIC SECURITY
In this section, we will briefly review the concepts of SPCHS
and its semantic security. For more formal details, readers
can refer to [2]. The concept of SPCHS consists of five
algorithms, which are as follows:

• Algorithm SystemSetup takes some parameters, such
as the security parameter, to generate a pair of master
public and private keys, where the master public key is
published, and the master private key must be secretly
stored by the one who runs this algorithm, such as a
receiver.

• Algorithm StructureInitialization takes the master
public key as input to initialize a hidden relationship.
This relationship consists of a pair of public and private
parts. The public part includes the parameter Head,
which is shown in Fig. 2. The private part includes
some secret information, such as the counter values of
keywords in our idea. In addition, the private part must
be stored by the one who runs this algorithm, such as a
sender.

• Algorithm StructuredEncryption takes the master
public key and the private part of a hidden relationship
as inputs to generate a keyword-searchable ciphertext
for a keyword. Consequently, the generated ciphertext of
the keyword contains the intended hidden relationship
with some previously generated ciphertexts. This hid-
den relationship will accelerate the search performance.
In practice, this algorithm is completed by a sender.

• Algorithm Trapdoor takes the master private key as
input to generate the keyword search trapdoor for a
given keyword. This algorithm is completed by the
receiver who generates the master private key. In prac-
tice, the generated trapdoor allows a server to securely
search the keyword over the keyword-searchable cipher-
texts generated by algorithm StructuredEncryption.

• Algorithm StructuredSearch takes a keyword search
trapdoor as input to find all matching ciphertexts.
Clearly, this algorithm is completed by a server.

In addition to the above algorithms, the concept of SPCHS
also defines its consistency. The consistency defines the cor-
rectness of SPCHS. It means that with a keyword search
trapdoor, only the matching ciphertexts can be found by
algorithm StructuredSearch.

The semantic security of SPCHS is called the seman-
tic security for both keywords and the hidden relationship
under chosen keyword and relationship attacks (SS-CKRA).
It models an adaptive attack game on SPCHS, and then it
defines that a SPCHS instance is SS-CKRA secure if no one
can win the game with a non-negligible advantage.

The adaptive attack game on SPCHS consists of the fol-
lowing five phases:

• The setup phase is completed by a challenger who will
challenge the capability of an adversary to compromise
a SPCHS instance. In this phase, the master public key
of SPCHS is generated and published to the adversary.

• The query 1 phase is launched by the adversary. He
will adaptively chose some keywords and hidden rela-
tionship, and he will query the corresponding keyword
search trapdoors and private parts. The challenger will
respond to these queries if their responses cannot allow
the adversary to trivially win the game.

• The challenge phase allows the adversary to choose
two pairs of keyword and hidden relationship as his
attack targets. The challenge will generate the challeng-
ing keyword-searchable ciphertext for one of the pairs.

• The query 2 phase is the same as the query 1 phase.
• The guess phase is the final phase. In this phase,
the adversary will guess which of the two pairs chosen
by the adversary in the challenge phase is used to gen-
erate the challenging keyword-searchable ciphertext.

If the adversary guesses the correct result, then the adversary
wins the above game. Suppose that the probability of the
adversary winning the game is Pr[Win]. The advantage of
the adversary winning the game is defined as AdvSS-CKRASPCHS,A =

Pr[Win]− 1
2 .
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III. OUR NEW SPCHS INSTANCE
In this section, we will construct our new SPCHS instance
and prove its consistency and semantic security. Compared
with the previous instance XW’15, our new SPCHS instance
has the following main differences:
• The private part of a hidden relationship records the
current counter value of each already used keyword.
In contrast, XW’15 stores the current pointer of each
keyword in the private part of a hidden relationship.

• Every generated ciphertext has a direct relationship with
the public part of a hidden relationship. In contrast,
XW’15 only allows the first ciphertext of a keyword to
have a direct relationship with the public part, and the
other ciphertexts of the keyword have the relationship
only with their formerly generated one.

