
Received September 13, 2017, accepted October 30, 2017, date of publication November 8, 2017,
date of current version December 22, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2770323

Formal Verification of Behavioral AADL Models
by Stateful Timed CSP
FENG ZHANG1, YONGWANG ZHAO 1,2, DIANFU MA1, AND WENSHENG NIU3
1State Key Laboratory of Software Development Environment, School of Computer Science and Engineering, Beihang Univerisity, Beijing 100191, China
2Beijing Advanced Innovation Center for Big Data and Brain Computing, Beijing 100191, China
3Aeronautical Computing Technique Research Institute, Xi’an 71000, China

Corresponding author: Yongwang Zhao (zhaoyw@buaa.edu.cn)

This work was supported by the Project of State Key Laboratory of Software Development Environment under
Grant SKLSDE- 2017ZX-13.

ABSTRACT AADL along with its Behavior Annex is an architecture and behavior description language
for safety-critical domains, e.g. avionics, aerospace, and defence. In order to formally analyze behavior
properties of AADLmodels, it is necessary to transform theAADL language into formal languages supported
by formal verification tools. Moreover, comprehensive formal verification of AADL models highly requires
that the transformation supports larger subset of the AADL language, as well as verification tools are able
to capture various behavior of AADL, such as concurrency and timing. As an extended communicating
sequential process (CSP), stateful timed CSP with its model checker-PAT provide an strongly expressive
language and verification tool for real-time systems, distributed systems, and concurrent systems. This
paper introduces a model transformation approach from a comparatively complete subset of AADL to
stateful timed CSP, in particular supporting major components of AADL Behavior Annex. We propose
a comprehensive set of transformation rules for AADL to stateful timed CSP. Then, we perform formal
verification in PAT to analyze concurrent behavior properties of AADL models, such as safety, liveness,
and trace refinement with various fairness assumptions, in which we consider time capacities, deadlines,
periods of AADL threads and durations of AADL processes. As a study case, we develop an AADLmodel of
F-16 ‘‘Auto Pilot Controller’’ and transform the model into Stateful Timed CSP. We specify a set of critical
properties of the model and perform formal verification in PAT.

INDEX TERMS Model transformation, AADL, behavior annex, stateful timed CSP, PAT, formal
model-checking.

I. INTRODUCTION
AADL (SAE Architecture Analysis & Design Language [1])
is a textual and graphical Modelling language used to design
and analyze the software and hardware architecture of safety-
critical real-time systems. AADL along with its Behavior
Annex [2] describes not only the architectural aspects of
models, such as the dataflow and control flow, but also a
presentation for behavioral characteristics.

Formal verification can ensure safety, liveness and other
properties of AADL models. Formal methods enable com-
plete exploration of state space of a formal model with
respect to certain properties. Communicating Sequential Pro-
cesses [3] (CSP) as a formal theory of process algebra can
formally specify concurrent behaviors of communication sys-
tems. Stateful Timed CSP [4] (STCSP) as an extension of
Timed CSP [5] with mutual data operations and a rich set

of timed process constructs is able to capture timed system
behavior. Process Analysis Toolkit (PAT [6], [7]) as a model
checker of STCSP provides cost-effective analysis capabili-
ties as well as more powerful functionality and more efficient
performance over other model checkers.

In order to apply formal verification on AADL mod-
els using PAT, it needs the model transformation from
AADL to STCSP. There already exist studies focusing
on transformation from AADL to specification languages
of model checkers, such as CSP [8]–[10] and CSP-like
formal languages [11]. Other studies transform AADL to
Fiacre [12], [13], Maude [14], [15] and TASM [16], [17].
These works focus on a small subset of the AADL lan-
guage and perform formal verification of deadlock free, live-
ness, etc. To formally verify realistic safety-critical systems,
a larger subset, in particular covering the whole set of AADL

VOLUME 5, 2017
2169-3536
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

27421

https://orcid.org/0000-0002-2284-1383

F. Zhang et al.: Formal Verification of Behavioral AADL Models by Stateful Timed CSP

Behavior Annex, is highly required. Moreover, formal veri-
fication of other critical properties, such as divergency and
trace refinement, can significantly improve assurance of the
systems.

In this paper, we provide an approach for formal verifi-
cation of behaviorial AADL models by transformation into
PAT.We consider a large subset of AADL focusing on safety-
critical software. The subset covers software components,
communication among components and Behavior Annex
defined in the AADL language. We define a comprehensive
transformation of the subset into STCSP with the transfor-
mation of Behavior Annex with complex state transitions.
In detail, this paper makes the following contributions:

1) We define a large subset of AADL focusing on mod-
eling software systems, and propose a comprehensive
set of transformation rules into STCSP. Compared
to existing studies, our subset and transformation
rules support major components of Behavior Annex
including variable definitions, all types of state def-
initions, state transitions with guard conditions and
actions.

2) We develop an AADL model of F-16 ‘‘Auto Pilot
Controller’’ (F-16 APC) [18] which is constructed
according to aircraft aerodynamics data from NASA.
By refering to the AADL ARINC653 Annex,
the AADL model and its behavior state machine are
targeted for ARINC653 operating systems.

3) We perform formal verification of the transformed
model, i.e. STCSP models, in the PAT model checker.
We specify the critical properties of ‘‘F-16 APC’’
including a set of safety, liveness, and an abstraction
specification for refinement checking.

The rest of the paper is organized as follows. Section II-A
describes the concept of AADL along with its Behavior
Annex and ARINC653 Annex, Section II-B presents the
strengths of PAT and its specification language STCSP to
justify why we select STCSP to model AADL and PAT
to perform formal analysis; Section II-C introduces the
related works. Section III overviews our approach; Section IV
presents model-transformation rules and their demonstration
examples; Section V presents a case study, and Section VI
gives the conclusions and future directions.

II. BACKGROUND
A. AADL, BEHAVIOR ANNEX AND ARINC653 ANNEX
SAE Architecture Analysis & Design Language is a tex-
tual and graphical language to design and analyze safety-
critical real-time systems, whose operation strongly depends
on meeting safety system requirements. AADL is used to
describe the structure of such systems as an assembly of
software components mapped onto an execution platform.
The AADL Behavior Annex associates automata to define
dynamic execution semantics of AADL. The evoluation of
states in behavior specification is specified by state tran-
sitions. The detailed information of AADL and Behavior
Annex will be presented in Subsection III-A.

AADL ARINC653 Annex [19] is defined to sup-
port the modeling, analysis and automated integration
of ARINC653 [20] partitioned architectures. It provides
AADL architectural style guidelines and AADL defined
ARINC653 oriented properties to define a common
approach to use AADL standardized components to express
ARINC653 architectures.

A simple example of AADL with behavior annex is illus-
trated in Figure 1, in which there is a system sys comprising
a process pro. Process pro comprise two threads th1 and th2
and between features of the two threads there is a connec-
tion Th1_Th2. Thread th2 comprise a behavior specification
which is borrowed from AADL Behavior Annex.

FIGURE 1. A simple AADL example.

A state-charts presentation of automata can be described
as a automata diagram. For example in Figure 1, the behavior
specification in thread th2 can be illustrated in Figure 2.

B. STATEFUL TIMED CSP AND PROCESS
ANALYSIS TOOLKIT (PAT)
CSP is a formal language for describing patterns of inter-
action in concurrent systems. It is a member of the family
of mathematical theories of concurrency known as process
algebras, or process calculi, based on message passing via
channels. CSP was first described in a 1977 paper by Tony
Hoare, but has since evolved substantially. CSP has been

27422 VOLUME 5, 2017

F. Zhang et al.: Formal Verification of Behavioral AADL Models by Stateful Timed CSP

FIGURE 2. The diagram presentation for a behavior specification.

practically applied in industry for specifying and verifying
the concurrent aspects of various different systems.

STCSP is a formal modeling language extending CSP [3].
STCSP is able to specifying real-time, concurrent systems.
STCSP comprises elements of constants/variables, channels,
or/and processes. A process is defined as P(i1, i2, ... , in) =
PExp, where P is the process name, i1, i2, ... , in is an optional
list of process parameters and PExp is a process expression.
A Process P models the control logic of the system using a
rich set of process constructs.

