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ABSTRACT With the recent rapid development of cloud computing technology, how to reduce the costs
of a cloud data center effectively has become an important issue. The study on virtual machine deployment
mainly aims at deploying virtual machine resources required by users on a physical server rationally and
effectively. This paper proposes amulti-population ant colony algorithm to solve problems of virtual machine
deployment. With resource wastage and energy consumption as optimization objectives, this algorithm uses
multiple ant colonies for the solution and determines strategies for information exchange among ant colonies
according to the information entropy of each population to guarantee the balance of its convergence and
diversity. The simulation results show that this algorithm has better performance than the single-population
ant colony algorithm and can reduce resource wastage and energy consumption effectively for high-demand
virtual machine deployment.

INDEX TERMS Multi-population, ant colony algorithm, cloud computing, virtual machine.

I. INTRODUCTION
As an important recent reform in the computer industry,
cloud computing has developed rapidly and provided almost
unlimited resources, such as virtual computation, storage and
networks for users. Users only need to buy their required
resources from cloud providers in a pay-on-demand way [1].
To meet the increasing user demand, cloud providers, such
as Amazon and Google, are deploying numerous planet-scale
data centers with high energy consumption worldwide, some
of which are even composed of over millions of servers [2].
Research shows that expenditures of energy consumption
account for a large part of the management of data centers
and that the energy consumption of server and data equip-
ment accounts for approximately 55% of the total energy
consumption. Meanwhile, because high energy consumption
means higher carbon emissions, large-scale data centers will
have a great influence on the environment. In fact, an impor-
tant factor causing such high energy consumption of data
centers is the failure to make full use of existing comput-
ing resources. In traditional data centers, the average use
ratio of servers only accounts for approximately 10%-15%
of the total quantity of resources most of the time. This
causes an excessive supply of resources, and most energies
are consumed in this way [3]. In current cloud data centers,

as cloud providers aim at guaranteeing the absolute reliability
of virtual resources and services provided by them, excessive
supply of resources has become a common phenomenon.
How to reduce energy consumption under the cloud comput-
ing environment is always a research emphasis of scholars.

The realization of virtualization technology allows cloud
data centers to deploy multiple virtual machines on a single
server to reduce the problem of excessive supply of resources.
Therefore, the deployment of virtual machines becomes an
important research hotspot of resource deployment for cloud
data centers. Regarding how to deploy virtual machines with
minimum use of servers, most scholars’ studies are realized
through analog simulation. Currently, many non-intelligent
algorithms have been proposed to solve this problem. Anton
and Rajkumar et al. used the method of dynamic integration
of a virtual machine to make idle servers enter sleep mode
in real time for the purpose of reducing energy consump-
tion [4]. Hadi and Massoud proposed an energy-saving-type
virtual machine deployment algorithm [5]. At the beginning
of the algorithm, multiple virtual machine copies are first
created and then deployed through dynamic planning and
local search, which effectively reduces the overall energy
consumption of the server. Mark and Niyato et al. proposed
an evolutionary algorithm based on demand forecasting [6]
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and optimized the deployment scheme of virtual machines
according to demand forecasting.

Virtual machine deployment can similarly be deemed as
a multi-dimensional bin packing problem [7]. It is known
that the bin packing problem is an NP-hard problem [8].
Therefore, some intelligent optimization algorithms for solv-
ing the problem of the deployment of virtual machines will
be a research direction. The known intelligent optimization
algorithm has advantages, such as good robustness, strong
universality, no need for special information regarding the
problems, and parallel and efficient optimal performance [9],
and can effectively adapt to the solution of the deployment of
virtual machines, as reported in the literature [10]–[12]. In lit-
erature [10], Nakada and Hirofuchi et al. redefined the virtual
machine deployment problem as a multi-objective optimiza-
tion n problem and proposed a method based on the genetic
algorithm to reduce the quantity of physical machines and
thus reduce energy consumption. In literature [11], Agrawal
and Bose et al. proposed a grouping genetic algorithm to
solve the problem of server integration when virtual machines
are incompatible. In literature [12], Xu and Fortes et al. pro-
posed a two-stage control system to solve the virtual machine
deployment problem: first, the genetic algorithm is used to
calculate the program of deploying virtual machines on a
specific server. Then, multiple objectives, such as waste of
resources, energy consumption and heat dissipation cost, are
subject to fuzzy logic optimization. Literature [13] is a typical
example of current studies on the solution of the virtual
machine deployment problem using the ant colony algorithm.
It proposed an ant colony algorithm with multi-objective
optimization for solving the virtual machine deployment
problem. This algorithm solves the problem by using the
ant colony algorithm, with the resource utilization rate and
energy consumption as optimization objectives. It optimizes
the solution set obtained in each iteration using the evolu-
tionary multi-objective optimization algorithm and finally
obtains a group of Pareto sets meeting the requirements of
the problem to improve the resource utilization rate of the
physical machine. Literatures [14]–[19] made improvements
on this basis. However, the literatures and improvement above
only considered a single population and are defective in terms
of the diversity of solutions compared to the multi-population
ant colony. The algorithm proposed in this paper is a further
optimization for Literature [13], with the introduction of the
multi-population ant colony concept, and determines strate-
gies for information exchange among ant colonies according
to the information entropy of each population to guarantee a
balance between convergence and diversity of the algorithm.

