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ABSTRACT We propose an object detection system that depends on position-sensitive grid feature
maps. State-of-the-art object detection networks rely on convolutional neural networks pre-trained on a
large auxiliary data set (e.g., ILSVRC 2012) designed for an image-level classification task. The image-
level classification task favors translation invariance, while the object detection task needs localization
representations that are translation variant to an extent. To address this dilemma, we construct position-
sensitive convolutional layers, called grid convolutional layers that activate the object’s specific locations
in the feature maps in the form of grids. With end-to-end training, the region of interesting grid pooling
layer shepherds the last set of convolutional layers to learn specialized grid feature maps. Experiments on
the PASCAL VOC 2007 data set show that our method outperforms the strong baselines faster region-based
convolutional neural network counterpart and region-based fully convolutional networks by a large margin.
Our method applied to ResNet-50 improves the mean average precision from 74.8%/74.2% to 79.4%without
any other tricks. In addition, our approach achieves similar results on different networks (ResNet-101) and
data sets (PASCAL VOC 2012 and MS COCO).

INDEX TERMS Computer vision, deep learning, grid feature map, object detection, region proposal.

I. INTRODUCTION
Object detection is one of the key tasks in the area of
computer vision. The task outputs the type of every object
and locates it with a tightly surrounding bounding box,
and many more advanced tasks rely on object detection
(e.g., instance segmentation [3], [4] and human-object inter-
actions [5], [6]). In the last few years, object detection has
seen rapid development thanks to significant developments
in deep learning [7], [8], especially Convolution Neural Net-
work (CNN) architectures [2], [9]–[12]. Among object detec-
tion methods [13]–[16], one of the most notable works is the
R-CNN series [16]–[18].

R-CNN [16] uses the Selective Search method [19]
to extract region proposals [20]; then, it uses CNNs
(i.e., AlexNet [21]) to extract features for each region pro-
posal. Finally, it classifies CNN features with class-specific
linear SVMs [22], [23]. R-CNN first pre-trains the networks
on a large auxiliary dataset (e.g., ILSVRC 2012 [24]) that
is annotated for image classification task, and then, it is fine
tuned on the PASCALVOC [25] dataset, annotated for object
detection. Due to the multi-stage training procedure and time-
consuming nature of R-CNN, Fast R-CNN [17] and Faster

R-CNN [18] have been proposed to improve the training and
testing speed as well as the accuracy with simpler pipelines.
All these methods are pre-trained on an auxiliary task of
image classification. However, image classification task and
object detection task present different requirements for the
network.

The image-level classification task prefers translation
invariance, while the object detection task favors localization
representations that are translation variant to an extent [1].
Figure 1 illustrates the difference between image classifica-
tion task and object detection task. The image-level classi-
fication task prefers translation invariance – when moving
an object inside an image, there should be no discrimination
between images. Therefore, for the image classification task,
a stronger invariance of the deep neural network provides
better results. State-of-the-art image classification networks
have very strong invariance, as shown by the excellent per-
formances on the ImageNet classification task [2], [10], [12].
The object detection task needs localization representations
that are translation variant to an extent – translating an object
inside a candidate box should be discriminative and indicate
how well the candidate box overlaps the ground truth [1].
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FIGURE 1. The difference between image-level classification task and object detection task. (a) The image-level
classification task prefers translation invariance – when moving an object within an image, there should be no
discrimination between images. (b) The object detection task needs localization representations that are translation
variant to an extent – translating an object inside a candidate box should be discriminative and indicate how well the
candidate box overlaps the ground truth.

Deep convolutional neural networks for image classification
are less sensitive to translation. To solve this dilemma, the
ResNet paper’s [2] object detection pipeline puts the RoI
pooling layer [26] in the convolutional layers to cut off the
translation invariance of the post-RoI convolutional layers.
However, the method introduces a large number of RoI-wise
layers, thus greatly reducing the speed of training and testing.
R-FCN [1] uses position-sensitive score maps, and each score
map encodes information with regard to a specific location.
R-FCN is a fully convolutional network, and its position-
sensitive module consists of a bank of convolutional layers
that generate position-sensitive maps and a position-sensitive
RoI pooling layer with no learned weight (convolutional/fully
connected) layers following. The feature maps in R-FCN
are class-aware and position-aware maps, and although the
total number of features is large, each class corresponds to
very few feature maps. Due to this structural limitation, it is
inconvenient to apply this method to a stronger classifier.

