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ABSTRACT This paper investigates the effects of imperfect texture shape and dimensional uncertainty on
the surface texture performance (load-carrying capacity and coefficient of friction) by adopting numerical
experiments, statistical models, and artificial neural network. The imperfect texture shape is regarded as a
polygon, and the uncertain geometrical dimensions include the dimple diameter, the area density, and the
dimple depth. Results reveal that the most critical geometric parameters that influence the friction force are
manufacturing errors associated with the texture’s area density. With respect to the load-carrying capacity
and the coefficient of friction, manufacturing errors associated with the dimple diameter are more influential
than those of the dimple depth and the area density. It is shown that insofar as the optimization of surface
texture performance is concerned, the imperfect texture shape and the dimensional uncertainty associated
with the laser texturing with three-sigma performance level are harmless, but manufacturing errors with the
one-sigma level can dramatically reduce the load-carrying capacity and increase the coefficient of friction.
Specifically, when the dimensions of the area density, the dimple depth, and the dimple diameter are set as
30%, 5.5 µm, and 100 µm, respectively, the imperfect texture shape at the three-sigma level can achieve
higher performance than lower levels of control of machining precision.

INDEX TERMS Dimensional uncertainty, imperfect texture shape, parameter optimization, statistical
simulation, surface texture performance.

I. INTRODUCTION
Surface texturing and its influence on tribological system
performance has been the subject of intensive research in
recent years due to its widespread application in mechanical
components. Although the performance of textured surfaces
is primarily affected by the texture’s geometrical parameters,
the influence of the ‘‘texture quality’’ cannot be neglected.
While various fabrication technologies are available to handle
the machining requirements of surface texturing, the quality
of the individual textures remains to be difficult to regulate.
Hence, the actual texture shape and/or the size may deviate
from the design value due to the manufacturing errors caus-
ing, for example, rough edges around the texture’s perime-
ter due to the limitation of fabrication techniques [1], [2].
As described in what follows, both the imperfect texture
shape and the uncertainty on the dimensional accuracy can
influence the surface texture performance.

A. SURFACE TEXTURE DIMENSIONS
Numerous studies have focused on the common shapes used
for texturing such as circle, hexagon, and square [3]. Studies
on other shapes such as spherical, ellipsoidal, circular, ellip-
tical, triangular, and chevron-shaped dimples have also been
reported with interesting findings that the ellipsoidal shape
and chevron-shape can generate the highest load-carrying
capacity among these shapes [4], [5]. By means of adopt-
ing model-based virtual texturing and numerical simulations,
it has been shown that the texture’s bottom shapes involving
a micro-wedge and a micro-step bearing tend to yield thicker
lubrication films [6]. It has been shown that a shallow depth
and a larger diameter dimples tend to yield the larger load-
carrying capacity [7].

Another critical parameter is the area density of the
dimple for hydrodynamic pressure generation [7]. Theo-
retical models based on hydrodynamic principles usually
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suggest a relatively high area-density to maximize the load-
carrying capacity [8]. However, according to the study of
Galda et al. [9], an area density smaller than 20% is beneficial
for lubrication regime transitions. Ibatan et al. [10] reviewed
several common dimensions of surface texture, including cir-
cle, triangle, flat bottom, and curved bottom, and their results
show that optimized area density depends on the dimple’s
shape.

In most previous studies, the effect of each geometric
parameter is investigated separately while other parameters
are kept constant. However, these parameters are inter-related
and the understanding the nature of their collective effects is
crucial. A series of experimental tests that use an L16(4

∧5)

orthogonal array —a black box technique used in statistics
testing— are conducted to explore the optimal combination
of dimple diameter (50-300 µm), depth (5-20 µm), and area
density (5-20%). The results of the study show that with
optimum dimple parameters the friction can be reduced up
to 77.6% compared to that of untextured surfaces. Specif-
ically, the reported range of the optimum dimple diameter
is 100-200µm, dimple depth is 5-10µm, and the area density
is 5% [11].