P ::= Stop | Skip - primitives

| e → P - event prefixing

| [precoditions] P - process guard

| e{program} → P - process actions

| ch!x → P|ch?x → P - channel output/input

| P [] Q | P <> Q - external/internal choices

| P ‖ Q | P ||| Q - parallel/interleaving

| P;P - sequential composition

| P \ events - hiding

| if (b) {P} else {Q} - conditional choice

| while(cond) {P} - while program

| Wait[d]; P - delay

| P timeout[t] Q - timeout

| P interrupt[t] Q - timed interrupt

| P within[t] - within

| P deadline[t] - deadline

| Q - process referencing

program ::= x = exp - assignment

| program; program - composition

| if (b) {program} else {program} - conditional

| while (b) {program} - iteration

Stop is a deadlock process which does absolutely nothing
and allows time elapsing. Skip is a process which terminates
possibly after delaying for a while, and then behaves exactly
the same as Stop. The event-prefixed process e→ P engages
in an event e first and then behaves as P. It has to be noted that
the event e may serve as a synchronization barrier, if event-
prefixed processes are combined with parallel composition.
e{program} → P engages in event e whilst executing the

sequential program, which may be a simple procedure updat-
ing data variables(e.g. in the form of ax = 1; y = 2) or a
complicated sequential program. P [] Q is general choice
which states that either P or Q may execute if P performs an
event first, then P takes control; otherwise, Q takes control.
P <> Q is internal choice which states that either P or Q
may execute and the choice is made internally and non-
deterministically and immeidately. if(b){P} else{Q} is a con-
ditional choice andwhile(cond){P} is a while program.P;Q is
a sequential composition which states that P starts first and Q
starts immediately, without any delay, when P has finished.
P\events Process is hiding operation which turns events to
invisible ones.
Wait, timeout, interrupt, within, deadline are time related

operators. Wait[t] delays the system execution for a period
of t time units then terminates, therefore Wait[t];P delays
the starting time of P by exactly t time units. P timeout[t]
Q passes control to process Q if no event has occurred in
process P before t time units have elapsed. P interrupt[t]
behaves as P until t time units elapse and then switches to Q.
P deadline[t] is constrained to terminate within t time units.
P within[t] states that the first visible event of P must be
engaged within t time units.
The choice of STCSP is justified as follows. The state

of art approaches for modeling and verifying complex real-
time systems are mostly based on Timed Automata which
are finite state automata equippedwith clock variables. Timed
Automata are deficient inmodeling hierarchical complex sys-
tems due to the widespread applications and increasing com-
plexity. STCSP based on Timed CSP is capable of specifying
hierarchical real-time systems. Finite-state zone graphs can
be generated automatically from STCSP models by dynamic
zone abstraction. Model checking with non-Zenoness in
STCSP can be achieved based on the zone graphs using PAT.
The model checker PAT can support system modeling and
verification using STCSP and show its usability/scalability
via verification of real-world systems.

PAT is a self-contained framework to support simulat-
ing and reasoning on concurrent, real-time systems and
other critical domains, which can use BDD and digitiza-
tion [21], implicit clocks and zone Abstraction [22], clock-
symmetry reduction [23] for symbolic model-checking of
STCSP models. PAT implements various model checking
techniques catering for different properties such as deadlock-
freeness, divergence-freeness, reachability, LTL properties
with fairness assumptions, refinement checking and proba-
bilistic model checking. Shi [24] presents a comprehensive
comparison of CSP extensions, and their supporting tools
FDR, ProB and PAT.

The choice of PAT is justified by several features as
follows: (i) Easy Extensibility. PAT’s architecture pro-
vides extensibility [25] in many possible aspects: model-
ing languages, model checking algorithms, and reduction
techniques. Various model checkers have been integrated
into PAT under this new architecture. (ii) Multiple mod-
eling methods. It supports modeling traditional CSP,

VOLUME 5, 2017 27423

F. Zhang et al.: Formal Verification of Behavioral AADL Models by Stateful Timed CSP

TABLE 1. Comparisons of related works.

probability CSP, real-time CSP, probabilistic real-time CSP,
labeled transition and timed automata in various domains.
(iii) More properties able to be analysed, such as deadlock-
freeness, divergence-freeness, reachability, LTL properties
with fairness assumptions, refinement checking and prob-
abilistic properties. (iv) State of art model-checking
algorithms: linearizability [26] via optimized refinement
checking, explicit-state non-zenoness checking [27], partial
order reduction with abstractions [28], improved BDD-based
discrete analysis [29] and so on. (v) It provides user friendly
editing environment (multi-document, multi-language, and
advanced syntax editing features) for introducing models
and user friendly simulator for interactively and visually
simulating system behaviors.

C. RELATED WORK
We survey the state of art studies on model transformation of
AADL for formal verification.

1) CSP
Yang et al. [8] propose an approach that uses machine-
readable CSP to build formal semantics of AADL models,
and then performs formal verification using FDR to analysis
deadlock and livelock properties. Ahmad et al. [9], [10] use
a Hybrid CSP to present formal semantics of a synchronous
subset of AADL models.

2) LNT
Mkaouar et al. [11] transform AADL models to LNT [30]
specification language which is similar to CSP. LNT is sup-
ported by the CADP toolbox which offers a rich formal
verification like simulation and model checking.

3) FIACRE
Berthomieu et al. [12] introduce a high-level view of transfor-
mation principles and a implementation tool for behavioral
verification of AADL models with behavior specifications
that take the realtime semantics into account . Abid et al. [13]
propose a set of specification patterns which can be used
to express real-time requirements commonly found in the
AADL design of reactive systems, and provide an inte-
grated model checking tool chain in which Fiacre is used to

specify behaviors of AADL systems while verification activ-
ities ultimately relies on Tina.

4) MAUDE
Ölveczky et al. [14], [15] provide a formal object-based real-
time concurrent semantics using rewriting logic for AADL
behavioral models, and the semantics model can be directly
executable in Real-Time Maude. They develop a plug-in
component integrated into OSATE, which can automati-
cally transform AADLmodels into corresponding Real-Time
Maude specifications.

5) UPPAAL
Bao et al. [31] extend the syntax and semantics of Hybrid
AADL, propose a set of mapping rules transforming
uncertain-aware Hybrid AADL designs into NPTA, and
implement a tool chain that integrates both UPPAAL-SMC
and OSATE. Johnsen et al. [32] use the methodology of
semantic anchoring, which is through a set of transfor-
mation rules to timed automata constructs, to contribute
with a formal and implemented semantics of a subset of
AADL. Kim et al. [33] present a method for formal analysis
of AADL models using UPPAAL. Yang et al. [16] present a
machine checked, semantics-preserving transformation rules
from AADL to Timed Abstract State Machines (TASM),
and verify transformation rules in the theorem prover Coq.
Hu et al. [17] present a methodology for translating AADL
to TASM and implement a tool using Atlas Transformation
Language (ATL).

The comparisons of the above related works are listed
in Table 1. These works focus on a subset of the AADL
language. For connections in AADL, our work considers
four types of connections, i.e. three types of port connection
(data/event/event data) and parameter connection, each of
which is represented by a ‘‘+’’ in the table. Some related
works do not consider parameter connection. For AADL
Behavior Annex, our work supports variable definitions,
all types of state definitions (initial | complete | return |
final), and state transitions with guard conditions and actions,
in which variables, states, state transitions are represent by
a ‘‘+’’ respectively. Most of related works only consider
a small subset of Behavior Annex. For aspect of verified

27424 VOLUME 5, 2017

F. Zhang et al.: Formal Verification of Behavioral AADL Models by Stateful Timed CSP

properties, our work considers more types of properties by
STCSP and PAT, e.g. deadlock free, divergence, LTL/CTL
formula, and trace refinement.

III. APPROACH OVERVIEW
The general methodology of our work is: first, we select
a comparatively complete subset of AADL, determine the
policy of behavioral description of AADL models; Second,
we present the methodology of behavior-based model trans-
formation from the subset of AADL to STCSP; Third, we per-
form model-checking of the transformed STCSP models to
analysis the properties in AADLmodels using PAT. The main
idea of our methodology is illustrated in Figure 3.

FIGURE 3. Approach overview.

A. SELECTION OF AADL SUBSET
We only focuses on the description and analysis of the soft-
ware portion of embedded systems, so we do not consider the
execution platform elements of AADL: processors, virtual
processors, memory, buses, virtual buses and devices. For
the software elements of AADL, the group, prototype and
refinement are mainly for the reusability of AADL code,
we can modeling software systems even without these three
elements, therefore we do not consider them in our first
version of works. Thus, this paper focuses on software com-
ponents and its behavior specification. This subset of AADL
elements is enough to model embedded software in most
application cases.

The software components comprise system, process,
thread, subprogram and data. A subprogram component rep-
resents sequentially executed source text that is called by
threads with parameter transmission, a thread representing a
sequential flow of executed instructions models a concurrent

schedulable unit that can execute concurrently with other
threads in a process, a process represents a virtual address
space which is a space partition unit whose boundaries are
enforced at runtime, and a software system represents an
assembly of interacting application software.

Features specify how a component interfaces with other
components. Features comprise port features and parameter
features. A connection is a linkage between features of two
components representing communication of data and control
between components. In addition, features can be combined
with properties.

A behavior specification of a component described using
Behavior Annex contains state variables, states, state transi-
tions. States may be initial | complete | return | final. State
transitions can be guarded by a binary expression and linked
with a action sequence.

B. SUMMARY OF MODEL TRANSFORMATION RULES
The summary of model transformation rules from AADL to
STCSP is described as follows.

Transform connections and features. Transform AADL
connections to STCSP communication events; Map AADL
features as connection ends, i.e. ports and parameters,
to STCSP variables representing data transferred during com-
munication actions (see Section IV-A);

Transform behavior specifications. The transformation
of an AADL behavior specification comprises some sophis-
ticated procedures (see Section IV-B).
• Map variables in a behavior specification to STCSP
variables (see Section IV-B - Tr_BS1);

• Define STCSP variables corresponding to initial, com-
plete, and return states to denote the current state a
transition automaton currently runs at(see Section IV-B
- Tr_BS2);

• Transform guards and actions in a behavior specifica-
tion to guards and actions in STCSP processes (see
Section IV-B.1 and IV-B.2);

• Transform transitions in a behavior specification to
STCSP processes representing behaviors of these tran-
sitions (see Section IV-B.3);

• Assemble STCSP processes representing AADL tran-
sitions to one compositional STCSP processes which
comprise all the state transitions of a behavior specifi-
cation (see Section IV-B.3).