Inspired by R-FCN,we propose a type of position-sensitive
convolutional layer called Grid Convolutional Layer (GCL).
Figure 2 illustrates the main architecture. The input image
first passes through some convolutional layers and max
pooling layers to generate feature maps. Then, a grid con-
volutional sub-network is introduced to generate position-
sensitive feature maps. The network consists of a set of GCLs
that produce position complementary grid features and has

an RoI grid pooling layer at the end. Each output of the RoI
grid pooling layer comes from a different feature map in an
alternating manner. With end-to-end training, the RoI grid
pooling layer shepherds the GCL to learn specialized grid
feature maps.

Using the 50-layer Residual Net (ResNet-50) [2] as the
backbone, experiments on the PASCAL VOC [25] 2007
dataset show that our method outperforms the strong base-
lines Faster R-CNN counterpart [2] and R-FCN [1] by a large
margin. Our method improves the mAP from 74.8%/74.2%
to 79.4% without using any tricks. Meanwhile, the test time
of our method is 0.16 seconds per image, which is approx-
imately 2× faster than the Faster R-CNN with ResNet-50
counterpart in [2]. In addition, our approach achieves simi-
lar results on different networks (ResNet-101) and datasets
(PASCAL VOC 2012 and MS COCO).

II. RELATED WORK
Object detection attempts to recognize and locate each object
with a bounding box within an image. Object detection meth-
ods can be divided into two categories: region-based detection
methods, such as R-CNN [16], FPN [27], and RoN [28], and
regression-based methods such as YOLO [15], SSD [29],
and YOLO9000 [30]. Region-based methods can provide
better features for the classifier [18]; therefore, the accuracy
is higher. However, each candidate has to go through the
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FIGURE 2. The architecture of G-CNN for object detection. The input image first passes through some convolutional
layers and max pooling layers to generate feature maps. Then, a grid convolutional sub-network is introduced to
generate position-sensitive feature maps. The sub-network consists of a set of position-sensitive convolutional
layers (GCLs) that produce position complementary grid features and has an RoI grid pooling layer at the end. Each
output of the RoI grid pooling layer comes from a different feature map in an alternating manner. With end-to-end
training, the RoI grid pooling layer shepherds the GCL to learn specialized grid feature maps.

region-wise sub-network; therefore, the speed is lower.
Regression-based methods can use the fully convolutional
network to directly return the object location and category
in the image, but they are less accurate.

Most state-of-the-art region-based object detection
pipelines follow the Region-based Convolutional Neural
Network (R-CNN) [16]. In R-CNN, region proposals are
first generated by a manually designed method (e.g., Edge
Box [31], MCG [32] and Selective Search [19]) from the
input image. R-CNN then uses a CNN to extract feature
maps for each region proposal. Finally, the bounding box
regression and classification are performed to discriminate
the target objects. The object classifier, bounding box regres-
sor and CNN are trained separately through a multi-stage
training pipeline, and thus, training R-CNN is expensive in
terms of computation and memory requirements. To improve
the computational efficiency and detection accuracy, Fast
R-CNN [17] has been developed to address the above prob-
lems. First, the training process is a single-stage process –
feature extraction, classification and bounding box regression
are performed by a network; region proposals within the same
image share their calculation, which greatly improves the
speed of the training and testing phases. R-CNN and Fast
R-CNN are based on region proposals; the region proposal
generation process is computational expensive and affects the
overall speed. To further reduce the time of generating region
proposals, Faster R-CNN [18] introduces a novel Region
Proposal Network (RPN), which can be embedded in the
Fast R-CNN framework for region proposal generation. RPN
shares the convolutional computation of the entire image,
and the region proposal generation is almost performed
at zero cost. The RPN simultaneously predicts the object
bounding box and the classification score at each location.

RPN training is end-to-end and produces high-quality region
proposals.