FIGURE 1. Raised features around the pockets that originates from the
ejected molten material. (a) Optical micrograph. (b) Enlarged view of one
dimple.

B. IMPERFECT TEXTURE SHAPE AND
DIMENSIONAL UNCERTAINTY
Laser surface texturing (LST) is considered to be one of
the most effective and efficient methods to generate textures
and improve tribological performances. Nevertheless, LST
has limitations. The laser ablation mechanism often leads to
the formation of raised features around the pockets, which
originates from the ejected molten material. Examples from
prior research are shown in Fig. 1. The dimple’s shape is
imperfect, although it is not obvious when the magnification
is inadequate. These lateral rims are normally hard due to the
microstructural changes caused by the process and can cause
severe abrasive wear of the counter surface [1]. To reduce
this harmful effect, laser polishing is used to smoothen the
roughness of the textured surfaces after the engraving of the
surface [2], [12], [13]. For instance, the dimple is first created
by a high-fluence laser ablation step and then is smoothed by
a low-fluence laser ablation step. The two-step laser surface
texturing process can produce dimples with very smooth

surfaces, and improved textures quality [14]. The raised fea-
tures around the pockets also can be found in the topographic
image of a spherical dimple (diameter: 1000 µm, depth:
500 µm) in the research reported by Vincent et al. [2] and
the 2D scanning electron microscope image of a cylindrical
dimple (diameter: 100 µm, depth: 4 µm) in research of
Amanov et al. [15].
The dimensional uncertainty associated with surface

textures is another problem inherent to nearly all man-
ufacturing processes. Various statistical methods have
been proposed to characterize dimensional uncertainties.
Simunovic et al. [16] developed a statistical regression model
to analysis the influence of face milling cutting parameters
on the surface roughness of aluminum alloy. Puh et al. [17]
applied the Grey-Based Taguchi method to investigate the
multi-objective optimization of turning process of an opti-
mal parametric combination to provide the minimum surface
roughness. Prasad and Babu [18] utilized the analysis of
variance (ANOVA) to evaluate the significance of parameters
on overall quality characteristics of the cutting process in an
uncertain environment [18].

C. GENERAL RESEARCH QUESTIONS
The existing literature on the analyses of imperfect texture
shape and dimensional uncertainty has two drawbacks. First,
most of the available studies base their analyses on mul-
tiple fixed levels of the uncertainty, or mixed uncertainty
from multiple sources, or one-variable-at-a-time technique.
These techniques fail to consider the probability of each
level and the interaction among variables. Second, of the
few available studies that have investigated the influence
of imperfect shape, none considered the dimensional uncer-
tainty at the same time. To gain insight into inherent manu-
facturing errors, both of these effects should be considered
simultaneously.

In this study, a general methodology of quantifying uncer-
tainty and imperfect shape from multiple sources is pro-
posed. First, the authors explore the dimensional uncertainty
(dimple diameter, area density, and dimple depth) under the
condition of imperfect circular shape and then investigate
their influence on the surface texture performance (friction
force, load-carrying capacity, and coefficient of friction).
Second, statistic models are proposed and evaluated, and the
key geometric parameter and the optimal performance are
identified. The control of machining precision is investigated,
and practical implications are proposed.

II. PROBLEM FORMULATION
A. COMPUTATIONAL DOMAIN AND DESIGN VARIABLES
The schematic of a typical textured surface is shown in Fig. 2.
The textured surface is stationary during operation, and an
upper specimen with a smooth surface is sliding relative to it
with a velocity (U ), as shown in Fig. 2c. For this given situ-
ation, the cavitation pressure, lubricant viscosity, and sliding
velocity are fixed. Thermal effects are ignored.
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FIGURE 2. Schematic of a textured surface (a) distribution of textures;
(b) typical unit cell; (c) side view of a unit cell.

FIGURE 3. Characterization of imperfect texture shape (circular).

The textures are considered as micro dimples uniformly
distributed in a square layout on the surface. To simplify the
simulation, a single unit cell is used as the computational
domain.

