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ABSTRACT Clustering is an important approach in fault diagnosis. The dominant sets algorithm is a
graph-based clustering algorithm, which defines the dominant set as a concept of a cluster. In this paper,
we make an in-depth investigation of the dominant sets algorithm. As a result, we find that this algorithm is
dependent on the similarity parameter in constructing the pairwise similarity matrix, and has the tendency
to generate spherical clusters only. Based on the merits and drawbacks of this algorithm, we apply the
histogram equalization transformation to the similarity matrices for the purpose of removing the influence
of similarity parameters, and then use a density-based cluster expansion process to improve the clustering
results. In experimental validation of the proposed algorithm, we use two criterions to evaluate the clustering
results in order to arrive at convincing conclusions. Data clustering experiments on ten data sets and fault
detection experiments on the Tennessee Eastman process demonstrate the effectiveness of the proposed

algorithm.

INDEX TERMS Clustering, fault diagnosis, dominant set, cluster expansion.

I. INTRODUCTION
Data clustering refers to the process of grouping data into
clusters based on their distance or similarity, so that the data
in the same cluster are similar, and they are less similar to
those in other clusters. As the clusters usually reflect the
implicit pattern in a set of data, clustering is widely used
in pattern recognition, fault diagnosis, data mining, image
analysis and machine learning [1]-[8]. Some of the most
commonly used clustering algorithms include K-means, nor-
malized cuts (NCuts) [9] and DBSCAN (Density-Based Spa-
tial Clustering of Applications with Noise) [10]. In recent
developments, some algorithms have been presented from
different focuses, including the affinity propagation algo-
rithm [11], spectral clustering [12], dominant sets [13], den-
sity peak based algorithm [14] and others [15], [16].
Existing algorithms usually face some challenges in
accomplishing real-world clustering tasks. The well-known
K-means algorithm needs to be fed the number of clusters.
In addition, its clustering results are influenced by the initial
cluster centers which are usually selected randomly, and it
can only generate spherical clusters in general. As a typi-
cal spectral clustering approach, the NCuts algorithm also
requires to specify the number of clusters and generates

clusters of spherical shapes only. Although DBSCAN is able
to extract clusters of arbitrary shapes and obtain the number of
clusters automatically, it involves a neighborhood radius and
the minimum cluster size as the density parameters. In other
works, the affinity propagation (AP) algorithm [11] requires
as input the preference values of all the data to be clustered,
and the density peak based algorithm (DP) [14] involves
the cutoff distance and possibly human selection of cluster
centers. In summary, the majority of existing clustering algo-
rithms either demand prior knowledge of the dataset for input
parameters determination, or are only suitable for datasets
with spherical clusters. In the case that the conditions are
not satisfied, the performance of these algorithms usually
degrades significantly. Some works have been published to
solve these problems, e.g., [17], [18] in estimating the number
of clusters. However, the problems of parameter estimation
and limited cluster shapes are still open in general.

The dominant sets (DSets) algorithm defines dominant
set as a non-parametric concept of a cluster, and generates
the clusters sequentially. With the pairwise data similarity
matrix as the input, the DSets algorithm regards a dominant
set as a cluster, and generates the clusters in a sequential
fashion. This algorithm requires the pairwise data similarity
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matrix as the input, instead of the commonly used number
of clusters. In addition, it can be used to generate over-
lapping clusters in a game-theoretic framework [19], [20].
Based on the nice properties, the DSets algorithm has
been applied successfully in image segmentation [13], [21],
human activity analysis [22], object detection [23] and object
classification [24], [25], etc. Some closely related works to
the DSets algorithm include [26]—-[31].

The DSets algorithm uses as the input the pairwise data
similarity matrix, thereby eliminating the requirement of data
to be represented as vectors of features. However, in the case
that the data for clustering are represented in the form of
vectors, we need to calculate the pairwise similarity matrix
with the data vectors. Usually we can estimate the similarity
between two data x and y by s(x, y) = exp(—d(x, y)/o), with
d(x, y) denoting the distance between data vectors and o as
the similarity parameter. Here we see that the variances of o’s
lead to the changes of similarity matrices, which are found to
result in different clustering results. In this paper we present
an approach to solve this problem. Our contributions are as
follows. First, we investigate how o ’s impact on the clustering
results, and apply histogram equalization transformation to
similarity matrices for the purpose of eliminating the influ-
ences of o’s. Second, we study the reason behind the observa-
tion that histogram equalization results in small clusters, and
present a simple density based cluster expansion method to
solve the problem and improve the clustering results. Third,
we demonstrate the effectiveness of the proposed algorithm
with data clustering and fault detection experiments.