YOLO [15] treats object detection as a regression problem.
Based on a single end-to-end network, it directly predicts the
object position and category from the input image. The net-
work divides the image into regions and predicts the bounding
boxes and probabilities of each region. These bounding boxes
are weighed by the predicted probabilities. YOLO detects the
entire image at the test time so that the forecast is based on
the global contextual information of the entire image. This
technique is simply based on a single network to generate one
prediction and does not include region-wise sub-networks
that operate thousands of times on the region proposals such
as in Fast R-CNN [17]. SSD [29] outputs the predicted bound-
ing boxes from a set of default boxes over different scales
and aspect ratios of each feature map location. At the testing
phase, the network produces probabilities for each predicted
object category per default box and generates adjustments to
the default box to achieve better localization. Moreover, SSD
detects objects on multiple feature maps and predicts objects
of different scales on the corresponding resolution feature
maps.

However, those methods are first pre-trained on a large
auxiliary dataset for image classification. To solve this
dilemma, the ResNet paper’s [2] object detection pipeline
inserts the RoI pooling layer into the convolutional layer to
cut off the translation invariance of the post-RoI convolu-
tional layers. However, the method introduces a considerable
number of RoI-wise layers, thus greatly increasing the train-
ing and testing times. R-FCN [1] utilizes position-sensitive
score maps, where each score map encodes information with
regard to a specific location. It is a fully convolutional net-
work, and its position-sensitive module contains a set of
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FIGURE 3. Overview of G-CNN. The input image first passes through some convolutional layers and max pooling
layers to generate the feature maps. Then, the grid convolutional sub-network is introduced to generate
position-sensitive feature maps. The sub-network consists of a set of position-sensitive convolutional layers (GCL)
that produce position complementary grid features and has an RoI grid pooling layer at the end.

convolutional layers that generate position-sensitive maps
and a position-sensitive RoI pooling layer with no learned
weight (convolutional/fully connected) layers following. The
feature maps of R-FCN are class-aware and position-aware
maps, and although the total number of features is consider-
able, each class corresponds to very few feature maps. Due
to this structural limitation, it is inconvenient to apply to a
stronger classifier.

III. OUR APPROACH
A. OVERVIEW
Following R-CNN, we adopt a prevalent two-stage object
detection pipeline [27], [33]–[36] that consists of generating
region proposals and proposal classification. We generate
candidate boxes by the Region Proposal Network (RPN) [18]
and share features between RPN and Grid Convolutional
Neural Network (G-CNN). Figure 3 shows an overview of
the architecture.

The input image first passes through some convolutional
layers andmax pooling layers to generate feature maps. Then,
the grid convolutional sub-network is introduced to generate
position-sensitive feature maps. The sub-network consists of
a set of GCLs that produce position complementary grid
features and has an RoI grid pooling layer at the end. The
set of GCLs generates m sets of feature maps, where each set
of feature maps has c channels.
G-CNN ends with a grid pooling layer. The layer aggre-

gates all the location feature maps from the output of dif-
ferent convolutional layers. Each output of the RoI pooling
layer comes from a different feature map in an alternating
manner. With the end-to-end training, the RoI grid pooling
layer shepherds the GCLs to learn specialized grid feature
maps. Ren et al. [37] showed that networks on convolutional

feature maps improve the object detection process. Given that
finding, G-CNN is followed by two convolutional layers and
fully connected layers that ultimately branch into two sibling
output layers: one produces softmax probability outputs over
all detection classes plus a ‘‘background’’ class, and the other
sibling produces four real-valued numbers for each class [26].
Each set of four values encodes a refined bounding box
position for one of the classes. For fair comparison, the RPN
is built on top of the conv4 stage, as is the case for Faster
R-CNN in [2].

B. GRID FEATURE MAPS AND RoI GRID POOLING
We divide each RoI region into n×n bins using a regular grid.
For a w × h RoI region, the size of a bin is approximately
w
n ×

h
n [26]. Each bin is derived from a different feature map

in an alternating manner; therefore, the technique explicitly
encodes all position information into the RoI. In this model,
the GCL generatesm sets of feature maps. Inside the (i, j)−th
bin (0 ≤ i , j ≤ n−1), we define an RoI grid pooling operation
that pools only over the ((j×n+ i)%m)− th set of grid feature
maps.

rc(i, j | 2) = max
(x,y)∈bin(i,j)

zi,j,c,l(x + x0, y+ y0 | 2) (1)

l = (j× n+ i)%m (2)

Here, rc(i, j) is the pooled response in the (i, j) − th bin
for the c− th channel; zi,j,c,l is the feature map of the c− th
channel from the l − th set of grid feature maps; and (x0, y0)
denotes the top-left corner of an RoI. The (i, j)− th bin spans
bi · wn c ≤ x ≤ d(i+1) · wn e and bj ·

h
nc ≤ y ≤ d(j+1) · hne. The

operation of Eq.(1) is illustrated in Figure 3. Eq. (1) performs
the max pooling operation.