Transform components. Transform AADL components
to STCSP processes, moreover the transformed target STCSP
processes maintain the hierarchy of the source AADLmodels
(see Section IV-C).

IV. TRANSFORMATION OF AADL INTO STCSP
The basic transformation rules are listed in Figure 4.
We describe our transformation rules using tuples which
abstract the concrete AADL model code. We present trans-
formation rules for AADL features, connections, behavior
specifications and software components (i.e. subprograms,
threads, processes and systems) in detail as follows.

VOLUME 5, 2017 27425

F. Zhang et al.: Formal Verification of Behavioral AADL Models by Stateful Timed CSP

FIGURE 4. Basic transformation rules.

A. TRANSFORM AADL I/O CONNECTIONS TO STCSP
COMMUNICATION EVENTS
An AADL connection is a linkage between features of two
components which represents the communication of data
and/or control between components. Features as connec-
tion ends define connection contents and connection types.
An AADL connection we consider may be a port connec-
tion or a parameter connection. Port connections comprise
three types: Rewritable data transmissions (i.e. sam-
pling connections, blackboard connections in ARINC653),
Queued/Buffered data transmissions (i.e. queued data/event
data connections, buffered data connections in ARINC653)
and event transmissions which present control transmissions.
Parameter connections represent parameter transmission
between a called subprogram and a calling thread occurs.

Rule tr_feature maps an AADL data/event data port
name to the name of a STCSP variable representing data
transmitted, and an out parameter of a subprogram to the
name of a STCSP variable representing parameters transmit-
ted out of this subprogram when this subprogram is called.

An AADL feature is defined as a tuple:
feature = (feaType, feaId, feaDirec, feaProp).

– feaType is type of transmitted elements on this feature:
data/ event/ data event port, or parameter ;

– feaId is the ID of this feature;
– feaDirec is transmission direction on this feature: in,
out or in out;

– feaProp presents communication attributes: rewritable
data transmissions, e.g. sampling or blackboards;

queued/buffered data transmissions, e.g. queueing,
buffers; or event communications.

Rule tr_connection transforms AADL connections to
STCSP communication events.
An AADL port connection is defined as a tuple:
port_conx= (conxId, srcPortId, conx_symbol, destPortId).
– ConxId is ID of this connection;
– SrcPortId and destPortId are ID of the source port and

ID of the destination port respectively;
– Conx_symbol is connection direction: ‘‘–>’’ or ‘‘<–>.’’
An AADL parameter connection is defined as a tuple:
para_conx = (conxId, srcId, DirectionalSymbol, destId).
– ConxId is ID of this connection;
– SrcId and destId are ID of the source and ID of the

destination respectively;
– DirectionalSymbol is transmission direction ‘‘–>.’’
Rule tr_connection is listed in Algorithm 1 in whichCreat-

eChannel(chId) is a function creating a STCSP channel with
ID chId.

We describe the transformation for data/event port connec-
tions and parameter connections in detail as follows.

1) Port Connections
(1) Rewritable data transmissions, e.g. sampling/
blackboards, are transformed to STCSP read/write
events.

In Figure 5, the connection Blackboard_CnR between two
threads presents a directional Blackboard data connection
from port th1.DataROut to port th2.DataRIn. The port ends of

27426 VOLUME 5, 2017

F. Zhang et al.: Formal Verification of Behavioral AADL Models by Stateful Timed CSP

Algorithm 1 tr_connection() – Transform a Connection to a
STCSP I/O Communication Event
Input: conx = (port_conxs, para_conxs);

port_conx = (conxId, srcPortId, conx_symbol,
destPortId);

para_conx = (conxId, srcId, DirectionalSymbol,
destId).

Output: Communication channel definition: Channel chId
chBuf;

Event name: eventId.
1: For port_conx:
2: ConxType is determined by portType(srcPortId & dest-

PortId);
3: if ConxType is queueing or buffer then
4: if conx_symbol is ‘‘–>′′ then
5: chId← conxId+‘‘R′′;
6: CreateChannel(chId);
7: - -When occurring data transmissions on this

channel:
8: - -For srcPort: chId!srcPortId;
9: - -For destPort: chId?x{destPortId=x;};
10: else if conx_symbol is ‘‘<–>′′ then
11: chId← conxId+‘‘R′′;
12: CreateChannel(chId);
13: - -When transmitting data right-directionally:
14: - -For srcPort: chId!srcPortId;
15: - -For destPort: chId?xdestPortId=x;;
16: chId← conxId+‘‘L′′;
17: CreateChannel(chId);
18: - -When transmitting data left-directionally:
19: - -For srcPort: chId?srcPortId;
20: - -For destPort: chId!xdestPortId=x;;
21: end if
22: else if ConxType is sampling or blackboard then
23: eventId← conxId;
24: else if ConxType is event then
25: if conx_symbol is ‘‘–>′′ then
26: ChannelId← conxId+‘‘R′′;
27: else if conx_symbol is ‘‘<–>′′ then
28: ChannelId1Id← conxId+‘‘R′′;
29: ChannelId2Id← conxId+‘‘L′′;
30: end if
31: end if
32: For para_conx:
33: if directionalSymbol is ‘‘–>′′ then
34: - -When ocuuring subprogram calls:
35: value(destId)← value(srcId);
36: end if

this connection are mapped to variables with the ends’ names
as follows:
var th1_DataROut;
var th2_DataRIn;
The connection Blackboard_CnR is transformed to a

STCSP event with the same name Blackboard_CnR which

represents thread th1 writes the value of th1.DataROut to
port th2.DataRIn through this connection with the following
event:
Blackboard_CnR{th2_DataRIn = th1_DataROut;}.
(2) Queued/Buffered connections are transformed to

STCSP channel communications.
For bidirectional buffer/queue data port, it should be

described as two channels representing right and left direc-
tional communications respectively. In Figure 5, buffer
connection Buffer_Cn is transformed to two channel
communications with the following channel definitions:

FIGURE 5. Event/Data port connections between threads.

channel Buffer_CnR BufNum;
channel Buffer_CnL BufNum;
Channel Buffer_CnR represents the right-direction data

transmissionwhich is from th1 to th2 and channelBuffer_CnL
represents the left-direction data transmission, and BufNum is
the buffer number of a channel.

(3) Event connections representing control flows are
transformed to STCSP events. We use a 1-buffered channel
to represent the event mechanism in event connections, and
define a STCSP variable with unique value to represent the
event in each event connections respectively.

In figure 5, the event connection Event_Cn presents a
control flow from thread th1 to th2. This event connection
is described as a 1 buffered channel ch_Event_Cn, which
represents an event channel, with the ID of the connection
Event_Cn as follows:
//Define a channel representing an event connection with

buffer 1
channel ch_Event_Cn 1;
//Define an variable representing the event in each event

connections
//Each Event has an unique value
var Event_Cn = 0;
th1()= ...→ ch_Event_Cn!Event_Cn→ Skip;
th2()= Event_Cn?x→ ...;
pro_Ex() = th1() ‖ th2();
The event Event_Cn represents an event which means that

only when thread th1 sends event ch_Event_Cn!Event_Cn
and thread th2 receives this event, then will thread

VOLUME 5, 2017 27427

F. Zhang et al.: Formal Verification of Behavioral AADL Models by Stateful Timed CSP

th2 perform its own execution. The STCSP pro_Ex() = th1()
‖ th2(); described the event-scheme threads execution.

2) Parameter Connections
Parameter connections represent data flows between called
subprograms and their calling threads, so parameter con-
nections are transformed to parameter transmissions (like
C programs) when a thread calls subprograms.

For example in Figure 6, the value of th_in is transmitted
to subprogram get through a subprogram call get(th_in).

FIGURE 6. Parameter connections.

B. TRANSFORM A BEHAVIOR SPECIFICATION TO
A COMPOSITE STCSP PROCESS
A behavior specification conformed to the Behavior Annex
with variables, states, transitions is transformed to a compos-
ite STCSP process which comprises multiple sub-processes
that collectively represent the entire behaviors of all the
AADL state transitions.

The states in a behavior specification may be initial, com-
plete, return, final or intermediate. Transitions define state
transitions from a source state to a destination state. Tran-
sitions can be guarded with events or boolean conditions
using ‘‘[].’’ An action part attached to the transition can
perform subprogram calls, message sending or assignments
using ‘‘{}.’’ The action is related to the transition and not
to the states: if a transition is enabled, the action part is
performed and then the current state becomes the destination
state. Transitions in both subprograms and threads start from
an initial state. A transition to a return state ends a subpro-
gram. A transition to a complete state completes a thread and
it will resume from this complete state at next dispatch.