The remainder of this paper is structured as follows.
We firstly present a brief introduction of the dominant set
definition and the DSets algorithm in Section II, based on
which we investigate the problems of the DSets algorithm and
present our solution in Section III. Data clustering and fault
detection experiments and comparison with other algorithms
are reported in Section I'V. The concluding remarks are given
in V.

Il. DOMINANT SET

In this section we firstly present a brief introduction of the
definition of dominant set, based on which the DSets algo-
rithm and its properties are derived. For details we refer the
reader to [13].

As aforementioned, existing algorithms usually rely
on user-specified parameters to accomplish the clustering
process. The K-means-like algorithms partition the data with
the given number of clusters, and treat each part as a cluster.
In contrast, DBSCAN uses the specified density parameters
to determine the cluster borders, and then extracts clusters
one by one from the set of data. Different from these two
kinds of approaches, [13] presented dominant set as a non-
parametric concept of a cluster. Informally, a dominant set
is defined as a maximal subset with internal coherency. This
definition means that the data in a dominant set are similar to
each other, and they are less similar to those outside the dom-
inant set. This property qualifies a dominant set as a cluster.
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Similar to DBSCAN, by extracting the dominant sets one by
one, we can obtain all the clusters and determine the number
of clusters automatically from the clustering process.

In order to define dominant set formally, we firstly use an
edge-weighted graph G = (V, E, w) to represent the n data
for clustering, where V, E and w denote the data set, the edge
set and the edge weight function, respectively. With A = (a;;)
representing the pairwise similarity matrix, it is evident that
wij = a(i,j) if (i,j) € E and w;; = 0 otherwise. In our
clustering application one data should not be similar to itself,
and therefore the similarity values on the main diagonal are
all set to zero.

As a dominant set is a maximal subset of data with internal
coherency, we can regard the dominant set extraction as a pro-
cess to maximize the cluster size on condition that the internal
coherency is preserved. For this purpose, [13] presented a
criterion to evaluate if a subset of data is internal coherent, and
proposed to include into a dominant set only the data does not
destroy the internal coherency. Specifically, fori € S,j ¢ S
and § € V, we firstly define

1
aws(i) = — ¥ _ ay, ey
S| =
je
and
¢s (i, j) = a;j — aws(D). @)

Obviously, awg (i) measures the average similarity between i
and all the data in S, and ¢s(i, j) measures the relationship
of two similarities, namely the similarity of i and j, and the
average similarity of i with the data in S. We then define the
key variable in the dominant set definition as

1, if |§] =1,

ws(i) = .. . . 3)
Zjes\{i} ds\(iy(, Dws\(iy(j),  otherwise.

Since wg(i) is defined in a recursive form, its meaning
is not straightforward. From Eq. (3) we see that wg(i)
can be roughly regarded as a weighted sum of ¢g\ (7, 7).
Considering the definition of ¢g(i, j) in Eq. (2), we see that
wgs (i) actually reflects the relationship of two similarities,
i.e., the average similarity between i and the data in S \ {i},
and the overall similarity in S \ {{}. Now we see that wg (i) > 0
means that the former similarity is larger than the latter one,
and including i is able to preserve the internal coherency
in S\ {i}. In contrast, a negative wg (i) indicates that including i
into S \ {i} will destroy the internal coherency in S \ {i}.

Now we are ready to define dominant set in a formal way.
With W(S) = )", ¢ ws(i), a subset S such that W(T') > 0 for
all non-empty 7' C S is called a dominant set if

1) ws(i) > 0, forallieS.

2) wsy( < 0, foralli ¢S.
In the definition, the first condition indicates that all the data
in the subset are able to preserve the internal coherency,
and the second one states that one data will be rejected
if it destroys the internal coherency. These two conditions
together shape a dominant set as a maximal subset of data
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with internal coherency. This further means that the data in a
dominant set have high similarities with each other and low
similarities with those outside, and qualifies a dominant set
as a cluster.