The dimple border is rough because of the uncertainly
manufacturing process, and the texture shape is considered
as imperfect circle (as shown in Fig. 2b). Prediction with
the present model is undertaken by dividing the texture into
12 sections evenly distributed in the circumferential direction
with a spacing of 30 degrees (as shown in Fig. 3). Therefore,
the design variables for a texture shape are the radii (R1,
R2, R3, . . ., and R12); the diameters (d1, d2, d3, . . ., and
d12) are corresponding to these radii. Three performance
parameters—friction force, load-carrying capacity, and coef-
ficient of friction— on single unit cell are investigated at the
same time. The optimal performance corresponds to mini-
mum values of the friction force and the coefficient of fric-
tion, and the maximum value of the load-carrying capacity.

The film thickness equation has two regions, one within the
groove and the other outside the groove. Periodic boundary
conditions are applied in the sliding direction (X), and the
boundaries in the other direction (Y) are kept at ambient
pressure. Surfaces are assumed to be rigid, and the density (ρ)
and viscosity (µ) variations across the thin lubricant are
negligible. Under the typical thin-film lubrication assump-
tions, the equation governing the hydrodynamic pressure

distribution is the Reynolds equation. The half-Sommerfeld
cavitation boundary condition is applied in this study.
In accordance with prior research [19], [20], the Reynolds
equation can be solved based on the given film profile and
boundary conditions, and the friction force (F) and the load-
carrying capacity (W ) are non-dimensionalized by:

F̄ =
F
PaS
=

8F(∑n
i=1 (didi+1)+ d1dn

)
sin 2πn Pa

, (n = 12)

W̄ =
W
PaS
=

8W(∑n
i=1 (didi+1)+ d1dn

)
sin 2πn Pa

, (n = 12)

(1)

where F̄ and W̄ are the dimensionless friction force and load-
carrying capacity, Pa is the ambient pressure in the simula-
tion, and S is the area of the imperfect texture shape.

B. STATISTICAL PARAMETERS
In order to statistically interpret the texture dimensions and
corresponding performance, the parameter definitions are
introduced as follows:

x1 ∼= dimple diameter, d0
xd1, xd2, xd3, . . ., and xd12 ∼= dimple diameters, d1, d2,

d3, . . ., and d12, respectively
d(mean) ∼= average value of d1, d2,

d3, . . ., and d12
d(sd) ∼= standard deviation of d1, d2,

d3, . . ., and d12
x2 ∼= area density, Sp
x3 ∼= dimple depth, hg
ed1, ed2, ed3,. . ., and ed12 ∼= manufacturing errors of

Xd1, Xd2, Xd3, . . ., and Xd12,
respectively

ed(mean) ∼= average value of ed1, ed2,
ed3, . . ., and ed12

ed(sd) ∼= standard deviation of ed1,
ed2, ed3, . . ., and ed12

e2 ∼= manufacturing errors of X2
e3 ∼= manufacturing errors of X3
y1 ∼= friction force, F
y2 ∼= load-carrying capacity,W
y3 ∼= coefficient of friction, f
1y1 ∼= variation of F
1y2 ∼= variation ofW
1y3 ∼= variation of f
xRE ∼= roundness error of

the texture shape
xRSE ∼= roundness standard error

of the texture shape

Roundness error is usually calculated using the least square
method which gives a least square circle (LSC) by sepa-
rating the sum of total areas of the inside and outside it
in equal amounts. Roundness error is the difference value
between the maximum andminimum distance from this LSC.
Since the manufacturing errors of diameters obey normal
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distribution, LSC is evaluated by the basic circle from design
in this research, and roundness error of the imperfect circle is
estimated by following equation.

xRE = max (d1 − d0), (d2 − d0), . . . , (d12 − d0)}

− min (d1 − d0), (d2 − d0), . . . , (d12 − d0)} (2)

Roundness error only captures the extreme value of cir-
cumference’s variation and it is likely to lose some infor-
mation. To measure the variation more comprehensively,
standard errors between the real values of diameters and the
design values are calculated using following equation.

xRSE =
∑12

i=1
(di − d0)2 (3)

It is shown that ed(sd) is identical with xRSE . Therefore,
ed(mean) can be used tomeasure themanufacturing error of the
dimple diameter, and ed(sd) and xRE can be used to measure
the influence of imperfect texture shape.