A behavior specification is defined as a tuple:
BA = (sta_var, sta, trans).
– sta_var represents state variables;
– sta represents states;
– trans represents state transitions.
Rule tr_BS transforms a behavior specification to a

STCSP process which presents all the behaviors described
in the transitions part. This rule performs the following
procedures:
• Tr_BS1: Map state variables in a behavior specification
to STCSP variables;

• Tr_BS2: Define STCSP variables corresponding to ini-
tial, complete, and return states to denote the current
state a transition automaton currently runs at;

• Tr_BS3: Transform guards in AADL using rule
tr_guard (see Section IV-B.1) to STCSP guards;
transform actions in AADL using rule tr_action
(see Section IV-B.2) to STCSP actions;

• Tr_BS4: Transform transitions along with its guards
and actions to STCSP processes. The transformed
STCSP processes should present the semantics that:
the transitions part starts from a initial state; a tran-
sition to a return state ends a subprogram and a
transition to a complete state completes a thread
(see Section IV-B.3-RTrans1 and RTrans2);

• Tr_BS5: Transformed STCSP processes representing
state transitions are combined to one composite STCSP
process which represents the entire behavior specifica-
tion (see Section IV-B.3-RTrans3).

1) TRANSFORM GUARDS IN TRANSITIONS TO STCSP
GUARDS AND/OR EVENTS
Transitions can be guarded by dispatch conditions, or execute
conditions. The guard part in AADL and STCSP has the
similar semantics that an AADL state transition or a STCSP
process can execute only when the guard part is satisfied.

An AADL guard is a tuple:
guard = (dispatch_conditions, execute_conditions).
– dispatch_conditions explicitly specifies dispatch con-

ditions out of a complete state. A dispatch condition is
expressed as a disjunction of conjunctions of dispatch trigger
conditions as follows:
– dispatch_condition ::= conjunction1 or conjunction2 ...

or conjunctionM;
– conjunctionI ::= triggerI1 and trigeerI2 ... and trig-
gerIN;

– trigger ::= (InPortId, InPortType);
– execute_conditions represents execute conditions that

specify transition conditions out of an execution state to
another state.

Rule tr_guard transforms an AADL guard composed
of dispatch conditions and/or execute conditions to STCSP
guards of a STCSP process and/or trigger events, and is listed
as Algorithm 2.

For example in Figure 7, there is an event guard [in1?]
in transition t0 and an expression guard [x>1] in transition

27428 VOLUME 5, 2017

F. Zhang et al.: Formal Verification of Behavioral AADL Models by Stateful Timed CSP

Algorithm 2 tr_guard() – Transform a Transition Guard to
STCSP Guards and/or Event(s)
Input: (AADL) guard ::= (dispatch_conditions,

execute_conditions);
dispatch_condition ::= conjunction1 or conjunc-

tion2 ą or conjunctionM;
conjunctionI ::= triggerI1 and trigeerI2ą and trig-

gerIN;
trigger ::= (InPortId, InPortType);
execute_condition ::= logical_value_expression.

Output: (STCSP)DisEvents ::= (ConEvents1 []
ConEvents2 [] ConEventsM);

ConEventsI ::= (InEventI1 ‘‘–>′′ InEventI2 ą ‘‘–>′′

InEventIN);
Logical_expre.

1: if execute_conditions then
2: replace ‘=’ with ‘‘==’’, ‘‘not’’ with ‘!’, ‘‘or’’ with

‘‘‖’’, ‘‘and’’ with ‘‘&&’’;
3: Logical_expre← replaced execute_conditions;
4: else if dispatch_conditions then
5: - -Disjunction of dispatch_trigger conjuntions;
6: for I = 1 · · · M do
7: for j = 1 · · · N do
8: - -AADL dispatch_trigger→ STCSP events;
9: if triggerIJ.InPortType is in_event_port then
10: eventId := ID(the connection ended with

this port);
11: InEventIJ← eventId;
12: else if triggerIJ.InPortType is

in_event_data_port then
13: channelId := ID(the connection ended

with this port);
14: InEventIJ ← chan-

nelId?tmp{trigger.InPortId := tmp};
15: end if
16: end for
17: end for
18: end if

t1. [in1?] is transformed to an input event using a channel
defined by the port connection endedwith port in1, and [x>1]
is transformed to a expression guard section of a transition
event event_t1.

2) TRANSFORM ACTIONS IN TRANSITIONS TO STCSP
EVENTS AND/OR SUBPROGRAM CALLS
An Action in AADL transition is comprised of one or multi-
ple basic actions representing communications, assignment
operations or subprogram calls. The abstract syntax of an
action is listed as following Figure 8.

When an action comprises multiple communications and
assignments, this action is split into multiple sections by
communications and subprogram calls: each communica-
tion or subprogram call is transformed to an event and adja-
cent assignment operations form an event named by the
transition ID.

FIGURE 7. Transform Guards in Transitions to Guards And/Or Events in
STCSP events.

FIGURE 8. The syntax of actions.

Rule tr_action transforms an AADL action part of a tran-
sition to STCSP action part of an event.

An AADL action part comprises one or multiple basic
actions. A basic action is a tuple:
basic_action = (communications, assignments, subpro-

gram_callings).

– A communication is a tuple communication = (portId,
expression), portId is ID of communication port, expres-
sion is contents of this communication;

– An assignment is the form: reference_expression :=
expression, the value of expression is assigned to the
reference_expression. Reference_expression may be a
feature, a data subcomponent, a state variable and so on.

– subprogram_calling is of the form: subprogram_id!
(parameter_bingdings) which expresses that the
containing component calls the contained subpro-
gram with parameter transmissions defined by the
parameter_bingdings.

Rule tr_action is listed as Algorithm 3.

VOLUME 5, 2017 27429

F. Zhang et al.: Formal Verification of Behavioral AADL Models by Stateful Timed CSP

Algorithm 3 tr_action() – Transform an AADL Action to
STCSP Action Event(s)
Input: (AADL)action::= basic_action1; basic_action2; · · ·

;basic_actionN;
basic_action ::= (communications, assignments,

subprogram_callings);
communication = (portId, expression);
assignment ::= target := expression;
subprogram_calling ::= subprogram

id!(parameter_binds);
Output: (STCSP){action1} –> {action2} –> · · · –>

{actionN};
action ::= subprogram_calling/channel_

communication/assignment_action;
subprogram_callings ::= subpId!(parameter_

binds);
channel_communication ::= chId!/?(logical_

expression);
assignment_action ::= varId = logical_expression;

1: for i = 1 · · · N do
2: - -subprogram calls:
3: if subprogram_calling ‖ DataAccess then
4: subpId← subprogram_id;
5: actionI← subpId!(parameter_binds);
6: - -communication actions:
7: else if PortInOut then
8: channelId := ID(the connection ended with this

port);
9: actionI← channelId!/?{expression};
10: - -assignment actions:
11: else if assignment_action then
12: varId← ID(target);
13: actionI← (varId := expression;);
14: end if
15: end for

For example in Figure 9, the action of transition t0 com-
prises five parts: assignment operations x := in1 and y :=
x + 1, a port communication out1!(y), assignment operation
z := y + 2 and a port communication out2!(z). The first two
adjacent assignment operations x := in1 and y := x + 1
are placed into an event event_t0_0, assignment operations
z := y+ 2 is placed into another event event_t0_1. The port
communication out1!(y) and out2!(y) among assignments are
treated as channel communications. The sequence of these
transformed events is the same as the sequence of the AADL
action parts.

3) TRANSFORM TRANSITIONS TO STCSP PROCESSES
The transformation of the transitions part is comparatively
sophisticated. The principles for transformations of AADL
state transitions have the following aspects.

RTrans1. For a single transition: Transform a single tran-
sition to a STCSP process.

FIGURE 9. Transform Actions to Events.

1 The guard of the STCSP process comprises two parts:
• a. the AADL transition’s guard, stored in trans-
Guard ;

• b. the variables for initial/complete/return states
to denote the current enabled state, stored in
stateIdentis;

2 The action of the STCSP process comprises two parts:
• a. the AADL transition’s action, stored in
transActions;

• b. the Set operation which enables the next transi-
tion’s state and the Reset operation which disables
the current executing transition’s state, stored in
ResSetStates;

3 The type of the destination state of a transition deter-
mines the next transition:
• a. if the destination state is intermediate, i.e. it
is not initial/complete/return/final: the end of the
STCSP process representing the current AADL
transition directs to the STCSP process represent-
ing the AADL transition stared with the current
destination state;

• b. if the destination state is complete/return: the
STCSP process representing the current AADL
transition finishes with a Skip; and set the desti-
national complete/return state so as to state that it
will resume with this state when next dispatched;

• c. if the destination state is final: the STCSP pro-
cess representing the current AADL transition stop
with a Skip; and reset all the complete/return states
so as to state that it will not resume with any
complete states or other states.

27430 VOLUME 5, 2017

F. Zhang et al.: Formal Verification of Behavioral AADL Models by Stateful Timed CSP

FIGURE 10. Transitions start from complete and intermediate states.

For example in Figure 10, there are two transitions: transi-
tion t0 whose destination state is a intermediate state s1 and
transition t1 whose destination state is a complete state s0.
This situation means that when transition t0 goes to its desti-
nation state s1, the transition t1 starting from s1will continue
to run to state s0 and this round of transition ends because of
s0 is complete.

RTrans2. Formultiple transitions with a same source state:
assemble these transformed STCSP processes with choice
operator ‘‘[]’’, and each of them combined with their trans-
formed guard and action parts.