Pavan and Pelillo [13] proposed to extract a dominant
set with the replicator dynamics used in evolutionary game
theory. With x € R" denoting the weights of all the n data,
we calculate the final weights of the data by

LD _ 0 (Ax);
ko Tk xOT Ax (@)

4)
where k = 1,...,n and ¢ denotes the iteration number.
After the iteration converges, the data with weights above a

threshold form a dominant set. In [32] the so-called infection
and immunization dynamics are presented, where

XD = 0p 0 COF D) = xD 40 (5)

In this dynamics, F is a function used to search the most
infective strategy y for x, and 6 represents the minimum
portion of y to make the new population (1 — 0)x + 6y
immune to y. The details of these denotations can be found
in [32] and are skipped here for space reason. Compared
with the replicator dynamics, the infection and immunization
dynamics involve no weight thresholds and the data with non-
zero weights form a dominant set. In this paper we adopt the
infection and immunization dynamics.

With the method to extract a dominant set, the DSets clus-
tering can be accomplished with the same sequential manner
as DBSCAN, and the number of clusters can be determined
in the clustering process.

llIl. THE PROPOSED ALGORITHM

Since the pairwise similarity matrix is the sole input of the
DSets algorithm, if the data to be clustered are given in the
form of the pairwise similarity matrix, the DSets algorithm is
parameter independent. However, in many tasks, the data are
represented in the form of vectors of features. In this case,
we usually use s(x,y) = exp(—d(x,y)/o) to calculate the
similarity between x and y, and the similarity parameter o
is involved. With a given set of data, the variance of ¢’s
leads to the change of similarity matrices, which are then
found to result in different clustering results. One example
is shown in Figure 1, where the DSets clustering results
on the Jain dataset [33] with different o’s are reported,
and d is the average of the pairwise Euclidean distances.
We observe from Figure 1 that withasmall o, e.g.,0 = 0.5d,
we obtain many small clusters. With the increase of o, the
clusters become larger and larger, and the number of clusters
decreases dramatically. This means that o has a significant
influence on DSets clustering results.

We then apply the DSets algorithm to the other nine
datasets, including Aggregation [34], Compound [35], Path-
based [36], R15 [37], Flame [38] and UCI datasets Thyroid,
Wine, Iris and Breast. The brief description of all the ten
datasets is in Table 1. We experiment with 0 = ad,
where ¢ = 0.1,0.2,0.5, 1,2, 5 and 10 to 100 with the step
of 10, and show the clustering results in Figure 2. Here we
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© (d)
FIGURE 1. The clustering results of the DSets algorithm on the Jain
dataset, obtained with different ¢’s. (a) o = 0.5d. (b) ¢ =d. (c) ¢ = 5d.
(d) o =20d.

TABLE 1. The characteristics of datasets used in experiments.

# of points | Data dimension | # of clusters
Aggregation 788 2 7
Compound 399 2 6
Pathbased 300 2 3
R15 600 2 15
Jain 373 2 2
Flame 240 2 2
Thyroid 215 5 2
Wine 178 13 3
Iris 150 4 3
Breast 699 9 2

(@ (b)

FIGURE 2. The clustering results of the DSets algorithm on ten datasets.
(a) F-measure. (b) Jaccard index.

use F-measure and Jaccard index to evaluate the clustering
results.

We observe from Figure 2 that on all the ten datasets, the
clustering results of the DSets algorithm vary significantly
with the variance of o. In general, we find that both small and
large o’s result in the decrease of the clustering quality, and
the best results are obtained at limited o’s. However, we find
that the best-performing ¢’s vary widely on the ten datasets,
from the smallest 5d on R15 to the largest 250d on Breast,
and there isn’t a fixed o suitable for different datasets. On one
hand, there is still no method available to derive the best-
performing o for a given dataset. On the other hand, we notice
that on some datasets, even the best-performing ¢ ’s generate
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unsatisfactory clustering results. This observation implies
that it may not be a good option to explore a best-performing
o determination method. Therefore we need to explore a dif-
ferent approach to solve the parameter dependence problem.