The concept of G-CNN is partially inspired by R-FCN [1],
which was developed for efficient object detection and whose
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detector is fully convolutional, with almost all computations
shared across the entire image. The RoI pooling layer con-
ducts selective pooling, and each of the n×n bins aggregates
from one score map out of the bank of n× n score maps and
corresponds to a specific class. Therefore, the feature maps
of R-FCN are class-aware and position-aware feature maps
– although the total number of features is large, each class
corresponds to very few features. Due to these structural lim-
itations, this technique is inconvenient to apply to a stronger
classifier; therefore, to obtain higher accuracy, we propose
the G-CNN.

C. BACKBONE ARCHITECTURE
In this paper, the architecture is based on ResNet [2], although
other networks [10], [12] are also feasible. ResNet computes
a feature hierarchy consisting of featuremaps at several scales
with a scaling step of 2. There are many layers producing
output maps of the same size and we say these layers are
in the same network stage. We denote the forth stage and
fifth stage as the conv4 stage and conv5 stage respectively.
ResNet-50 (ResNet-101) has 50 (101) convolutional layers,
followed by an average pooling layer and a 1000-way fully
connected layer. We only use convolutional layers to extract
feature maps; the average pooling and the fully connected
layers are removed. The output of the last convolutional block
in ResNet-50 is 2048−d , and we attach a 1024−d 1×1 con-
volutional layer randomly initialized to reduce the dimension.
ResNet-50’s effective stride is 32 pixels. To obtain a higher
resolution of the feature map, we reduce the effective stride
to 16 pixels. All the layers before and on the conv4 stage [2]
remain unchanged. In addition, the stride of 2 operations in
the first conv5 block is changed to have a stride of 1, and
all other conv5 stage convolutional filters are modified using
the ‘‘hole algorithm’’ [38], [39] to compensate for the step
reduction.

D. OPTIMIZATION
We randomly initialize all new layers by drawing weights
from a zero-mean Gaussian distribution with standard devi-
ation 0.01. Using a single-scale training, the shorter side of
the image is scaled to 600 pixels, and the longer side does not
exceed 1000 pixels. Each GPU holds one image and selects
128 region proposals. We train the net using 8 GPUs; there-
fore, the effective mini-batch is eight. We use a momentum of
0.9 and a weight decay of 0.0005 as in [21]. We fine-tune G-
CNN using a learning rate of 0.001 for 20k mini-batches and
0.0001 for the subsequent 10k mini-batches on the PASCAL
VOC dataset. G-CNN shares features with RPN and uses the
approximate joint training [18].

E. ANALYSIS OF POSITION SENSITIVITY
Figure 4 illustrates how the G-CNN works. For clarity of
explanation, it is assumed that only the CNN feature maps
corresponding to the ground-truth bounding box region are
activated. (a) Normal Network. The region proposal on the
left is well covered by the object, and the activation level

of the corresponding feature maps is relatively high. The
right region proposal is not as well covered by the object,
and the feature maps of the overlapping area can still be
activated. We hope that the score on the left is higher than
that on the right so that we can achieve a better localization.
However, state-of-the-art image classification networks have
very strong translation invariance, therein usually failing to
achieve a good distinction between them. (b) G-CNN. The
region proposal on the left is well overlapped with the object,
and the activation level of the corresponding feature maps
is relatively high. The right region proposal is not as well
covered by the object, and the feature maps of the overlapping
region cannot be activated. This is because the GCL obtains
position-sensitive grid feature maps. The RoI pooling layer
divides each RoI region into n×n bins, where each bin comes
from a different feature map in an alternating manner. There-
fore, the score on the better region proposal is higher; we can
distinguish them explicitly and achieve a better localization.