For example in figure 11, transition t1 t2 and t3 start from a
same source state s1, their transformed STCSP processes are
combined by choice operator ‘‘[]’’ to construct a composite
process t1_t2_t3 which presents possible STCSP processes
for three transitions.

RTrans3. Assemble all STCSP processes representing
AADL transitions starting with initial or complete states with
choice operator ‘‘[].’’ These composed process will determine
to execute initial processes or which complete processes with
respectively guard parts.

For example in Figure 11, the behaviors of five transitions
can be expressed in t0()[]t4(), where t0 is the transition start
from the initial complete state s0, and t4 is the transition start
from the complete state s2.
A transition is a tuple:
transition = (labelId, srcState, guard, destState, action).

– LabelId is ID of the transition;
– SrcState and destState are the source state and the desti-

nation state of the transition;

FIGURE 11. Multi-Transitions start from a same source state.

– Guard and action are the guard part and action part of a
transition.

A transition is of the form:
label_i: s_i-[[guard_i]] −> d_i[{action_i}*];
Rule tr_transitions transforms an entire AADL transi-

tions part in a behavior specification to a composite STCSP
process representing all the transition behaviors of this behav-
ior specification.

Rule tr_transitions is listed in Algorithm 4 in which
Set(StateId) is to set the variable representing state StateId to
value 1 and Reset(StateId) is to reset the variable representing
state StateId to value 0.

C. TRANSFORMATION OF COMPONENTS
An AADL component is transformed to a STCSP process,
while the transformed STCSP process maintains the compo-
nent hierarchy of the source AADL. The component hierar-
chy of a system instance is determined by recursively instan-
tiating the subcomponents of a top-level system.

With the AADL definitions, we adopt the following trans-
formation methods for software components.

1) TRANSFORMATION OF SUBPROGRAMS
A subprogram is transformed to a STCSP process with
parameter transmissions which takes in parameters and out-
puts out parameters.

VOLUME 5, 2017 27431

F. Zhang et al.: Formal Verification of Behavioral AADL Models by Stateful Timed CSP

Algorithm 4 tr_transitions() – Transform Transitions Part of
a Behavior Specification to a STCSP Process
Input: AADL state_transitions

state_transitions ::=
transitions
label_0: s_0-[[guard_0]] –> d_0[{action_0}];
label_1: s_1-[[guard_1]] –> d_1[{action_1}];
· · ·

label_N: s_N-[[guard_N]] –> d_N[{action_N}];
Output: STCSP process

P_trans() = P_i() [] P_j() [] · · · [] P_k();
P_p() = [stateIdentis_p && transGuard_p] even-

tId_p{transActions_p;ResSetStates_p;} –> NextTrans;
1: Define variables for state variables using

tr_behavior_variable();
2: Define variables to represent initial and complete states

using tr_behavior_state();
3: Set(initialState);
4: Reset(completeStates);
5: for I = 1 ... n do
6: P_I← label_I;
7: eventId_I← event+ label_I;
8: transGuard_I← tr_guard(guard_I);RTrans1.1.a

9: transActions_I← tr_action(actions_I);RTrans1.2.a

10: if s_I is initial and this transition is initialization
thenRTrans1.1.b

11: stateIdentis_I += ‘‘(initial == 1)‖′′;
12: else if s_I is complete then
13: stateIdentis_I += ‘‘s_I = 1′′;
14: end if
15: if s_I is initial or complete then
16: ResSetStates_p += Reset(S_I);RTrans1.2.b

17: P_trans() + = ‘‘P_I() []′′;RTrans3

18: end if
19: if d_I is intermediate thenRTrans1.3.a

20: NextTrans← P_I;
21: else if d_I is complete thenRTrans1.3.b

22: NextTrans← Skip;
23: ResSetStates_p← Set(d_I);
24: else if d_I is final thenRTrans1.3.c

25: NextTrans← Skip;
26: ResSetStates_p← Reset(all states);
27: end if
28: if multiple transitions started from s_I thenRTrans2

29: P_IM ← composition of labels of transitions
started from s_I;

30: P_IM() + = ‘‘P_I() []′′;
31: –I, K ... M are label number of the transitions

started from a same source state
32: end if
33: end for

An AADL subprogram is a tuple:
subprogram = (subpID, InPara, OutPara, connections,

BS).

– SubpID is ID of a subprogram;
– InPara and OutPara are parameters into and out of a

subprogram;
– Connections are between parameters of a subprogram

and its containing components’ features;
– BS is the behavior specification.
Rule tr_subprogram maps an AADL subprogram to

a STCSP process expression with parameter transmissions
between this called subprogram and its calling threads.

An example of transformation of subprograms is illustrated
in previous Figure 6.

2) TRANSFORMATION OF THREADS
An AADL thread is a tuple:
thread = (thID, properties, features, connections, subp-

Calls, BS).
– ThID is ID of a thread;
– Properties defines a thread is a periodic thread or an

aperiodic thread dispatched by events;
– Features and connections are between threads or a thread

and its containing process;
– SubpCall represents subprogram callings that a thread

calls a subprogram in its behavior specification;
– BS is the behavior specification.
Rule tr_threadmaps anAADL thread to a STCSP process

expression which describes input and output events, behav-
iors of its behavior specification which may call subprograms
with corresponding parameter transmissions.

Periodic threads are periodically dispatched. The time
capacity of the comprising process has integral multiple of
the period of its comprised periodic threads. We will intro-
duce the consideration of timing properties in the following
section.

FIGURE 12. Periodic and aperiodic dispatch.

Aperiodic threads are dispatched by arrival of events input
from the pre-declared event ports. For example in Figure 12,
a process pro comprises threads th_periodic, th_aperiodic1
and th_aperiodic2, where thread th_aperiodic1 is dispatched
by a queued event from a channel th_pCallth_ap1 and thread
th_aperiodic2 is dispatched by a queued event from a channel
th_pCallth_ap2. The three corresponding thread are modeled
as follows:
th_periodic() = ...→ th_pCallth_ap1!event1→ Skip;
th_aperiodic1() = th_pCallth_ap1?x→ ...

27432 VOLUME 5, 2017

F. Zhang et al.: Formal Verification of Behavioral AADL Models by Stateful Timed CSP

th_ap1Callth_ap2!event2→ Skip;
th_aperiodic2() = th_ap1Callth_ap2?y→ ...;

3) TRANSFORMATION OF PROCESSES
An AADL process is a tuple:
process = (proID, timeCapa, features, connections,

threads, subps, BS).
– ProID is ID of a process;
– TimeCapa is time capacity;
– Features and connections are between processes;
– Threads and subprograms are components contained in

a process;
– BS is behavior specification.
Rule tr_process maps an AADL process component to a

STCSP process expression which describes input and output
events, concurrent behaviors of its contained threads.

For periodic threads, we introduce the consideration of
timing properties (such as period, time capacity and deadline
of threads, duration of processes) in the following section.

For a aperiodic thread dispatched by an event, its STCSP
process expression is started by a concurrent event which
dispatch this thread, and this thread are connected by a con-
current symbol ‘‘‖’’ with other threads.
For example in Figure 12, the process pro is described as

follows:
pro()= th_periodic() ‖ th_aperiodic1() ‖ th_aperiodic2();

4) TRANSFORMATION OF AN ENTIRE SYSTEM
An AADL System contains sequentially loaded processes
with respective durations. From the AADL Reference Man-
ual, We know that the basic schedule unit is thread, process
only represents a virtual address space. Therefore, a system
containing multiple processes performs processes’ execution
with a defined sequence and every process has a pre-defined
duration. So we transform an AADL system containing mul-
tiple processes as sequential executed processes with a notion
of timed interrupt which represents the duration of a process.

An AADL system is a tuple:
system = (sysID, features, connections, processes).
– sysID is ID of a process;
– Features and connections are between processes;
– processes are AADL process components contained in a

system;
Rule tr_system maps an AADL system to a STCSP pro-

cess expression which describes input and output events,
sequential run processes contained in this system with their
respective duration.

For example, an AADL system sys contains three process
pro1, pro2, pro3 whose duration is duration1, duration2,
duration3 respectively. So the AADL system sys can be
transformed as follows:
sys() = pro1() interrupt[duration1] pro2()

interrupt[duration1+duration2] pro3()
interrupt[duration1+duration2+duration3]

sys();

The handling of timed interrupt is described in
section IV-D.4.

D. TRANSFORMATION OF TIMING PROPERTIES
The most exceptional advantages of STCSP against tradi-
tional CSP may be its timing characteristics when modeling
real-time systems. We consider time capacities, deadlines,
periods of AADL threads (ARINC653 processes/tasks), and
durations of AADL processes (ARINC653 partitions).

1) TRANSFORM AADL THREAD TIME
CAPACITY AND DEADLINE
We model time capacities and deadlines of AADL threads
(ARINC653 processes/tasks) using STCSP deadline.
The deadline time of ARINC653 processes is to determine

whether the process is satisfactorily completing its process-
ing within the allotted time. When a process is started, its
deadline is set to the value of current time plus time capacity.
Therefore, the consideration of deadline time is associated
with time capacity. In STCSP, ‘‘P deadline[t]’’ is constrained
to terminate within t time units.