A. HISTOGRAM EQUALIZATION

In order to eliminate the influence of the similarity parameter
on the DSets clustering results, we firstly analyze the reason
behind the influence. By definition a dominant set includes all
data helpful to preserve the internal coherency and excludes
all those not helpful for this purpose. In other words, the
extraction of a dominant set is a process of maximizing the
dominant set size on condition that the internal coherency is
preserved. This definition has the following consequences.
First, the dominant set definition pays attention only to the
high internal similarity in a dominant set, and ignores the
importance of low external similarity required by clustering.
This leads the DSets clustering results to be very sensitive
to the absolute magnitude of similarity values. Specifically,
a large o increases the similarity values and reduces the dif-
ference among large similarity values. In this case, more data
is likely to be included into a dominant set and we obtain large
clusters with the DSets algorithm. In contrast, with a small o,
the DSets algorithm tends to generate small clusters. Since
over-small and over-large clusters deviate from the ground
truth and degrade the clustering results, we see both very large
and very small o’s result in the decrease of clustering quality,
as illustrated in Figure 2. Second, the dominant set definition
requires each included data to be able to preserve the internal
coherency. This strict constraint implies that in a dominant
set, each data has to be very similar to all the others in the
dominant set. As a result, the obtained dominant sets can only
be of spherical shapes and the DSets algorithm is not capably
of generating clusters of non-spherical shapes. This explains
the observation in Figure 2 that on some datasets, even the
best-performing o ’s generate unsatisfactory results.

In this paper we eliminate the influence of o by trans-
forming the similarity matrices with histogram equalization
before clustering. Histogram equalization is a popular image
enhancement technique used to increase the intensity contrast
in an image [39]. This technique transforms the intensity
values of image pixels based on the intensity histogram, and
after transformation the intensity histogram becomes more
flat than the original one. Given an image, we quantize the
range of intensity values into N bins and construct the inten-
sity histogram H = {h},k = 1,---, N, with h; denoting
the amount of pixels falling in the k-th bin. With histogram
equalization transformation, the pixels in the k-th bin are
assigned a new intensity value as

k h:
ge=L)Y - (6)
j=1

where L is the maximum intensity value and n is the total
number of pixels in the image. In transforming the simi-
larity matrices with histogram equalization, the similarity
values are used to build the histogram and transformed to
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new values. As in our application the similarity is evalu-
ated by s(x, y) = exp(—d(x,y)/o), the maximum similarity
value is 1. Therefore the similarity values in the k-th bin are
assigned the new value as ij: 1 % With histogram equal-
ization transformation, the similarity elements in one bin are
assigned the same new value, which is determined only by
the amount of similarity elements in that bin and in the bins
with smaller similarity values. If the similarity range [0,1] are
quantized into a sufficient large number of bins such that at
most one similarity element exists in each bin, we see that
the new value of a similarity element is influenced only by the
amount of smaller similarity values. This means that after the
transformation by histogram equalization, the new similarity
matrices are determined only by the sorting of the similarity
values.
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FIGURE 3. The DSets-histeq clustering results on the Jain dataset with
different 6. (@) 0 = 0.5d. (b) 0 =d. (c) ¢ = 5d. (d) o = 20d.

Now we are in a position to explain why we transform
similarity matrices by histogram equalization to eliminate the
influence of 0. With a given set of data, the pairwise distances
are fixed and not influenced by o. In this case, while the
variance of o ’s changes the absolute similarity values, the rel-
ative relationship among the similarity values is unchanged.
For example, if d(x1,yl) > d(x2,y2), then s(x1,yl) <
s(x2,y2) holds for arbitrary ¢’s. As a result, the sorting of
the similarity values are fixed and not influenced by o’s.
Recalling that after histogram equalization transformation,
the new similarity matrices are determined only by the
sorting of the similarity values, we see that new similar-
ity matrices are invariant to o’s. Consequently, the DSets
clustering results are no longer influenced by o’s. For sim-
plicity of expression, in this paper DSets-histeq is used to
denote the DSets algorithm with similarity matrices trans-
formed by histogram equalization before clustering. Corre-
sponding to the clustering results in Figure 1 and Figure 2,
we use DSets-histeq to do the clustering and show the
results in Figure 3 and Figure 4, respectively. We observe
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(a) (b)

FIGURE 4. The clustering results of the DSets-histeq algorithm on ten
datasets. (a) F-measure. (b) Jaccard index.

that with the help of histogram equalization, the clustering
results of DSets-histeq are invariant to o’s almost completely.
This confirms that the histogram equalization transformation
of similarity matrices is effective in solving the parameter
dependence problem of the DSets algorithm. The slight vari-
ance observed on some datasets are caused by the quantiza-
tion process in histogram equalization, and can be reduced by
increasing the number of bins.