• The search to find a matching ciphertext for a keyword
is independent of the last found andmatching ciphertext.
Conversely, XW’15 has the capability to find amatching
ciphertext due to the last found and matching ciphertext.

A. CONSTRUCTING OUR INSTANCE
Let γ

$
←− < indicate randomly selecting an element γ from<.

LetG1 andG2 be two multiplicative groups of prime order q.
Let g be a generator ofG1. A bilinear map ê : G1×G1→ G2
is defined as an efficiently computable and non-degenerate
function with the following properties:
• Efficient: Given any elements g and h ∈ G1, there is a
polynomial-time algorithm to compute ê(g, h) ∈ G2.

• Bilinear: For any integers a, b ∈ Z∗q, ê(ga, hb) =
ê(g, h)ab holds.

• Non-degenerate: If g is a generator of G1, then ê(g, g)
is a generator of G2.

Let BGen(1k ) be an efficient bilinear map generator with a
security parameter 1k as input and probabilistically output
(q, G1, G2, g, ê). Let W = {0, 1}∗ be a keyword space.
Our new SPCHS instance is constructed as follows:
• Algorithm SystemSetup(1k , W): Given a secu-
rity parameter 1k and the keyword space W , this
algorithm runs BGen(1k ) to generate parameters

(q, G1, G2, g, ê), selects s
$
←− Z∗q, sets p = gs, chooses

two cryptographic hash functions H1 : {0, 1}∗ → G1
and H2 : G2 → {0, 1}n, and outputs a pair of
master public and private keys (PK, SK), where PK =
(q, G1, G2, g, ê, p, H1, H2), SK = s, and n ∈ N.

• StructureInitialization(PK): Given PK, this algorithm

selects u
$
←− Z∗q and initializes a hidden structure by

outputting a pair of public and private parts (Pub, Pri),
where Pub = gu and Pri contains u. Note that Pri
here is a variable list formed as (u, {(W ,KW )|W ∈

W and KW ∈ N}), where KW is a counter value that
records the number of generated ciphertexts of keyword
W .

• StructuredEncryption(PK, W , Pri): Given PK,
a keywordW and the private part of a hidden relationship
Pri, this algorithm performs the following steps:

FIGURE 3. Example: The Three Generated Ciphertexts of Keyword W and
Their Hidden Relationship.

1) Retrieve record (W , KW ) by W from Pri;
2) If this record does not exist, set KW = 1 and insert

(W , KW ) into Pri;
3) Otherwise, set KW = KW + 1 and update Pri;
4) Output the keyword-searchable ciphertext C =

H2(ê(H1(W )KW , pu)).
• Trapdoor(SK, W ): Given SK and a keyword W , this
algorithm outputs the corresponding keyword search
trapdoor TW = H1(W )s.

• StructuredSearch(PK, Pub, C, TW ): Given PK,
the public part Pub of a hidden relationship, all gener-
ated keyword-searchable ciphertexts C (let C[i] denote
the i-th ciphertext of C) and a keyword search trapdoor
TW , suppose that there areN threads in parallel to search
a keyword; this algorithm runs those threads in parallel
and outputs all matching ciphertexts (denoted by C′)
when all threads stop. All threads run the same program.
Without loss of generality, let us take thread j as an
example. Let t = 0. Thread j performs the following
steps:
1) Set M = j+ N ∗ t and compute TW ,M = TMW ;
2) Compute C ′ = H2(ê(Pub, TW ,M ));
3) Seek a ciphertext C[i] ∈ C having C[i] = C ′;
4) If this ciphertext exists, add C[i] into C′, set t =

t + 1 and go to step 1);
5) Otherwise, stop;

Fig. 3 and Table 1 show an example of our new
SPCHS instance. In this instance, we suppose that a
sender has initialized a hidden relationship by algorithm
StructureInitialization and has generated three ciphertexts
for keyword W by algorithm StructuredEncryption. Fig. 3
shows those generated ciphertexts and their hidden relation-
ship with the public part. Table 1 shows the details to search
keywordW in parallel. Clearly, algorithm StructuredSearch
can find all matching ciphertexts when completing all parallel
threads.