For example, thread thr with event a and b and time
capacity 2 is modeled as follows:
thr() = (a→ b→ Skip) deadline[2];

2) TRANSFORM AADL THREAD PERIOD
We model periods of periodic AADL threads (ARINC653
processes/tasks) using STCSP timed interrupt.

Periodic threads (ARINC653 tasks/processes) are period-
ically dispatched. Typically, the comprising partition period
is the greatest common factor of comprised process durations
within a partition.

In STCSP, ‘‘P interrupt[t] Q’’ behaves as process P until t
time units elapse and then switches to processQ. For instance,
process ‘‘(a→ b→ c→ ...) interrupt[t] Q’’ will engage in
event a, b, c, ... of process P if t time units haven’t elapsed.
When t time units have elapsed, then the process engages in
process Q. Therefore, the periodic threads can be modeled
using STCSP timed interrupt.
For example, thread thr with period 4 can be modeled as

follows:
thr() = (a→ b→ Skip) interrupt[4] thr();

3) TRANSFORM AADL PROCESS DURATION
We model durations of AADL processes (ARINC653 parti-
tions) using STCSP timed interrupt.

Scheduling of AADL processes (ARINC653 partitions)
is strictly deterministic round-robin over time defined by
partition durations. A partition duration is the amount of
execution time required by the partition. Partitions are sched-
uled on a fixed, cyclic basis. To assist this cyclic activation,
ARINC653 OS maintains a major time frame of fixed dura-
tion, which is periodically repeated throughout the module‘s
runtime operation.

The duration of processes can also be modeled by STCSP
timed interrupt. For example, an ARINC653 module M

VOLUME 5, 2017 27433

F. Zhang et al.: Formal Verification of Behavioral AADL Models by Stateful Timed CSP

comprise process Proc1 and Proc2which have duration 8 and
10 respectively can be modeled as follows:
M() = (Proc1 interrupt[8] Proc2) interrupt[10+8] M();
‘‘Proc1 interrupt[8] Proc2’’ indicates that Proc1 has

duration 8 and the duration of Proc2 is represent by
interrupt[10+8].

4) A SUMMARY OF TIMING TRANSFORMATION
As a summary of this section, we use a simple but complete
example to describe our timing transformation for time capac-
ities, deadlines, periods, and durations.

Given an AADL system (an ARINC653 module)M, which
has process (ARINC653 partition) Proc1 and Proc2 with
duration 8 and 10 respectively. Proc1 has a periodic thread
(ARINC653 process/task), which is Per1with deadline 2 and
periodic 4, and an aperiodic thread Aper with deadline 2.
The aperiodic thread Aper is dispatched by an event event1
from the periodic thread Per1 using queued channel ch1.
Proc2 has only one periodic thread Per2 with deadline 2 and
period 10. This system M can be modeled by PAT-readable
STCSP in Table 2:

TABLE 2. An typical example of timing transformations.

In the above STCSP model, operator ‘‘–>>’’ means an
urgent event which takes no time when executed Concurrent
threads Per1 and Aper is connected by operator ‖, which
means that the aperiodic thread Aper is dispatched only it
receives the dispatch event event1 from the periodic thread
Per1 using the channel ch1. The usage of deadline is easily
explicable.

We should pay attention to the operator timed interrupt and
Wait. When using multiple timed interrupt to describe each
AADL process’s duration, it should be noted that the value in
interrupt should be the duration value of the current process
plus the previous processes’ duration values. For example in
‘‘M() = (Proc1 interrupt[8] Proc2) interrupt[10+8] M();’’,
‘‘Proc1 interrupt[8] Proc2’’ means that Proc1 has duration 8;
when we describe the duration of the second process Pro2
we should plus the duration of the previous process using
interrupt[10+8].

The STCSP operator Wait has no direct relation to our
transformation, but it can help operator timed interrupt
to realize rigorous periodic executions of periodic threads.

In STCSP, an event will take arbitrary amount of time if we
use ‘‘–>’’ event prefix. Therefore there exists an undesirable
situation: for example the periodicPer1 in the above example,
if we remove the Wait[1], when we simulate the execution
of its comprising process Proc1, within the duration of the
process Proc1, the event p of Per1 may occur three times
(it should only occur two times in our intention since the
duration of the comprising process Proc1 is two times of the
period of the comprised thread Per1), because event p can
execute on time 8 since the event can execute taking no times.
So we can use Wait to denote that the event p takes some
time and guarantee Pro1 can execute two times and only two
times, although the operator Wait is not used to denote event
execution time.

V. EXPERIMENT
Using a key portion of a complex system as a case study will
be persuasive to evaluate our methodology. We select ‘‘Auto
Pilot Controller’’ (F-16 APC), the key portion of a complex
simulation system ‘‘ANon-Linear F - 16 Simulation System’’
built using data published by NASA. We build an AADL
model for the key portion ‘‘F-16 APC’’ which is based on
ARINC653 OS platform, transform this AADL model to a
STCSP model using our model-transformation method, and
perform formally analysis on the transformed STCSP model
using PAT.

A. SUMMARY OF ‘‘A NON-LINEAR F - 16
SIMULATION SYSTEM’’
‘‘A Non-Linear F - 16 Simulation System’’ is a non-linear
F-16 model that simulates the dynamics of the real aircraft.
The original version was a low fidelity model built using
data described by Brian L. Stevens and Frank L. Lewis in
[18], and the high fidelity model built using data published
by NASA in [34] which has a larger aerodynamic data range
and implements the leading edge flap. Force and moment
coefficients are at angle of attacks from−20 to 90 degrees and
side-slip angles of −30 to 30 degrees. The leading edge flap
allows the F-16 to fly at larger angle of attacks by reducing
the tendency to stall [35].

Its input includes four controls, thirteen states, the leading
edge flap deflection and a model flag; It outputs twelve state
derivatives and six other states of flight. It allows for control
over thrust, elevator, aileron and rudder. The F-16 model
allows for control over thrust, elevator, aileron and rudder. All
of the actuators are modeled as first-order lags with a gain(K)
and limits on deflection and rates. The navigation equations
are taken from page 81 of Stevens and Lewis [18] and the
equations that determine the force and moment coefficients
are taken from pb. 37- 40 of the NASA Report [34].

We refer the readers to the home page [35]. This Simulation
System is illustrated as Figure 13.

B. THE KEY PORTION: ‘‘F-16 APC’’
The ‘‘F-16 APC’’ comprises:

(1) Flight attitude control system.

27434 VOLUME 5, 2017

F. Zhang et al.: Formal Verification of Behavioral AADL Models by Stateful Timed CSP

FIGURE 13. F-16 Aircraft flight simulation system.

(2) Flight path control system.
(3) Airspeed control System.
This model allows for control over thrust, elevator, aileron

and rudder. The thrust is measured in pounds, acts positively
along the positive body x-axis. A positive deflection gives
a decrease in the body rates for the other control surfaces.
A positive aileron deflection gives a decrease in the roll rate
p, it requires the right aileron deflect downward and the left
aileron deflect upward. A positive elevator deflection results
in a decrease in pitch rate a, so elevator is deflected down-
ward. A positive deflection of the rudder decreases the yaw
rate r and can be described as a deflection to right. The high
fidelity model has a additional control surface that allows for
the F-16 to fly at higher angles of attack.

C. AADL MODEL OF THE KEY ’’F-16 APC’’
We build an AADLmodel of the ‘‘F-16 APC’’ which is based
on ARINC653 OS platform using AADL and its Behavior
Annex . The modeling style based on ARINC653 platform is
referred to AADL ARINK653 Annex.

The ARINK653 Annex is defined to support the model-
ing, analysis and automated integration of ARINC653 and
derived or similar partitioned architectures. In ARINK653
Annex, a partition is represented by an AADL process com-
ponent, ARINC653 processes are mapped to AADL threads
component. Inter-partition communications represent data
exchanges across partitions, which comprise queuing and
sampling; processes contained within the same partition can
exchange data using intra-partition communications which
comprise data communications (i.e. buffer and blackboard)
and control flows (i.e. event and semaphore). In AADL
ARINC653 Annex, sampling is specified using AADL data
port connection, queuing is specified using AADL event
data port connection; buffers are specified using AADL
event data port connections, blackboards can be specified
using AADL data port connections.

The AADL model of the ‘‘F-16 APC’’ is modeled with
an AADL system: Auto_Pilot, which comprises three pro-
cesses: SetEngine, SetElevator and SetAileronRudder, who
comprises 2 threads and 1 subcomponents, 4 threads and
2 subcomponents, 3 threads and 8 subprograms respectively.
The whole AADL model comprises 16 subprogram calls,
107 features, 48 connections and 13 behavior specification

items which comprise 59 variables, 44 states, 43 transitions
and 114 actions. The elements of the AADL model are listed
in TABLE 3.

TABLE 3. AADL model statistics.

Process SetAileronsRudder as an illustration is illustrated
in Figure 14.

D. FORMAL VERIFICATION
We transform the AADL model of ‘‘F-16 APC’’ to a target
STCSPmodel. Given the STCSPmodel, we use PAT tomodel
check its safety, liveness and trace refinement properties.

1. Safety Verification represents ‘‘nothing bad will
happen’’, which comprises deadlock-freeness, reachability,
invariance or properties expressed in the form of finite state
automata.