IV. EXPERIMENTS
A. EXPERIMENTS ON PASCAL VOC
We evaluate our method on the PASCAL VOC dataset [25],
which includes 20 categories. We train the system on the
union set of VOC 2012 trainval and VOC 2007 trainval
(‘‘07+12’’), and we evaluate the system on the VOC 2007
test set. The evaluation criterion for object detection is the
mean average precision (mAP).

We conduct comparative experiments on the following
related networks:

G-CNN without position sensitivity. By setting k = 1 to
remove the position sensitivity, this network is equivalent to
global pooling within each RoI.

R-FCN [1]. This is a region-based, fully convolutional
neural network with almost all computations being shared
across the entire image. Its convolutional layer is followed
by a position-sensitive pooling layer but is not followed by
any weight layers.

Faster R-CNN counterpart [2]. In this architecture, the
layers prior to the conv4 stage (including conv4) are used to
extract the featuremaps. This network inserts the ROI pooling
layer between conv4 and conv5; the other layers are followed
as the classifier for every RoI. Therefore, the design sacrifices
training and testing efficiency because it introduces heavy
region-wise layers.

TABLE 1. Detection results of PASCAL VOC 2007 test set using the
ResNet-50 model.

In Table 1, we provide comparisons with current state-of-
the-art results, including Faster R-CNN and R-FCN. We note
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FIGURE 4. Analysis of position sensitivity. For clarity of explanation, it is assumed that only the CNN feature maps
corresponding to the ground-truth bounding box region are activated. (a) Normal Network. The region proposal on the left
is well covered with the object, and the activation level of the corresponding feature maps is relatively high. The right
region proposal is not as well covered by the object, and the feature maps of the overlapping area can still be activated.
We hope that the score on the left is higher than that on the right so that we can achieve a better localization. However,
state-of-the-art image classification networks have very strong translation invariance, therein usually failing to make a
good distinction between them. (b) G-CNN. The region proposal on the left is well overlapped with the object, and the
activation level of the corresponding feature maps is relatively high. The right region proposal is not as well covered by
the object, and the feature maps of the overlapping region cannot be activated. This is because the GCL obtains
position-sensitive grid feature maps. The RoI pooling layer divides each RoI region into n× n bins, where each bin comes
from a different feature map in an alternating manner. Therefore, the score on the better region proposal is higher; we can
distinguish them explicitly and achieve a better localization.

that all methods in Table 1 are based on RPN built on the top
of conv4 blocks.

Our methods achieves 79.4% mAP on the PASCAL VOC
2007 test set. Faster R-CNN and R-FCN achieve mAPs of
74.8% and 74.2%, respectively. The accuracy of G-CNN
exceeds Faster R-CNN and R-FCN by a large margin. Faster
R-CNN inserts the ROI pooling layer between conv4 and
conv5 to break down the translation invariance. However,
this model introduces a substantial number of region-wise
layers, therein failing to fully utilize the depth of the network
to extract more semantic features. R-FCN is a region-based,
fully connected network, and there is no parameter layer that
can be learned after the RoI pooling layer. The detection
speed of R-FCN is higher, but R-FCN cannot be applied to
heavier classifiers, thus limiting its accuracy.

The importance of G-CNN is further proved by setting
m = 1 (Table 2), upon which the accuracy drops to 78.2%.
However, if m is set to 5, the accuracy drops to 78.6%.
The object detection process also requires a certain degree
of translation invariance. If m is set to 5, the network’s
translation variance becomes too strong.

TABLE 2. The effect of the types (m) of grid feature maps. A higher value
of m indicates a stronger sensitivity and vice versa.

TABLE 3. The comparisons of speeds on the PASCAL VOC 2007 test set
using ResNet-50. Timing is evaluated on a single Nvidia Titan X GPU.
A total of 300 RoIs per image are computed in the forward pass, and
128 samples are selected for back propagation. A total of 300 RoIs are
used for testing.

Table 3 shows a comparison in terms of speed. With
300 RoIs at testing time, Faster R-CNN, R-FCN, and
G-CNN require 0.35 s, 0.08 s, and 0.16 s per image, respec-
tively. Faster R-CNN utilizes a large region-wise sub-network
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TABLE 4. The comparisons on the PASCAL VOC 2007 test set using ResNet-101. ‘‘Faster R-CNN +++ [2]’’ uses context, multi-scale testing and iterative
box regression. R-FCN [1] and G-CNN use OHEM [40] with 300 RoIs.