350

Bl Ground truth
I Ours
300

Average cluster size
@ S R
g 8 8

o
=)

50

0

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

FIGURE 5. Comparison of the average cluster sizes from DSets-histeq and
ground truth.

While Figure 3 and Figure 4 show that the influence from
o is eliminated effectively, they also indicate that the clus-
tering results of DSets-histeq are far from being satisfactory.
In Figure 3, the clusters are usually quite small and of spher-
ical shapes, and in Figure 4 the clustering results are usually
much inferior to the best possible ones shown in Figure 2.
We explain this observation as follows. The dominant set
definition requires each included data to be able to preserve
the internal coherency in the dominant set. This requirement
is very strict and only a set of data with high pairwise sim-
ilarities are able to form a dominant set. After histogram
equalization transformation, the contrast of the similarity
values is increased and it is difficult to find a large amount of
data with high pairwise similarities. As a result, DSets-histeq
is likely to generate small clusters, which are usually smaller
than the real ones. As a result, the clustering results are not
satisfactory. In fact, we report the comparison of the average
cluster sizes obtained with DSets-histeq and the true average
cluster sizes in Figure 5, and observe that the clusters obtained
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with DSets-histeq are usually much smaller than the real ones.
In Figure 5 D1, D2, ---, D10 are used to represent the ten
datasets in the order of Aggregation, Compound, Pathbased,
R15, Jain, Flame, Thyroid, Wine, Iris and Breast,

While the small clusters from DSets-histeq means unsatis-
factory clustering results, they also provide an opportunity to
solve the second problem and generate clusters of arbitrary
shapes. As DSets-histeq groups only very similar data into
a cluster, the data in such a cluster usually do belong to
one single cluster and should not be partitioned. Considering
also that the small clusters are usually much smaller than the
real ones, we notice that the generated clusters by DSets-
histeq are usually subsets of real clusters. Therefore it is
possible for us to expand the small clusters to obtain clusters
of arbitrary shapes and improve the clustering results. In this
sense, although the histogram equalization transformation
doesn’t solve the second problem explicitly, it does provide
an opportunity to achieve the purpose. In the succeeding
subsection we introduce the cluster expansion algorithm used
in this paper.

B. CLUSTER EXPANSION

Since the clusters generated by DSets-histeq are usually the
subsets of real clusters, we regard them as initial clusters and
propose to expand them to obtain clusters of arbitrary shapes
and improve the clustering results. Our cluster expansion
method is based on the property of dominant set and is derived
in details in the following.

The dominant set definition imposes a very strong restric-
tion of the high internal similarity in the dominant set. As a
result, the data in a dominant set are very similar to each
other. The histogram equalization transformation enlarges the
similarity contrast in the similarity matrices and strengthens
the requirement on high internal similarity. Considering also
the fact that DSets-histeq generates clusters one by one,
we find that the first generated cluster corresponds to the
densest part in the dataset, and has higher internal similarity
than the clusters extracted later. Taking only the first cluster
into account, this means that this cluster has higher density
than neighboring areas. Therefore we can make use of this
observation to expand the initial cluster. The other clusters
can be obtained in the remaining unclustered data with the
same method. In the following we use the first cluster as an
example to show how to accomplish the cluster expansion.

In cluster expansion, we need a criterion to determine
which neighboring data should be included into the cluster.
The first cluster generated by DSets-histeq has the highest
internal similarity in all the clusters, and we make use of
this information to expand the cluster. In stating that the first
cluster has the highest internal similarity, it should be noted
that the internal similarity is evaluated with all the data in the
cluster. When it comes to the local density of each data, the
data in the cluster not necessarily have larger densities than
those outside. Therefore if we find out the minimum local
density in the cluster, we can add an outside data into the
cluster if its local density is above the minimum local density.
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In other words, we intend to maximize the cluster size on
condition that the minimum local density in the cluster is
unchanged. Denoting the first initial cluster by D, we intend
to obtain the final cluster as

C =maxD, sb.t.&c =&p, ©)

where &c and &p denote the minimum local density in
C and D, respectively.