B. PROVING THE CONSISTENCY
Here, we will prove that our new SPCHS instance is
correct or consistent. The consistency of SPCHS means
that all matching ciphertexts can be found by algorithm
StructuredSearch. In practice, there are many senders, and
each sender will initialize a public part for his hidden rela-
tionship. Hence, we only need to prove that our new SPCHS
instance is consistent for one sender’s hidden relationship.
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TABLE 1. Example: searching keyword W by 2 threads.

Referring to Table 1, we can find that our new SPCHS
instance is consistent in some sense. For example, in step 3
of thread #1, we have C ′ = H2(ê(gu, H1(W )s)). Accord-
ing to the bilinearity of the bilinear map, we have C ′ =
H2(ê(gu, H1(W )s)) = H2(ê(H1(W ), pu)) = C[1]. Hence,
the first matching ciphertext of keyword W can be found.
Using the same method, all matching ciphertexts of keyword
W can be found by the bilinearity of the bilinear map. The
formal proof of the consistency of our new SPCHS instance
is as follows.
Theorem 1: Suppose that functions H1 and H2 are colli-

sion free, except with a negligible probability in the security
parameter k. Our new SPCHS instance is consistent, also
except with a negligible probability in the security parame-
ter k.

Proof: Without loss of generality, it is sufficient to prove
that given the keyword search trapdoor TW = H1(W )s of
keyword W and a hidden structure’s public part Pub = gu,
algorithm StructuredSearch(PK, Pub, C, TW ) can find all
ciphertexts of keyword W with the hidden relationship Pub.

First, we prove that any ciphertext C[i] of keyword
W with the hidden relationship Pub will be found
by algorithm StructuredSearch(PK, Pub, C, TW ).
According to algorithm StructuredEncryption, we have
C[i] = H2(ê(H1(W )KW , pu)). According to algorithm
StructuredSearch, there is a thread that has its step 1) with
the condition M = KW , and the following step 2) has C ′ =
H2(ê(Pub, TW ,M )) = H2(ê(gu, H1(W )KW ∗s)). According to
the bilinearity of bilinear map ê, we clearly have C[i] = C ′.
Hence, ciphertext C[i] can be found by the thread as one of
the outputs of algorithm StructuredSearch.
Second, using the same method, we have that all cipher-

texts of keywordW with the hidden relationship Pub will be
found by algorithm StructuredSearch(PK, Pub, C, TW ).
Third, we prove that any other ciphertextC[j] of a different

keyword or hidden relationship cannot be found by algorithm
StructuredSearch(PK, Pub, C, TW ), except with a neg-
ligible probability in the security parameter k . Without loss
of generality, suppose that ciphertext C[j] is of keyword W ′
and with the hidden relationship Pub = gu, where W ′ 6=

W . According to algorithm StructuredEncryption, we have
C[j] = H2(ê(H1(W ′)KW ′ , pu)). Ciphertext C[j] can be found
by algorithm StructuredSearch(PK, Pub, C, TW ) if there
is a value of C ′ that has C ′ = C[j] when completing this
algorithm. According to this algorithm, it is typical to assume
that C ′ = H2(ê(gu, H1(W )M∗s)). Hence, the condition C ′ =
C[j] holds if H1(W )M = H1(W ′)KW ′ is true or function H2
is not collision free. Since functionsH1 andH2 are supposed
to be collision free, except with a negligible probability in
the security parameter k , ciphertext C[j] cannot be found
by StructuredSearch(PK, Pub, C, TW ), except with a
negligible probability in the security parameter k .