TABLE 5. The comparisons on the PASCAL VOC 2012 test set using ResNet-101. ‘‘07++12’’ denotes the union set of 2007 trainval+test and 2012 trainval.

TABLE 6. The comparisons on the MS COCO dataset using ResNet-101. We evaluate the mAP on COCO’s standard metric averaged for
IoU ∈ [0.5 : 0.05 : 0.95] (simply denoted as mAP@[.5, .95]) and mAP@0.5 (PASCAL VOC’s metric).

to achieve good accuracy, R-FCN has a negligible per-
region cost, and our method includes a region-wise sub-
network consisting of two convolutional layer and three fully
connected layers. Therefore, R-FCN is the fastest method,
followed by our method, and Faster R-CNN is the slowest.

Table 4 shows the results of using ResNet-101 network.
R-FCN [1] and G-CNN use online hard example mining
(OHEM [40]). The mAP of G-CNN is 82.5%. Moreover,
using the multi-scale training strategy in [26], we resize the
scale of image in each iteration to a randomvalue chosen from
{400, 500, 600, 700, 800} pixels. We continue to performing
testing at a single scale of 600 pixels, leading to no additional

testing time. The mAP is 83.6%. In addition, we train the
system on the MS COCO [41] trainval and then fine-tune
the system on the PASCALVOC dataset. The mAP is 86.5%,
which is 0.9% higher than the strongest competitor ‘‘Faster R-
CNN+++’’ [2]. ‘‘Faster R-CNN+++’’ uses context, multi-
scale testing, iterative box regression and a 10-layer sub-
network to evaluate each region proposal; therefore, using
OHEM is time consuming. The results of multi-scale testing
are aggregated as in [2].

Table 5 shows the results on the PASCAL VOC 2012 test
set and presents similar conclusions; this proves that our
method has a certain degree of generalizability.
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B. EXPERIMENTS ON MS COCO
Next, we evaluate our method on theMS COCO object detec-
tion dataset [41]. This dataset possesses 80 object categories.
We experiment with 80k images on the train set, 40k images
on the val set and 20k images on the test-dev set. We evaluate
the mAP on COCO’s standard metric averaged for IoU ∈
[0.5 : 0.05 : 0.95] (simply denoted as mAP@[.5, .95])
and mAP@0.5 (PASCALVOC’s metric). The learning rate is
0.001 for the first 90k iterations but subsequently is reduced
to 0.0001 for the next 30k iterations.

The results are presented in Table 6. Our single-scale
trained G-CNN with the train set achieves a val result
of 52.3%/29.5%. This is better than that of the Faster
R-CNN (48.4%/27.2%) and R-FCN (48.9%/27.6%). It is
worth noting that our method is more accurate for small
objects defined by [41]. Our multi-scale trained (still single-
scale tested) model with the train set achieves a result of
52.4%/29.7% on the val set, while the multi-scale trained
R-FCN achieves 49.1%/27.8%. The multi-scale trained
G-CNN with the trainval set achieves a result of
54.9%/31.6% on the test-dev set, while themulti-scale trained
R-FCN achieves 51.9%/29.9%. Considering the wide range
of the scale distribution of the COCO dataset, we further
consider using multi-scale testing, and the scales in this
testing process are {200, 400, 600, 800, 1000}. The mAP is
56.0%/33.2%, and the R-FCN is 53.2%/31.5%. This result
is on par with the strongest baseline ‘‘Faster R-CNN + +
+’’ (55.7%/34.9%) and is simpler, with no other bells and
whistles (e.g., iterative box regression or context).

V. CONCLUSION
We introduced the Grid Convolutional Neural Network, a
simple but accurate and efficient architecture. Our system
adopts a state-of-the-art region-based object detection archi-
tecture, therein using the prevalent ResNet and RPN datasets.
With the proposed GCLs, our method outperforms the Faster
R-CNN counterpart [2] in terms of both speed and accuracy
by a large margin. The RPN is built on normal feature maps,
and in the future, we can consider how to use position-
sensitive feature maps to generate better region proposals.
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