We use the following method to obtain the final cluster by
cluster expansion [40]. Firstly, for each data i in the initial
cluster D, we calculate its average similarity y; with its near-
est neighbors in the cluster. The average similarity reflects
the local density of the data in the cluster. Then we find the
minimum of these average similarities as th = min;ep Vi,
which denotes the minimum local density acceptable in the
initial cluster. Therefore if an outside data has a larger local
density than th, it should be included into the cluster. Note
that in calculating the local density of an outside data, only
the nearest neighbors in the initial cluster are used. Before
cluster expansion, we sort the outside data according to their
distance to the initial cluster so that the nearest ones will be
considered first.

In summary, the cluster expansion process of an initial
cluster D is described as follows.

1) For each datai € D, calculate its local density as

vim—— 3 s ®)

|Sinn | KESim

where S;y,;, is the set of nearest neighbors of i in D.

2) Calculate the density threshold as th = min;ep ;.

3) Sort the outside data in decreasing order based on their
average similarity with the data in the cluster.

4) Starting from the nearest outside data, and for each
outside data j, calculate its similarity with the cluster
as Y = ﬁ Y sik. If Y; > th, include j into the

jnn

cluster.

IV. EXPERIMENTS

We firstly compare the proposed algorithm with DSets-histeq
to show the effect of the cluster expansion method. As both
algorithms are not influenced by o’s, we use 0 = d to
generate the results. The comparison of two algorithms is
reported in Figure 6. From the comparison we observe that
on all the ten datasets, our algorithm generates better results
than DSets-histeq, showing the effectiveness of the cluster
expansion algorithm.

Since our algorithm is proposed to solve the problems of
the DSets algorithm, we then make a comparison between
these two algorithms. As the clustering results of the DSets
algorithm are influenced by o’s, we set o as 30d, which is
selected from testing values from 0.1d to 100d as the one
generating the best average results. The clustering results
of these two algorithms are shown in Figure 7, where we
observe that on seven out of the ten datasets, the results of our
algorithm are better than or comparable to those of the DSets
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FIGURE 6. The clustering results of DSets-histeq and our algorithm.
(a) F-measure. (b) Jaccard index.

algorithm with selected o’s. This shows the effectiveness of
our algorithm in solving the problems of DSets. The reason
why on D2, D3 and D7 our algorithm is outperformed by
DSets, in our opinion, is as follows. The key of our algo-
rithm is to generate small clusters with DSets-histeq and then
expand the clusters to improve the clustering results. Due to
the imperfection in both DSets-histeq and cluster expansion,
the obtained clusters may be larger or smaller than the real
ones. Even if the average cluster size from our algorithm is
the same as ground truth, the obtained clusters may still be
different. All these factors degrade the performance of our
algorithm. On the other hand, the DSets algorithm may gen-
erate very good results if the major clusters are spherical and
o is selected appropriately. In this sense, it is not surprising
that the DSets algorithm performs better than ours on some
datasets.

We also compare our algorithm with some others, includ-
ing K-means, NCuts, SPRG [12], DBSCAN, AP and DP.
With K-means, NCuts and SPRG, we set the required num-
ber of clusters as the ground truth and report the average
results of ten runs. With DBSCAN we select the parame-
ter MinPts from 1, 2, ---, 10 and determine Eps based on
MinPts with the method presented in [41]. The AP algo-
rithm requires as input the preference value of each data,
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FIGURE 7. The clustering results of DSets with selected ¢'s and our
algorithm. (a) F-measure. (b) Jaccard index.

TABLE 2. Comparison of different algorithms on ten datasets with
F-measure.

Al A2 D3 A4 AS A6 Ours
D1 0.83 | 099 | 090 | 0.82 | 0.73 | 0.99 | 0.94
D2 0.68 | 0.70 | 0.92 | 0.77 | 0.64 | 0.82 | 0.79
D3 0.70 | 096 | 0.72 | 0.69 | 0.56 | 0.69 | 0.73
D4 082 | 099 | 0.73 | 0.54 | 0.93 | 0.99 | 0.98
D5 0.79 | 0.63 | 0.85 | 0.57 | 0.86 | 0.90 | 0.80
D6 0.84 | 099 | 096 | 0.74 | 0.60 | 1.00 | 0.90
D7 0.83 | 0.64 | 0.68 | 0.52 | 0.97 | 0.55 | 0.75
D8 0.70 | 0.64 | 0.51 | 0.64 | 0.97 | 0.72 | 0.70
D9 0.89 | 093 | 0.78 | 093 | 0.87 | 0.70 | 0.76
D10 096 | 0.64 | 0.87 | 0.82 | 0.97 | 0.67 | 0.85
average | 0.80 | 0.81 | 0.79 | 0.70 | 0.81 | 0.80 | 0.82