Therefore, the contribution of this paper is the proposal
of a multi-population ant colony algorithm (MCACS) for
solving the problem of the deployment of virtual machines.
The algorithm, which is based on ACS [20], increases the
ant colony population to increase the diversity of solutions.
It mainly uses the implementation idea of arranging multi-
population ant colonies and conducting multi-path search
according to the setting conditions. The optimal solution for

each population is sought independently and their informa-
tion communication is realized through information entropy.
In the convergence process, using the early optimal solution
set to replace the current solution set ensures rapid conver-
gence to the optimal solution.

The structure of this paper is as follows: section 2
introduces relevant work for virtual machine deployment.
Section 3 gives the mathematical model. Section 4 intro-
duces the virtual machine deployment algorithm based on
the improved multi-population ant colony proposed in this
paper in detail. Section 5 analyzes the experimental result.
Section 6 summarizes this paper.

II. METHODS
A. COMPUTING MODEL
In this paper, when multiple virtual machines are deployed on
the same server, the CPU use ratio of this server is defined as
the sum of the CPU use ratio of all virtual machines deployed
on this server; likewise, for thememory use ratio.Meanwhile,
this paper sets a threshold value for the server to prevent the
performance penalty caused when the CPU or memory use
ratio reaches or gets close to 100%.

B. RESOURCE WASTAGE MODEL
For each server, this paper calculates potential expenditures
for the waste of resources using formula (1):

Wj =

(∣∣∣Lpj − Lmj ∣∣∣+ ε)/(Up
j + U

m
j

)
(1)

where Wj refers to resource wastage of the jth server; Lpj
and Lmj , respectively, refer to remaining CPU and memory
resources of the server; ε is a very small, positive real number,
the value of which is 0.0001; Up

j refers to the CPU use ratio;
Um
j refers to the memory use ratio.

C. ENERGY CONSUMPTION MODEL
Because the energy consumption and CPU use ratio of the
server have a certain linear relation, this paper defines the
energy consumption of the server as formula (2):

Pj =

{(
Pbusyj − Pidlej

)
× Up

j + P
idle
j , Up

j > 0

0, otherwise
(2)

where Pbusyj refers to the energy consumption of the server
when it is busy; Pidlej refers to the energy consumption of the
server when it is idle. According to the information given in
literature [13], this paper sets the energy consumption when
the server is busy and idle to, respectively, 215 Watt and
162 Watt.

D. OPTIMIZATION FORMULA
To serve the purpose of minimizing resource wastage and
energy consumption simultaneously, the method of multi-
objective optimization is used to model the virtual machine
deployment problem, as shown in formulas (3)(4)(5), at the
top of the next page.

VOLUME 5, 2017 27015



X. Sun et al.: Multi-Population Ant Colony Algorithm for Virtual Machine Deployment

Minimize
m∑
j=1

Wj =

m∑
j=1

yj ×
∣∣∣∣(Tpj − n∑

i=1

(
xij × Rpi

))
−

(
Tmj −

n∑
i=1

(
xij × Rmi

))∣∣∣∣+ ε
n∑
i=1

(
xij × Rpi

)
+

n∑
i=1

(
xij × Rmi

)
 (3)

Minimize
m∑
j=1

Pj =
m∑
j=1

[
yj ×

((
Pbusyj − Pidlej

)
×

n∑
i=1

(
xij × Rpi

)
+ Pidlej

)]
(4)

s.t.