(1) In concurrent computing, a deadlock is a state in which
each member of a group is waiting for some other member to
take action, such as sending a message or more commonly
releasing a lock. For example:
#assert Auto_Pilot() deadlockfree;
is used to verify wether the system is deadlock-free;
(2) Reachability refers to the ability to get from one state

to another with one or multiple events. For example:
#define goal_setE setE == 1;
#assert SetEngine() reaches goal_setE;
are used to verify wether the system reaches the goal of

goal_setE .
(3) In computer science, a computation is said to be

diverge if it does not terminate in an unobservable excep-
tional state, otherwise it is said to converge. Divergent system
is usually undesirable. Given a process, it may perform inter-
nal transitions forever without engaging any useful events,
e.g., P = (a→ P) \ a;. In this case, P is said to be divergent.
Another example in our verification:
#assert Auto_Pilot() ;
is used to verify wether the system is divergence-free;
(4) Given a process, if it is deterministic, then for any

state, there is no two or more out-going transitions leading
to different states but with same events. E.g, the following
process is not deterministic: P = a → Stop [] a → Skip;.
Another example in our verification:
#assert Auto_Pilot() deterministic;
is used to verify wether the system is deterministic;

VOLUME 5, 2017 27435

F. Zhang et al.: Formal Verification of Behavioral AADL Models by Stateful Timed CSP

FIGURE 14. AADL Process SetAileronsRudder.

2. Liveness Verification represents ‘‘something good
eventually happens’’, and liveness properties are always spec-
ified with Linear-time Temporal Logic (LTL) formulas.
LTL is a temporal logic with modalities referring to time.
In LTL, one can encode formulae about the future of paths,
e.g., a condition will eventually be true, a condition will be
true until another fact becomes true, etc.

For example:
#assert SetEngine() � [](Auto_Pilot_cnvt→
<>SetEngine_cnEngine);
#assert SetElevator() � [](Auto_Pilot_cnalt→
<>Auto_Pilot_cnElevator);
#assert SetAileronsRudder() � [](Auto_Pilot_cnnpos→
<>Auto_Pilot_cnRudder);
#assert SetAileronsRudder() �[]
(Auto_Pilot_cnnpos→<>Auto_Pilot_cnAilerons);

are used to assert that when the system occurs input events,
such as Auto_Pilot_cnvt, wether the expected output events,
such as SetEngine_cnEngine, eventually happens, i.e. every
input triggers its corresponding desirable outputs.

We can also use the above assertion to verify every
expected events, for example:
#assert SetAileronsRudder() � [](Auto_Pilot_cnnpos
→<>F18AS_t0);
is used to verify if the expected event F18AS_t0 happens.
And there are also some other LTL formulas or liveness

properties have been executed verification in our project.
3. Trace Refinement Verification checks ‘‘whether the

abstract behavior trace of an implementation satisfies its
abstract behavior trace of a specification.’’ Different from
LTL assertions, an assertion for trace refinement compares
the whole abstract behaviors of a given process with another
process, i.e. whether there is a subset relationship. For one of
three process, the refinement analysis of process SetEngine()
is executed as follows:

FIGURE 15. All the properties verified.

SetEngine_S() =SetEngine()\
{SetEngine_cnSet_AirSp,SetEngine_cnvt,F1Thrust_t0,

F1Thrust_t1,F1Thrust_t2,
cnF1SetF13,SetEngine_cnThrust,F13engine_t0,

IL_beha,Auto_Pilot_cnEngine};
SetEngine_R() = Auto_Pilot_cnvt�SetEngine_cnEngine
�Skip;
#assert SetEngine_S() refines SetEngine_R();

27436 VOLUME 5, 2017

F. Zhang et al.: Formal Verification of Behavioral AADL Models by Stateful Timed CSP

The above expressions are used to verify if the all abstract
behaviors of process SetEngine() refines the outside abstract
behaviors, only with process inputs and outputs without inte-
rior actions.

And other processes have also been executed refinement
analysis in our project. All 35 properties verified is listed
in Figure 15.

VI. CONCLUSION AND FUTURE WORK
This paper presents a method of behavioral description of
AADL and a methodology of model transformation from
a subset of AADL to STCSP, and then performs model-
checking against properties such as safety, liveness and trace
refinement etc using PAT.

The subset of AADL we consider includes: all the soft-
ware components i.e. systems, processes, periodic/aperiodic
threads, data, subcomponents etc.; connections, e.g. data port
connections, event port connections, parameter connections
and subprograms calls etc.; and the behavior specification
comprises variables, states and transitions, which is enough
to model the most common software.

We apply our methodology to a key portion ‘‘F-16 APC’’
of a complex project ‘‘A Non-Linear F-16 Simulation Sys-
tem’’ which is built according to aircraft aerodynamics data
published by NASA. We build an software AADL model
for the ‘‘F-16 APC’’, transform this AADL model to a
STCSP model using our methodology, and performs model-
checking on the transformed STCSP model using PAT. The
properties we consider include safety, liveness and trace
refinement.

We have developed a prototype tool implementing our
transformation rules and integrated it into OSATE2 environ-
ment. This prototype tool is developed based on Xtend [36]
template and developed as a plugin into OSATE2 which is
used by China Aerospace.

Our experience is encouraging, but much more works
remain ahead. First, increasingly larger AADL subsets should
be considered to face complex applications. For example,
a larger subset including such as sporadic threads, shared
variables by several threads with subprogram access, com-
plex scheduling, etc., has been considered in our projects.
We will consider the largest subset in the future works. Sec-
ond, the following important work is to verify that the rules
of model transformation conforms to semantics-equivalence.
We plan to use Isabelle to formally verify that the AADL
model along with its transformed STCSP model conforms
to operational semantics equivalence. Third, we need more
complex industrial applications to examine our theory and the
toolset, adjust our schema, and revise the technical architec-
ture and implementation details, so as to realize our object
that increase the confidence of safety-critical software.

REFERENCES
[1] SAE. (2017). Architecture Analysis and Design Language. [Online]. Avail-

able: http://www.aadl.info/aadl/currentsite/
[2] Architecture Analysis and Design Language (AADL) Annex D: Behavior

Model Annex. SAE Int., New York, NY, USA, 2011.

[3] C. A. R. Hoare, ‘‘Communicating sequential processes,’’ Commun. ACM,
vol. 26, no. 1, pp. 100–106, 1983.

[4] J. Sun, Y. Liu, J. S. Dong, Y. Liu, L. Shi, and É. André, ‘‘Modeling and
verifying hierarchical real-time systems using stateful timed CSP,’’ ACM
Trans. Softw. Eng. Methodol., vol. 22, no. 1, p. 3, 2013.

[5] S. Schneider, ‘‘An operational semantics for timed CSP,’’ Inf. Comput.,
vol. 116, no. 2, pp. 193–213, 1995.

[6] National University of Singapore. (2007). PAT: Process Analysis Toolkit.
Accessed: Nov. 2017. [Online]. Available: http://sav.sutd.edu.sg/PAT/

[7] Y. Liu, J. Sun, and J. S. Dong, ‘‘PAT 3: An extensible architecture for
building multi-domain model checkers,’’ in Proc. IEEE 22nd Int. Symp.
Softw. Rel. Eng. (ISSRE), Nov./Dec. 2011, pp. 190–199.

[8] C. Yang, Y. Dong, F. Zhang, E. Ahmad, and B. Gu, ‘‘Formal semantics of
AADLmodels with machine-readable CSP,’’ in Proc. IEEE/ACIS 11th Int.
Conf. Comput. Inf. Sci. (ICIS), May/Jun. 2012, pp. 565–571.

[9] E. Ahmad, Y. Dong, S. Wang, N. Zhan, and L. Zou, ‘‘Adding formal
meanings to AADL with hybrid annex,’’ in Proc. Int. Workshop Formal
Aspects Compon. Softw., 2014, pp. 228–247.

[10] E. Ahmad, Y. Dong, B. Larson, J. Lü, T. Tang, and N. Zhan, ‘‘Behavior
modeling and verification of movement authority scenario of Chinese
Train Control System using AADL,’’ Sci. China Inf. Sci., vol. 58, no. 11,
pp. 1–20, 2015.

[11] H. Mkaouar, B. Zalila, J. Hugues, and M. Jmaiel, ‘‘From AADL model
to LNT specification,’’ in Proc. Ada-Eur. Int. Conf. Rel. Softw. Technol.,
2015, pp. 146–161.

[12] B. Berthomieu et al., ‘‘Formal verification of AADL models with Fiacre
and Tina,’’ in Proc. 5th Int. Congr. Exhib. Embedded Real-Time Softw.
Syst., 2010, pp. 1–9.

[13] N. Abid, Z. Dal, and D. Le Botlan, ‘‘Real-time specification patterns and
tools,’’ in Proc. Int. Workshop Formal Methods Ind. Critical Syst., 2012,
pp. 1–15.

[14] P. C. Ölveczky, A. Boronat, and J. Meseguer, ‘‘Formal semantics and
analysis of behavioral AADL models in real-time Maude,’’ in Formal
Techniques for Distributed Systems. Berlin, Germany: Springer, 2010,
pp. 47–62.