To summarize, all matching ciphertexts can be found
by our new SPCHS instance. Additionally, if functions H1
and H2 are collision free, then any non-matching ciphertext
will not be found. Hence, our new SPCHS instance has
consistency.

C. PROVING THE SEMANTIC SECURITY
The SS-CKRA security of our new SPCHS instance relies
on the CBDH assumption [1]. This means that if the CBDH
assumption holds or the corresponding CBDH problem
cannot be efficiently solved in practice, our new SPCHS
instance is SS-CKRA secure. To prove the SS-CKRA secu-
rity, we will prove that if there is an adversary that can break
the SS-CKRA security, we can leverage the adversary to solve
the CBDH problem. Before presenting the proof, we first
review the CDBH assumption.
Definition 1 (The CBDH Assumption): The CBDH prob-

lem in BGen(1k ) = (q, G1, G2, g, ê) is defined as to solve
ê(g, g)abc for any given (ga, gb, gc). Let AdvCBDHB (1k ) be
the probability of a probabilistically polynomial-time (PPT)
algorithm B to solve the CBDH problem. We say that the
CBDH assumption holds if the advantage AdvCBDHB (1k ) is
negligible in the security parameter k.

The SS-CKRA security of our new SPCHS instance is
proven by the following theorem. Since there is no PPT algo-
rithm that can solve the CBDH problemwith a non-negligible
probability, Theorem 2 means that no PPT adversary can
break the SS-CKRA security of our new SPCHS instance in
practice.
Theorem 2: Let the hash functionsH1 andH2 be modeled

as the random oracles QH1 (·) and QH2 (·), respectively. Sup-
pose that there are a total of N hidden relationship in practice
and that a PPT adversaryA has an advantage of AdvSS-CKRASPCHS,A
to break our new SPCHS instance in the SS-CKRA game,
in whichAmakes at most q1 queries to oracleQH1 (·), at most
q2 queries to oracleQH2 (·), at most qp queries to oracleQPri,
at most qt queries to oracleQTrap(·) and at most qe queries to
oracle QEnc(·). Then, there is a PPT algorithm B that solves
the CBDH problem in BGen(1k ) with probability

AdvCBDHB >
256

(e ∗ qt ∗ qp)4 ∗ (q2 + qe) ∗ (qe + 2)
AdvSS-CKRASPCHS,A,

where e is the base of the natural logarithm.
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Proof: In this proof, we will construct algorithm B,
which will leverage the adversary A to solve the CDBH
problem in BGen(1k ). Hence, algorithm B will simulate and
play the SS-CKRA game with adversary A according to the
CDBH problem. This game consists of five phases:

• In the setup phase, algorithm B will simulate the master
public key and all public parts of the hidden relationship.

• In the query 1 and 2 phases, algorithm B will simulate
the responses of the queries from adversary A.

• In the challenge phase, algorithm B will simulate a
challenge ciphertext for the challenge targets chosen by
adversary A.

• In the guess phase, algorithm B will attempt to solve the
CDBH problem according to adversary A’s queries in
the query 1 and 2 phases.

LetCoin
σ
← {0, 1} denote the operation that selectsCoin ∈

{0, 1} with probability Pr[Coin = 1] = σ . The specified
value of σ will be decided later. Algorithm B simulates and
plays the SS-CKRA game with adversary A as follows.

• Setup phase: Given the keyword spaceW and the public
parameters (q, G1, G2, g, ê, ga, gb, gc) of the CBDH
problem, algorithm B performs the following steps:

1) Initialize four empty lists KList ⊆W ×G1 ×Z∗q,
SList ⊆ G1 × Z∗q × {0, 1}, H1List ⊆W ×G1 ×

Z∗q × {0, 1} and H2List ⊆ G2 × {0, 1}n, where
n ∈ N;

2) Set the master public key PK = (q, G1, G2, g,
ê, p = ga);

3) InitializeN hidden relationship through the follow-
ing steps for i ∈ [1, N ]:

a) Select ui
$
← Z∗q and Coini

σ
← {0, 1};

b) If Coini = 1, compute Pubi = gb∗ui ;
c) Otherwise, compute Pubi = gui ;

4) Set PSet = {Pubi|i ∈ [1, N ]} and SList =
{Pubi, ui, Coini|i ∈ [1, N ]};

5) Send PK and PSet to adversary A.