m∑
j=1

xij = 1, ∀i ∈ I

m∑
i=1

xij × Rpi ≤ yj × Tpj, ∀j ∈ J

m∑
i=1

xij × Rmi ≤ yj × Tmj, ∀j ∈ J

yj, xij ∈ {0, 1} ∀i ∈ I and ∀j ∈ J

(5)

where Rpi and Rmi, respectively, refer to the quantity
demanded of CPU and memory resources of each VM. Tpj
and Tmj, respectively, refer to the threshold value of the CPU
and memory use ratio of each server; xij and yj are two binary
variables, where xij indicates whether virtual machine i is
deployed on server j and yj indicates whether server j is
used.

E. THE PROPOSED MULTI-POPULATION
ANT COLONY ALGORITHM
The MCACS algorithm proposed in this paper mainly uses
the implementation idea of arranging multi-population ant
colonies and conducting multi-path search according to the
setting conditions. The optimal solution for each population
is sought for independently and their information commu-
nication is realized through information entropy. In ther-
modynamics, entropy is mainly used to explain disordered
relations [21]. Here, information entropy is mainly used for
illustrating the degree of diversity of solutions. Information

entropy s = −k
n∑
i=1

pi ln pi. pi refers to the possibility of

determining state i; pi ≥ 0,
n∑
i=1

pi = 1. Information entropy

determines the degree of diversity of solutions and is an
important basis of pheromone updating among ant colonies.

Moreover, this paper defines the process of deploying
a VM on a server as a step of an ant. Correspondingly,
pheromone τi,j refers to the tendency of deploying virtual
machine i on server j. The algorithm process of MCACS is
as follows (Fig. 1): in the initialization phase of the experi-
ment, all parameters are initialized, the initial setting of all
pheromone matrices is τ0, and the information entropy of
all populations is set as 0. In the iteration phase, each ant
colony is searched for according to the current pheromone
concentration and heuristic information. A group of solution
sets is obtained and the information entropy of the current

population is calculated. When virtual machine i is deployed
on server j, pheromone τi,j on this path is updated locally.
After the completion of a round of iteration, current solution
sets are subject to evolutionary multi-objective optimization
and current optimum solution set setP is obtained. Solutions
in the current setP are updated globally.Moreover, it is judged
whether ant colonies satisfy conditions for communication.
If so, interpopulational pheromone exchange is conducted.
After the completion of all iterations, the final Pareto set setP
is the final result.

F. INITIALIZATION PHASE
At the beginning of initialization, a group of initial solu-
tions S0 is produced using the FFD algorithm. Then, the ini-
tial pheromone τ0 is calculated according to S0. This paper
defines pheromone τi,j as the tendency of deploying vir-
tual machine i on server j. The calculation of τ0 is shown
in formulas (6)(7). Where P′ (S0) and W (S0), respectively,
refer to the standardized energy consumption and resource
wastage of initial solution S0. PMaxl refers to the peak of
energy consumption of server j. N refers to the number of
virtual machines. M refers to the number of servers used
by S0. The pheromonematrix is initialized according to the τ0
obtained.

τ0 =
1

n× (P′ (S0)+W (S0))
(6)

P′ (S0) =
m∑
j=1

(
Pj
PMaxl

)
(7)

i =


argmaxu∈�k (j)

{
α × τu,j + (1− α)× ηu,j

}
,

q ≤ q0
s, otherwise

(8)
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m∑
u=1

xiu = 0, i ∈ {1, . . . , n}

n∑
u=1

(
xuj × Rpu

)
+Rpi ≤ Tpj

n∑
u=1

(
xuj × Rmu

)
+Rmi ≤ Tmj

(9)

pkij =


α × τi,j + (1− α)× ηi,j∑

u∈�k (j)

(
α × τu,j + (1− α)× ηu,j

) , i ∈ �k (j)

0, otherwise
(10)

G. SEARCH PHASE
In the search phase, ants begin seeking for the next target loca-
tion. In this process, the pseudorandom proportional selection
rule is used to select virtual machine i as the next virtual
machine to be deployed on server j, as shown in formula (8).