It follows, therefore, that the goal of the research is
to investigate how the texture dimensions (i.e., xd1, xd2,
xd3, . . ., xd12, x2, and x3) and their associated manufacturing
errors (i.e., ed1, ed2, ed3, . . ., ed12, e2, and e3) influence the
dependent variables (i.e., 1y1, 1y2, and 1y3) and to further
reflect the influence through statistic models. In the analyses
that follows, the working conditions are fixed. Minimum film
thickness (h0) is 5 µm, lubricant viscosity (µ) is 0.38 Pa · s,
sliding velocity (U ) is 1 m/s, and ambient pressure (Pa) and
cavitation pressure (Pc) are 100 kPa. The range for textured
geometry in the simulations is 100-2000 µm for the dimple
diameter, 5-30% for the area density, and 1-10 µm for the
dimple depth.

C. ASSUMPTIONS
There are three assumptions in accordance to the previously
reported research [19]. First, the three geometrical parame-
ters (dimple diameter, area density, and dimple depth) follow
uniform distribution, and their manufacturing errors follow
normal distribution, since geometrical parameters are usually
determined by the designers, and manufacturing errors are
random in manufacturing processes. Second, the laser textur-
ing reaches the three-sigma performance level since the three-
sigma level is a common quality metric in manufacturing and
is widely used to set the control limit. Third, the relative
tolerance band of ed(mean) is ±10 µm, which differs from
prior research. The relative tolerance band of e2 and e3 is
±1%, and all the manufacturing errors are independent. The
tolerance band of ed(mean) is set as ±10 µm according to the
characteristics of the manufacturing method that the diameter
errors caused by laser texturing is likely to be a constant value
because that it results from location errors. The tolerance
band of e2 and e3 is set to be relative (e2 is ±1% and e3
is±1%). Those larger than 1% of the designed size or smaller
than 1% of the designed size are considered to be defective.
That is, e2 and e3 within the range from 99% to 101% of the
average.

D. STATISTICAL MODELS AND NUMERICAL EXPERIMENT
To give a general overview of the relationship between the
texture performance and texture dimensions, regression mod-
els that do not include the variables of manufacturing errors
are first explored. Linear models, quadratic models, cubic
models, logarithmic models, and logarithmic cubic mod-
els are examined. The data that are used to estimate the
parameters in regression models are generated by numerical
experiment that solve the Reynolds equation to generate data
of texture dimensions and associated manufacturing errors.
R programs and Matlab R©programs are used to numerically
generate the necessary data, conduct the numerical exper-
iment, and build the statistical models. Finally, according
to the fitting results of models, the authors further add the
manufacturing errors of texture dimensions into the mod-
els that have high validity. The numerical experiment and
the statistical models are adopted from prior research [19].
In view of the large number of variables and the complex
relationship between them, the traditional linear and non-
linear statistical models may be difficult to fit the data well.
Back-propagation (BP) neural network, a machine learning
method to fit and predict data with high accuracy, is used
for this purpose. It is self-adaptive in a way that simulative
neurons in the network organize themselves continuously
according to the feedback of the output and the whole net-
work. Monolayer BP neural network is adopted after building
traditional statistical models.

III. RESULTS OF STATISTICAL MODELS
A. MODEL WITH SINGLE FACTOR
The numerical experiments data are analyzed in three steps.
The first section assumes that performance of surface textures
is only influenced by a single factor at a time, and the inter-
action between any two factors is neglected. The next section
assumes that performance of surface textures is influenced
by all factors, and their interactions are considered. Third,
monolayer BP neural network with different parameters is
tested, and one suitable model is adopted for prediction.