• Query 1 phase: Adversary A adaptively issues the fol-
lowing queries multiple times.

– Hash Query QH1 (W ): In each query, adversary A
can issue any keyword W ∈ W (suppose that each
keyword can only be issued one time) to algorithm
B; B responds as follows:

1) Select x
$
← Z∗q and Coin

σ
← {0, 1};

2) If Coin = 1, add (W , gc∗x , x, Coin) into
H1List and output gcx ;

3) Otherwise, add (W , gx , x, Coin) into H1List
and output gx .

– Hash Query QH2 (Y ): When adversary A issues a
value Y ∈ G2 (suppose that each value Y ∈ G2
can only be issued one time) to this hash query,
algorithmBwill select a random value V ∈ {0, 1}n,
take the value as its response, and finally add (Y , V )
to H2List.

– Trapdoor QueryQTrap(W ): To respond to the issue
W ∈ W from adversary A, algorithm B performs
the following steps:
1) If (W , ∗, ∗, ∗) /∈ H1List, query QH1 (W );
2) Retrieve (W , X , x, Coin) via keywordW from

H1List;
3) If Coin = 0, output ga∗x ;
4) Otherwise, abort and output ⊥.
Note that if Coin = 0, algorithm B can send the
correct keyword search trapdoor of keyword W to
adversary A.

– Privacy Query QPri(Pub): When adversary A
issues the public part Pub ∈ PSet of a hidden
relationship to query the corresponding private part,
algorithm B performs the following steps:
1) Retrieve (Pub, u, Coin) via Pub from SList;
2) If Coin = 0, output u;
3) Otherwise, abort and output ⊥.

– Encryption QueryQEnc(W , Pub):When adversary
A issues a keyword W ∈ W and the public part
Pub ∈ PSet to query the corresponding ciphertext,
algorithm B performs the following steps:
1) If (W , ∗, ∗, ∗) /∈ H1List, query QH1 (W );
2) Retrieve (W , X , x, Coin) and (Pub, u, Coin′)

viaW and Pub from H1List and SList, respec-
tively;

3) Seek (W , Pub, KW ) via W in KList;
4) If not found, set KW = 1 and insert

(W , Pub, KW ) into KList
5) Otherwise, setKW = KW+1 and updateKList;
6) Perform the following steps:

a) If Coin = 1 ∧ Coin′ = 1, output ciphertext

C
$
← {0, 1}n;

b) If Coin = 0 ∧ Coin′ = 1, output ciphertext
C = QH2 (ê(g

b∗x∗KW , ga∗u));
c) If Coin = 1 ∧ Coin′ = 0, output ciphertext

C = QH2 (ê(g
c∗x∗KW , ga∗u))

d) If Coin = 0 ∧ Coin′ = 0, output ciphertext
C = QH2 (ê(g

x∗KW , ga∗u))
Note that when Coin = 1 ∧ Coin′ = 1 holds,
algorithm B does not respond with the correct
ciphertext. However, this exception can be found
by adversary A only when he can help algorithm
B solve the CBDH problem. Hence, this exception
is good for our proof. More details will be analyzed
later. In addition, for the other three cases, algorithm
B can always respond with the correct ciphertext.

• Challenge phase: Adversary A sends two challenge
keyword and hidden relationship pairs (W ∗0 , Pub

∗

0) and

(W ∗1 , Pub
∗

1) to algorithmB, whereB selects d
$
← {0, 1}

and performs the following steps:
1) Retrieve (Pub∗0, u∗0, PCoin∗0) and (Pub∗1, u∗1,

PCoin∗1) via Pub∗0 and Pub∗1, respectively, from
SList;
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2) IfPCoin∗0 = 0∨PCoin∗1 = 0, then abort and output
⊥.