Where q is a random number between 0 and 1, which
is used to determine whether the current process is explo-
ration or development. q0 will take a fixed value according
to the current experience. When q is less than or equal to q0,
ants start the development process; otherwise, ants start the
exploration process. α refers to the relative importance of the
pheromone matrix for search.
�k (j) refers to the current optional VM set that satisfies

formula (9).
S is a random parameter selected according to the probabil-

ity distribution of the random proportional rule. Formula (10)
refers to the probability that ant k selects virtual machine i for
deployment on server j.
ηi,j, i.e., heuristic information, refers to the availability

of deploying virtual machine i on server j. In this paper,
the value of ηi,j is calculated dynamically according to the
current ant state before each step. Its calculation follows
formulas (11)(12)(13).

ηi,j,1 =
1

ε +
j∑

v=1

(
Pv/PMaxv

) (11)

The formula above represents the effect of energy consump-
tion of the current deployment state on heuristic informa-
tion. The formula below represents the influence of resource
wastage on heuristic information.

ηi,j,2 =
1

ε +
j∑

v=1
Wv

(12)

ηi,j = ηi,j,1 + ηi,j,2 (13)

For this multi-objective problem, this paper uses for-
mula (12) to represent the overall availability of deploying
virtual machine i on server j.

H. UPDATING OF PHEROMONE
In the MCACS algorithm, the updating of the pheromone is
divided into partial updating and global updating.Whenever a
virtual machine i is deployed on server j in the search process,
this paper updates the current pheromone according to the
local pheromone updating rule, as shown in formula (14).

τi,j (t) = (1− ρl)× τi,j (t − 1)+ ρl × τ0 (14)

where ρl refers to the local evaporation factor, the value of
which is between 0 and 1. τ0 is the initial pheromone.

When the search for all ant populations and the elimi-
nation and updating of the current setP are completed, this
paper updates all solutions S in the current setP globally.
Formula (15) is the global updating rule.

τi,j (t) = (1− ρl)× τi,j (t − 1)+
ρg × λ

P′ (S)+W (S)
(15)

where ρg refers to the global evaporation factor, the value
of which is between 0 and 1. λ is a self-adaptive coefficient
used to control the influence of solution S on pheromone
as time progresses, the value of which is calculated using
formula (16).

λ =
NA

t − NIS + 1
(16)

where NA refers to the number of ants, NIS refers to the
round of iteration in which solution S is put into the current
setP, and t refers to the current round of iteration. This global
updating program aims at improving the experience accumu-
lation of ant search.

I. CALCULATION OF POPULATION INFORMATION ENERGY
In this paper, the process of ants selecting virtual machine i
for deployment on server j in the exploration follows prob-
ability distribution pkij. According to formula (9), pkij ≥ 0
and

∑
i∈�k (j)

pkij = 1. Therefore, according to the scheme

proposed in the literature, the information entropy for ant k
deploying virtual machine i on server j can be defined. It can
be calculated using formula (17).

skj (sa) = −
∑

i∈�k (j)

pkij (sa) ln p
k
ij (sa) (17)

This formula refers to the uncertainty of ant k in population
sa selecting virtual machine i for deployment on server j. The
expression of the information entropy of ant k in population
sa can be obtained, as shown in formula (18).

sk (sa) =
m∑
j=1

skj (sa) (18)

Therefore, the expression of information entropy of popu-
lation sa is as shown in formula (19).

s (sa) =
1
NA

NA∑
k=1

sk (sa) (19)

VOLUME 5, 2017 27017



X. Sun et al.: Multi-Population Ant Colony Algorithm for Virtual Machine Deployment

Meanwhile, formula (19) shows the average uncertainty of
population sawhen the virtualmachine scheme is established.

This definition predicts the convergence state of an ant
colony and the evolution extent of an ant population accord-
ing to features of information entropy and its changing pro-
cess in combination with the process of ant colony algorithm,
thereby yielding the rate of convergence of the self-adaptive
adjustment algorithm. Meanwhile, it is a basis of inter popu-
lational pheromone communication.

J. ELIMINATION AND UPDATING OF PARETO SET
The Pareto set is a set composed of global non-dominated
solutions. In this paper, current non-dominated solutions are
stored with setP before the obtainment of the final Pareto
set. For solutions produced in each round of iteration, two
objective functions (3) and (4) are calculated and compared
with other solutions in the current iteration and those in the
current setP. If a solution is non-dominated, it is added to setP
and solutions dominated by it in setP are eliminated. Finally,
after the completion of all iterations, the current setP is the
final required Pareto set in this paper.