[15] P. C. Ölveczky. (Jun. 2011). ‘‘Formal model engineering for embedded
systems using real-timeMaude.’’ [Online]. Available: https://arxiv.org/abs/
1107.0063v1

[16] Z. Yang, K. Hu, D.Ma, J. P. Bodeveix, L. Pi, and J. P. Talpin, ‘‘FromAADL
to timed abstract state machines: A verified model transformation,’’ J. Syst.
Softw., vol. 93, pp. 42–68, Jul. 2014.

[17] K. Hu, T. Zhang, Z. Yang, and W.-T. Tsai, ‘‘Exploring AADL verifica-
tion tool through model transformation,’’ J. Syst. Archit., vol. 61, no. 3,
pp. 141–156, 2015.

[18] B. L. Stevens and F. L. Lewis, Aircraft Control and Simulation. New York,
NY, USA: Wiley, 1992.

[19] AADL Annex A: ARINC653 Annex. SAE Int., New York, NY, USA, 2015.
[20] ARINC Specification 653: Avionics Application Software Standard Inter-

face, Part 1—Required Services, Aeronautical Radio, Inc., Annapolis, MD,
USA, 2010.

[21] T. K. Nguyen, J. Sun, Y. Liu, and J. S. Dong, ‘‘Symbolic model-checking of
Stateful timed CSP using BDD and digitization,’’ in Formal Methods and
Software Engineering. Berlin, Germany: Springer, 2012, pp. 398–413.

[22] J. Sun, Y. Liu, J. S. Dong, and X. Zhang, ‘‘Verifying Stateful timed
CSP using implicit clocks and zone abstraction,’’ in Formal Methods and
Software Engineering. Berlin, Germany: Springer, 2009, pp. 581–600.

[23] Y. Si, J. Sun, Y. Liu, and T. Wang, ‘‘Improving model checking Stateful
timed CSP with non-Zenoness through clock-symmetry reduction,’’ in
Formal Methods and Software Engineering. Berlin, Germany: Springer,
2013, pp. 182–198.

[24] L. Shi, Y. Liu, J. Sun, J. S. Dong, and G. Carvalho, ‘‘An analytical and
experimental comparison of CSP extensions and tools,’’ inFormalMethods
and Software Engineering. Berlin, Germany: Springer, 2012, pp. 381–397.

[25] J. Sun, Y. Liu, J. S. Dong, and J. Pang, ‘‘PAT: Towards flexible verification
under fairness,’’ in Proc. Int. Conf. Comput. Aided Verification, 2009,
pp. 709–714.

[26] Y. Liu, W. Chen, Y. A. Liu, S. J. Zhang, J. Sun, and J. S. Dong, ‘‘Verifying
linearizability via optimized refinement checking,’’ IEEE Trans. Softw.
Eng., vol. 39, no. 7, pp. 1018–1039, Jul. 2013.

[27] T. Wang et al., ‘‘A systematic study on explicit-state non-Zenoness check-
ing for timed automata,’’ IEEE Trans. Softw. Eng., vol. 41, no. 1, pp. 3–18,
Jan. 2015.

VOLUME 5, 2017 27437

F. Zhang et al.: Formal Verification of Behavioral AADL Models by Stateful Timed CSP

[28] H. Hansen, S.-W. Lin, Y. Liu, T. K. Nguyen, and J. Sun, ‘‘Diamonds are a
girl’s best friend: Partial order reduction for timed automata with abstrac-
tions,’’ in Computer Aided Verification. New York, NY, USA: Springer-
Verlag, 2014, pp. 391–406.

[29] T. K. Nguyen, J. Sun, Y. Liu, J. S. Dong, and Y. Liu, ‘‘Improved BDD-
based discrete analysis of timed systems,’’ in Proc. 18th Int. Symp. Formal
Methods, Paris, France, Aug. 2012, pp. 326–340.

[30] H. Garavel et al., ‘‘CADP 2011: A toolbox for the construction and analysis
of distributed processes,’’ Int. J. Softw. Tools Technol. Transf., vol. 15, no. 2,
pp. 89–107, 2013.

[31] Y. Bao, M. Chen, Q. Zhu, T. Wei, F. Mallet, and T. Zhou, ‘‘Quantita-
tive performance evaluation of uncertainty-aware hybrid AADL designs
using statistical model checking,’’ IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., to be published.

[32] A. Johnsen, K. Lundqvist, P. Pettersson, and O. Jaradat, ‘‘Automated
verification of AADL-specifications using UPPAAL,’’ in Proc. IEEE 14th
Int. Symp. High-Assurance Syst. Eng. (HASE), Oct. 2012, pp. 130–138.

[33] J. H. Kim, K. G. Larsen, B. Nielsen, M. Mikučionis, and P. Olsen, ‘‘For-
mal analysis and testing of real-time automotive systems using UPPAAL
tools,’’ in Proc. Int. Workshop Formal Methods Ind. Critical Syst., 2015,
pp. 47–61.

[34] L. T. Nguyen, M. E. Ogburn, W. P. Gilbert, K. P. Kibler, P. W. Brown, and
P. L. Deal, ‘‘Simulator study of stall/post-stall characteristics of a fighter
airplane with relaxed longitudinal static stability,’’ NASA, Hampton, VA,
USA, Tech. Rep. NASA-TP-1538, 1979.

[35] An Integrated. (2003). Multi-Layer Approach to Software-Enabled
Control: Mission Planning to Vehicle Control. DAPAR. Accessed:
Nov. 2017. [Online]. Available: https://www.aem.umn.edu/people/faculty/
balas/darpa_sec/SEC.Software.html

[36] Xtend. (2017). Eclipse. Accessed: Nov. 2017. [Online]. Available:
http://www.eclipse.org/xtend/

FENG ZHANG is currently pursuing the Ph.D.
degree in computer science from the School of
Computer Science and Engineering, Beihang Uni-
versity, Beijing, China. His research interests
include formal methods, model-based methods,
and OS kernels.

YONGWANG ZHAO received the Ph.D. degree
in computer science from Beihang University
in Beijing, China, in 2009. He is currently an
Associate Professor with the School of Computer
Science and Engineering, Beihang Univerisity.
He has also been a Research Fellow with the
School of Computer Science and Engineering,
Nanyang Technological University of Singapore
from 2015 to 2016. His research interests include
formal methods, OS kernels, information-flow
security, and AADL.

DIANFU MA received the Ph.D. degree in com-
puter science from Beiheng University, China.
He is currently a Professor with Beihang Uni-
versity. He was the Executive Director of
Chinese Computer Federation. He has published
over 50 academic papers in international jour-
nals or conferences. His research interesting
includes services computing, real-time systems
and high dependable software. He received the
3rd prize of Science and Technology Innovation

Award from the Ministry of Education of China in 2003, and first prize of
Science and Technology Innovation Award of Beijing in 2011.

WENSHENG NIU received the Ph.D. degree from
Xi’an Jiaotong University. He is a Senior Research
Fellow with the China Aeronautics Computing
Technique Research Institute, Xi’an, China. He is
also a Professor with the School of Computer
Science and Engineering, Beihang Univerisity.
His research interests include safety-critical sys-
tems, embedded systems, and network security.

27438 VOLUME 5, 2017

	INTRODUCTION
	BACKGROUND
	AADL, BEHAVIOR ANNEX AND ARINC653 ANNEX
	STATEFUL TIMED CSP AND PROCESS ANALYSIS TOOLKIT (PAT)
	RELATED WORK
	CSP
	LNT
	FIACRE
	MAUDE
	UPPAAL

	APPROACH OVERVIEW
	SELECTION OF AADL SUBSET
	SUMMARY OF MODEL TRANSFORMATION RULES

	TRANSFORMATION OF AADL INTO STCSP
	TRANSFORM AADL I/O CONNECTIONS TO STCSP COMMUNICATION EVENTS
	Port Connections
	Parameter Connections

	TRANSFORM A BEHAVIOR SPECIFICATION TO A COMPOSITE STCSP PROCESS
	TRANSFORM GUARDS IN TRANSITIONS TO STCSP GUARDS AND/OR EVENTS
	TRANSFORM ACTIONS IN TRANSITIONS TO STCSP EVENTS AND/OR SUBPROGRAM CALLS
	TRANSFORM TRANSITIONS TO STCSP PROCESSES

	TRANSFORMATION OF COMPONENTS
	TRANSFORMATION OF SUBPROGRAMS
	TRANSFORMATION OF THREADS
	TRANSFORMATION OF PROCESSES
	TRANSFORMATION OF AN ENTIRE SYSTEM

	TRANSFORMATION OF TIMING PROPERTIES
	TRANSFORM AADL THREAD TIME CAPACITY AND DEADLINE
	TRANSFORM AADL THREAD PERIOD
	TRANSFORM AADL PROCESS DURATION
	A SUMMARY OF TIMING TRANSFORMATION

	EXPERIMENT
	SUMMARY OF ``A NON-LINEAR F - 16 SIMULATION SYSTEM''
	THE KEY PORTION: ``F-16 APC''
	AADL MODEL OF THE KEY ''F-16 APC''
	FORMAL VERIFICATION

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	FENG ZHANG
	YONGWANG ZHAO
	DIANFU MA
	WENSHENG NIU