3) If (W ∗0 , ∗, ∗, ∗) or (W
∗

0 , ∗, ∗, ∗) /∈ H1List,
query QH1 (W

∗

0 ) or QH1 (W
∗

1 );
4) Retrieve (W ∗0 , X

∗

0 , x
∗

0 , WCoin
∗

0) and (W ∗1 , X
∗

1 ,

x∗1 , WCoin
∗

1) via W
∗

0 and W ∗1 , respectively, from
H1List;

5) If WCoin∗0 = 0 ∨ WCoin∗1 = 0, then abort and
output ⊥.

6) Seek (W ∗d , Pub∗d , KW ∗d ) via W
∗
d and Pub∗d from

KList;
7) If not found, set KW ∗d = 1 and insert (W ∗d , Pub,

KW ∗d ) into KList;
8) Otherwise, update KW ∗d = KW ∗d + 1 in KList;

9) Randomly choose a challenge ciphertext C∗d
$
←

{0, 1}n and send it to adversary A;
• Query 2 phase: This phase is the same as the query 1
phase. Note that in the query 1 phase and the query 2
phase, adversaryA cannot query the keyword trapdoors
of both W ∗0 and W ∗1 and the corresponding private parts
of both Pub∗0 and Pub∗1.

• Guess phase: AdversaryA sends a guess d ′ to algorithm
B. Irrespective of whether the guess is correct, algorithm
B selects a pair (Y , V ) randomly fromH2List and solves
the CBDH problem by outputting Y

1/(x∗d∗KW∗d
∗u∗d ).

Next, we will compute the probability of algorithm B to
solve the CBDH problem via leveraging the capability of
adversary A. The computation consists of three steps: the
first step is to compute the probability without considering the
event that algorithm B aborts in the above SS-CKRA game,
the second step is to compute the probability of algorithm B
to abort, and the final step is to combine the above two types
of probabilities.

Suppose that algorithm B does not abort in the above SS-
CKRA game. Under this assumption, algorithm B simulates
a SS-CKRA game that is indistinguishable from a real SS-
CKRA game in the view of adversaryA, except the incorrect
simulations in both step 6)-a) of encryption query QEnc and
step 9) of the challenge phase. These two places cannot
be correctly simulated since algorithm B cannot compute
the values of the special form ê(g, g)abc∗z by itself, where
variable z is assigned according to the encryption queryQEnc
and the challenge pairs of adversary A. Although these two
simulations are incorrect, they cannot be found by adver-
sary A, except that A queries QH2 with that special issue.
Moreover, if the exception never appears, adversary A has
no advantage to win the SS-CKRA game since the challenge
ciphertext is independent of the two challenge keyword and
hidden relationship pairs.

Let Query denote the event that adversary A queries QH2

with that special issue. According to the definition of the SS-
CKRA security and the above analysis, we have

AdvSS-CKRASPCHS,A = Pr[Win]−
1
2

= Pr[Win|Query] ∗ Pr[Query]

+Pr[Win|Query] ∗ Pr[Query]−
1
2

= (Pr[Win|Query]−
1
2
) ∗ Pr[Query]

It implies that Pr[Query] > AdvSS-CKRASPCHS,A.
In the guess phase, algorithm B randomly chooses a pair

(Y , V ) from H2List and computes Y
1/(x∗d∗KW∗d

∗u∗d ) as its
solution to the CBDH problem. If Y = ê(g, g)

abc∗x∗dKW∗d
u∗d ,

then it is clear that algorithmB successfully solves the CBDH
problem. Hence, we need to compute the probability of the
event that Y = ê(g, g)

abc∗x∗dKW∗d
u∗d holds. To complete this

task, we compute the probability of the event that adversary
A queries QH2 with the issue ê(g, g)

abc∗x∗dKW∗d
u∗d at first.