K. INTERPOPULATIONAL PHEROMONE
COMMUNICATION
In the algorithm, the communication among populations is
conducted at a certain time interval, which is not changeless;
instead, it is determined according to the information entropy
of all colonies, i.e., it changes with the convergence of all
populations. The time interval of communication among pop-
ulations satisfies formula (20).

gap = k1 · e

SA∑
i=1

si

SA (20)

where k1 is a constant, SA is the number of sub-populations
and si is the information entropy of the ith sub-population.

The selection of a communication colony is deter-
mined according to the information entropy of each colony.
Let colony i choose colony j as the object of information
communication; j can be determined using formula (21).

j = argmax
1≤j≤SA

(|si − sj|) (21)

where si and sj are information entropies of colonies
i and j at the current moment, respectively. Colonies with
a high entropy will choose those with a low entropy for
information communication. Thus, colonies with a low infor-
mation entropy have relatively centralized pheromone dis-
tribution and can balance their own pheromone distribution
through communication with colonies with a high informa-
tion entropy. Similarly, colonies with a high information
entropy have scattered pheromone distribution and can cen-
tralize their pheromone distribution through communication
with colonies with a low information entropy.

When colony j is determined as the communication object
of colony i, this paper updates the pheromone according to

formula (22).

τ iuv = τ
i
uv + λ1τ

i
uv (22)

where λ = si−sj, where λmin < λ < λmax; λmin and λmax are
constants denoting the minimum andmaximum, respectively,
of the updating coefficient. 1τ iuv is the pheromone of sub-
population j on path (u, v).

L. DESCRIPTIONS OF PSEUDOCODE OF THE ALGORITHM
The pseudocode of the MCACS algorithm proposed in this
paper is as follows:

Algorithm 1 MCACS algorithm description (Algorithm 1)
Input:
Set of VMs with their associated resource demand, Set of
parameters
Output:
A Pareto set P
Begin
//Initialization

Set values of parameters α, ρl, ρg, q0,Tpj,Tmj, NA, SA, M
Initialize all pheromone values to τ0
Initialize Pareto set P as empty
//Iterative loop

Repeat
//construct solution

Repeat
Introduce a new colony of ants
Ants search for solution of current colony and add it to
current set temp
Calculate information entropy of current colony
Until all colonies have generated a solution
//Evaluation

If a solution in set temp is dominated by another solution
in set temp or the Pareto set P Then
Eliminate the solution
Else
Add the solution to the Pareto set P and all solutions
dominated by the solution are eliminated from the set P
//Global updating

For all solutions in set P do
Apply the global updating rule
End For
//Pheromone exchange

If the conditions fit for pheromone exchange Then
Apply the pheromone exchange rule
Until the max number of iterations is reached
Return the Pareto set P

III. RESULTS AND DISCUSSION
A. SIMULATION ANALYSIS
To evaluate the performance of the MCACS for virtual
machine deployment, this paper conducts a multi-group sim-
ulation experiment and compares the performance of the
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MCACS algorithm to the single-population ant colony algo-
rithm (VMPACS) and FFD algorithm proposed in litera-
ture [13], [22]. The experimental procedure is written using
Eclipse and Java and operated on a computer equipped with
a 2.60 GHz Intel Core i5 processor and 8 GB 1600 MHz
of DDR3 internal memory. The operating system is OS X
Yosemite 10.10.3.

B. SIMULATION SETTING
Table 1 shows the specific parameter settings of the multi-
population ant colony algorithm and single-population ant
colony algorithm compared in this experiment.

TABLE 1. Experiment parameters.

This paper produces a problem instance randomly accord-
ing to literature [23]: 200 groups of VMs with their respective
CPU and memory use ratio demands and a certain number
of servers meeting the worst deployment scheme. For the
convenience of experimentation, all servers have the same
performance parameter in this paper. The specific algorithm
of the instance is as follows:

Algorithm 2 Specific examples generated by the algorithm
(Algorithm 2)
for i = 1 to n do
Rpi = rand(2Rp);
Rmi = rand(Rm);
r = rand(1.0)
if (r < P ∧ Rpi ≥ Rp) ∨ (r ≥ P ∧ Rpi < Rp) then
Rmi = Rmi + (Rm);
End if
End for

where function rand(a) generates a double-type return
value, the value of which is distributed at [0, a] uniformly.
Rp refers to the benchmark demand of the CPU use ratio;

FIGURE 1. Algorithm flow chart.