and Brendan and Delbert [11] presented a method to cal-
culate the range [pmin, Pmax] Of this parameter. We test
P = Pmin + step * k with step = (Pmax — Pmin)/10 and k =
1,2,---,9,9.1,9.2,--- ,9.9 and select the one which gen-
erates the best average results. With DP we adopts the cutoff
kernel and the cutoff distance is determined by including
1.2 percentage of data in the neighborhood after parame-
ter tuning. The comparison of these algorithms is shown
in Table 2 and Table 3. In these two table Al, A2,---, A6
represent the K-means, NCuts, DBSCAN, AP, SPRG and DP,
respectively. From the comparison we observe that while
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TABLE 3. Comparison of different algorithms on ten datasets with
Jaccard index.

Al A2 A3 A4 AS A6 Ours
D1 0.64 | 098 | 0.81 | 0.71 | 049 | 0.98 | 0.89
D2 0.46 | 046 | 0.87 | 0.69 | 042 | 0.71 | 0.61
D3 0.50 | 0.85 | 0.53 | 0.49 | 0.34 | 0.49 | 0.55
D4 0.65 | 099 | 040 | 0.25 | 0.83 | 0.96 | 0.92
D5 0.53 | 042 | 091 | 029 | 0.63 | 0.71 | 0.52
D6 0.59 | 097 | 090 | 0.47 | 041 | 1.00 | 0.66
D7 0.64 | 040 | 0.57 | 0.29 | 090 | 0.29 | 0.58
D8 042 | 043 | 0.34 | 036 | 0.87 | 0.44 | 0.39
D9 0.69 | 0.79 | 0.60 | 0.77 | 0.66 | 0.51 | 0.58
D10 0.87 | 0.39 | 0.78 | 0.56 | 0.89 | 0.48 | 0.72
average | 0.60 | 0.67 | 0.67 | 049 | 0.65 | 0.66 | 0.64

R < eans
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FIGURE 8. The clustering results of three algorithms in fault detection.
(a) F-measure. (b) Jaccard index.

some algorithms generates very good results on some
datasets, their results on the other datasets are much worse.
As aresult, the average results of our algorithm are compara-
ble to the other algorithms.

Finally, we apply our algorithm to fault detection and
compare with the K-means and NCuts algorithms. The data
are from the widely used Tennessee Eastman process sim-
ulator [42]. We make use of the first six testing datasets,
including one non-fault dataset and five fault datasets. Each
dataset consists of 960 samples with 52 variables, in which we
select the first 22 and the last 11 variables in our experiment.
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We pool the non-fault dataset and each fault dataset together
and do clustering to differentiate between fault and non-fault
samples. With F-measure and Jaccard index as the evaluation
criterions, the clustering results of the three algorithms are
shown in Figure 8. From the comparison we observe that our
algorithm performs comparably to the other two widely used
algorithms. Considering that these algorithms for comparison
benefit from ground truth or manually selected parameters,
we believe the comparison shows the effectiveness of our
algorithm.

V. CONCLUSION

In this paper we present a data driven clustering algorithm
to solve the problems afflicting the dominant sets algorithm.
We firstly study the dominant sets algorithm in depth and find
its problems lie in the sensitiveness to the similarity parameter
and the tendency to generate spherical clusters only. We ana-
lyze the reason behind the two problems and present our
solution. Firstly, we transform the input similarity matrices
with histogram equalization to eliminate the influence of sim-
ilarity parameters on clustering results. Then the initial clus-
ters are expanded based on the density information captured
in the initial clusters. We perform experiments on various
datasets and showed that our algorithm improves the cluster-
ing results of the dominant sets algorithm significantly. Our
algorithm is also shown to perform better than or comparably
to other algorithms with parameter tuning. We finally apply
our algorithm to fault detection and show its effectiveness by
comparison with commonly used clustering algorithms.
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