Let Queryd denote this event. Since this issue belongs to
the special issues defined in the event Query, the maximum
number of special issues is qe + 2. Hence, we have

Pr[Queryd ] >
1

qe + 2
Pr[Query] >

1
qe + 2

AdvSS-CKRASPCHS,A.

In addition, since H2List has at most q2 + qe records, algo-
rithm B has a probability of at least 1

q2+qe
to choose a value

Y having Y = ê(g, g)
abc∗x∗dKW∗d

u∗d . To summarize, under the
assumption that algorithm B does not abort, it can solve the
CBDH problem with probability

AdvCBDHB >
1

(q2 + qe) ∗ (qe + 2)
AdvSS-CKRASPCHS,A.

Second, we compute the probability of the event that algo-
rithm B does not abort. Let Abort be the event. Accord-
ing to the above SS-CKRA game, we have Pr[Abort] =
(1 − σ )qt+qpσ 4. Let σ = 4

qt∗qp+4
. We have Pr[Abort] >

( 4
e∗qt∗qp

)4, where e is the base of the natural logarithm.
To summarize, if there is a PPT adversary A that has an

advantage of AdvSS-CKRASPCHS,A to break our new SPCHS instance
in the SS-CKRA game, algorithm B can solve the CBDH
problem with a probability of more than

AdvCBDHB >
256

(e ∗ qt ∗ qp)4 ∗ (q2 + qe) ∗ (qe + 2)
AdvSS-CKRASPCHS,A,

where e is the base of the natural logarithm.

IV. THE APPLICATION OF OUR NEW INSTANCE IN THE
CLOUD-ASSISTED IoT MODEL
In this section, we will briefly introduce the application of
our new instance in the cloud-assisted IoT model. A clas-
sic cloud-assisted IoT model consists of some IoT devices,
the cloud and the owner of those devices. All IoT devices
collect the real-world data and upload them to the cloud, and
the owner can retrieve the intended data from the cloud.When
applying our new instance in this model, the resulting system
includes the following phases:
• Deploying Devices. In this phase, the owner runs algo-
rithm SystemSetup to generate a pair of the master
public and private keys (PK, SK), generates a pair of
the traditional public and private keys (PK′, SK′) (such
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TABLE 2. Configuration of system parameters.

as the public and private keys of the RSA algorithm),
stores (PK, PK′) in all IoT devices, and finally deploys
these devices to the real world.

• Uploading Data. In this phase, all IoT devices collect
data and upload them to the cloud. For example, an IoT
device runs algorithm StructureInitialization to gen-
erate a pair of its public and private parts (Pub, Pri),
and it uploads the public part Pub to the cloud. When
the device has collected data F , it extracts some key-
words from F , generates searchable ciphertexts using
algorithm StructuredEncryption for those keywords,
encrypts F by PK′, and uploads all ciphertexts to the
cloud.

• Retrieving Data. In this phase, the owner generates
a keyword search trapdoor using algorithm Trapdoor
and sends it to the cloud. Then, the cloud runs algo-
rithm StructuredSearch to find all matching keyword-
searchable ciphertexts and returns the corresponding
ciphertexts of data to the owner. Finally, the owner
decrypts data F using SK′.

Since all IoT data are encrypted in a public-key setting,
the cloud cannot learn their content. In addition, all extracted
keywords are encrypted by our new instance. Hence, the cor-
responding keyword-searchable ciphertexts are semantically
secure in the view of the cloud according to Theorem 2.

V. COMPARISONS AND EXPERIMENTS
In this section, we experimentally compare our new instance
with XW’15 in terms of the time cost to generate keyword-
searchable ciphertexts, the communication cost to transfer
ciphertexts, and the time cost to search keywords. Table 2
shows the hardware and operating system for the experi-
ment. We code our new instance and XW’15 using the PBC
library [3] with the parameters of the elliptic curve in Table 2.