Rm is the benchmark demand of the memory use ratio; P is a
probability parameter, which is used to control the correlation
between the CPU use ratio and memory use ratio in this
paper.

This experiment has two groups of benchmark parameters
and five probability parameters, which generate 200 groups
of VMs. There are 2000 groups of instances in total. In this
paper, Rp and Rm are set to 25% and 45%, respectively.When
Rp = Rm = 25%, the CPUuse ratio andmemory use ratio are
distributed at [0, 50%] uniformly. When Rp = Rm = 45%,
the CPU use ratio and memory use ratio are distributed
at [0, 90%] uniformly. Probability parameter P is set as
0.00, 0.25, 0.50, 0.75 and 1.0. When Rp = Rm = 25%,
the average coefficient of correlation between memory and
CPU use ratios is, respectively,−0.749,−0.320, 0.123, 0.333
and 0.732.WhenRp = Rm = 45%, the average coefficient of
correlation between memory and CPU use ratios is, respec-
tively, −0.736, −0.378, 0.001, 0.375 and 0.762.

C. EXPERIMENTAL RESULTS AND ANALYSIS
To evaluate the performance of the algorithm proposed for the
optimization of energy consumption and resource wastage,
this experiment compares MCACS, VMPACS and FFD. The
horizontal axis refers to the coefficient of correlation between
the CPU and memory use ratios. Vertical axes correspond to
energy consumption and resource wastage. Fig. 2-5 shows
results representing the comparison of energy consumption
and resource wastage in MCACS, VMPACS and FFD when
Rp = Rm = 25% and Rp = Rm = 45%.
According to Fig. 2, when Rp = Rm = 25%, the MCACS

algorithm has better performance than the VMPACS algo-
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FIGURE 2. Comparison of energy consumption (Rp = Rm = 25%).

FIGURE 3. Comparison of resource wastage (Rp = Rm = 25%).

FIGURE 4. Comparison of energy consumption (Rp = Rm = 45%).

rithm in most cases and its result has greater improvement
compared to the result of the FFD algorithm. According
to Fig. 3, when Rp = Rm = 45%, the MCACS algo-
rithm experiences a greater improvement of performance.
Compared to the single-population VMPACS algorithm and
FFD algorithm, it has lower energy consumption and resource
wastage. Compared to the situation when Rp = Rm = 25%,
its optimization degree is higher. It is known that the CPU

FIGURE 5. Comparison of resource wastage (Rp = Rm = 45%).

TABLE 2. Comparison of energy consumption and resource wastage
(Rp = Rm = 25%).

TABLE 3. Comparison of energy consumption and resource wastage
(Rp = Rm = 45%).

use ratio and memory use ratio are distributed at [0, 50%) and
[0, 90%) uniformly, respectively, when Rp and Rm are 25%
and 45%. Thus, the MCACS algorithm has advantages for
handling the deployment problem of virtual machines with
high resource demand (Tables 2 and 3).
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According to the data analysis above, the optimization
effect obtained by the multi-population ant colony algo-
rithm is more obvious and superior compared to that of the
single-population ant colony algorithm. This indicates that
the coordination and cooperation among multi-population
ant colonies through information entropy can solve the con-
vergence problem of the algorithm better and meanwhile
expand the search space and improve the diversity of solu-
tions searched for.

IV. CONCLUSION
With the current constant development of cloud computing
technology, how to deploy virtual machines on a physical
server efficiently has become an important issue. This paper
proposes a multi-population ant colony algorithm to solve
the deployment problem of virtual machines. With resource
wastage and energy consumption as optimization objects,
this algorithm uses multiple ant colonies for the solution and
determines strategies for information exchange among ant
colonies according to the information entropy of each popula-
tion to guarantee the balance of its convergence and diversity.
The simulation results show that this algorithm has better per-
formance than the single-population ant colony algorithm and
can reduce resource wastage and energy consumption effec-
tively for high-demand virtual machine deployment. Due to
the current development of data centers and the constant
expansion of their size, future research will further consider
the execution efficiency of the algorithm, the reduction of
execution time of the algorithm effectively, load balancing
and network bandwidth so that it can further adapt to the
current technological development.
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