A. COMPARING SEARCH PERFORMANCE
This experiment contains 1 million ciphertexts in total.
We respectively code our new instance and XW’15 to find
the matching ciphertexts in an appointed time, and we run
these two instances using a CPU with 6 cores. Fig. 4 shows
our results. For a given time, Fig. 4 shows the number
of the matching ciphertexts that can be found by our new
instance and XW’15. For example, given 5 seconds, our
new instance can find approximately 21500 matching cipher-
texts, and XW’15 can find approximately 4300 matching

FIGURE 4. Comparing the Search Performance of Our New Instance
and XW’15.

FIGURE 5. Comparing the Encryption Performance of Our New Instance
and XW’15.

ciphertexts. Hence, our new instance has search performance
that is approximately 5 times greater than that of XW’15.
Moreover, this type of high performance also is preserved for
different given times by our new instance.

B. COMPARING ENCRYPTION PERFORMANCE
In this experiment, we code our new instance and XW’15 to
generate keyword-searchable ciphertexts, and we test the
time cost to generate a given number of ciphertexts. Fig. 5
shows our results. For example, to generate 10000 keyword-
searchable ciphertexts, XW’15 takes approximately 86 sec-
onds, and our new instance takes approximately 52 seconds.
Hence, to generate keyword-searchable ciphertexts, our new
instance saves approximately 40% of the time cost compared
with XW’15.

C. COMPARING COMMUNICATION COST
This experiment compares the communication cost of our
new instance and XW’15 by statistically evaluating the byte
size of the generated keyword-searchable ciphertexts. Fig. 6
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FIGURE 6. Comparing the Communication Cost of Our New Instance
and XW’15.

shows our results. For example, it shows that when generating
and transferring 10000 keyword-searchable ciphertexts, our
new instance takes approximately 312.5KB andXW’15 takes
approximately 3750 KB. Hence, our new instance saves
approximately 91% of the communication cost compared
with XW’15.

To summarize, the above experimental comparisons
clearly show that our new instance is considerably more
efficient than XW’15 in terms of the time cost to search
a keyword and generate ciphertexts and the communication
cost to transfer the generated ciphertexts.

VI. OTHER RELATED WORKS
SPKE was first introduced by Boneh et al. [1]. Following this
seminal work, Abdalla et al. [4] redefined the consistency of
SPKE and proposed a general method to construct an instance
with enhanced consistency.

Recently, most of the works on SPKE have been ded-
icated to realizing diverse searches, including continuous
search [5]–[10], parallel search [11]–[13], subset search [13],
timestamp search [4], [14], similarity search [15], delegation
search [16], [17] and fuzzy search [18]. In addition, some
works, like [19], dedicate to achieve the SPKE scheme resist-
ing keyword guessing attack. However, all above works can
not improve their search performance.

To address this problem, Bellare et al. proposed a deter-
ministic encryption scheme [20]. In this scheme, the cipher-
texts of the same keyword are also the same. Hence,
it achieves logarithmic search complexity. However, it fails
to maintain the semantic security in practice. Without losing
the semantic security, Xu et al. proposed the first SPKE
scheme with sub-linear search complexity. To the best of our
knowledge, their scheme achieves the best search complexity
while maintaining the semantic security.

VII. CONCLUSION
SPKE is a fundamental tool to achieve data security for the
cloud-assisted IoT model. However, the existing works are

limited in achieving the parallel search, the sub-linear search
complexity or the semantic security. Hence, this paper pro-
poses a new instance to achieve more practical performance
while retaining the semantic security.When applying our new
instance in the cloud-assisted IoT model, the resulting system
reduces the time cost of the IoT devices to generate searchable
ciphertexts, saves the communication cost of the IoT devices
to transfer ciphertexts, and improves the search performance
of the cloud to retrieve the intended data. In addition, this
system maintains the security of the data even if the cloud
is untrusted.
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