Each manufacturing error (i.e., ed1, ed2, ed3, . . ., ed12,
e2, and e3) is divided into 3 levels (negative, neutral, and
positive) by quartiles. The data from numerical experiment
is preliminarily analyzed through multivariate analysis of
variance (MANOVA). As shown in Table 1, all manufacturing
errors significantly influence the load-carrying capacity and
the friction coefficient. However, only Sp and its manufac-
turing error have significant influence on the friction force.
All manufacturing errors of d1, d2, d3, . . ., and d12 affect the
surface texture performance in the same way and have equiv-
alent influence on all performance dimensions since they are
generated by the samemechanism. Therefore, ed(mean) is used
to measure the general influence of manufacturing errors of
the dimple diameters (ed1, ed2, ed3, . . ., and ed12).
Fig. 4 shows the influence of the manufacturing errors

due to texture dimensions on the average variations of
the friction force, the load-carrying capacity, and the
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TABLE 1. The statistical parameters from MANOVA about texture dimensions and associated manufacturing errors on texture performance.

FIGURE 4. The influence of manufacturing errors on (a) variations of the friction force (1y1), (b), (c), and (d) variations of the load-carrying
capacity (1y2), and (e), (f), and (g) variations of the friction coefficient (1y3).

friction coefficient. 1y1 is only significantly affected by e2,
and it decreases as e2 is increased (as shown in Fig. 4a).
As shown in Fig. 4b, 4c, and 4d,1y2 is significantly affected
by all manufacturing errors.

No matter which direction of the variations of ed(mean), e2,
and e3 (i.e., negative, neutral, or positive), the mean value
of 1y2 is nearly positive. The performance of load-carrying
capacity is increased when manufacturing errors occur. Dif-
ferences of performance between different levels of e2 are
obvious. However, it is not clear whether the change of the

performance caused by manufacturing errors is significant,
and this is further elaborated in the section entitled ‘‘Discus-
sion’’. Furthermore, variations around the negative valu e of
e2 and e3 result in higher load-carrying capacity compared
with neutral variations and positive variations. As to1y3, it is
nearly generally negative no matter the value of the variations
of ed(mean), e2, and e3 (as shown in Fig. 4e, 4f, and 4g). There
is negative correlation between 1y3 and ed(mean)/e2, which
reveals that the friction coefficient is lower when the ed(mean)
and e2 are higher.
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FIGURE 5. Statistical parameters of st.F, R2, and RSE in models of (a) 1y1, (b) 1y2, and (c) 1y3 (R2 = Adjusted R-Squared, which is a modified
version of R-squared that has been adjusted for the number of predictors in the model. R-squared refers to how close the data are to the fitted
regression line. The large R2, the better is the result. RSE = Residual Standard Error, which is an estimate of this standard deviation, and
substantially expresses the variability in the dependent variable ‘‘unexplained’’ by the model. The small RSE, the better is the result).

B. MODELS WITH MULTIPLE FACTORS
AND INTERACTIONS
The influence of all factors and their interactions are consid-
ered in this section. The detailed procedure to derive models
is mentioned in above section. Five models with multiple
factors are proposed, and these models have comparative
power to explain dependent variables. To explore the most
appropriate models, statistical parameters of st.F (standard-
ized F-value), R2, and RSE are compared (as shown in Fig. 5).
With a large value of st.F and R2 and a small value of RSE,
the models become more powerful. In order to reduce the
complexity and build a simple and comprehensible model,
the cubic model (i.e., the model No.2 in Fig. 5) is chosen for
fitting 1y1, and the quadratic model (i.e., the model No.1 in
Fig. 5) is chosen for fitting 1y2 and 1y3.
Above models which include manufacturing errors of d1,

d2, d3, . . ., and d12 have equivalent impact on the per-
formance for the reason of predicting 1y1,1y2, and 1y3
more accurately and completely. In order to improve models’
effectiveness and efficiency, the number of their independent
variables should be reduced, so d1, d2, d3, . . ., and d12
are described by d(mean) and d(sd). In addition, the models
of y1, y2, and y3 are analyzed for purpose of comparing
the difference between them and the models based on their
variations.

As given in Table 2, models of y1, y2, and y3 have better
performance than models of 1y1,1y2, and 1y3. However,
the predictions of 1y1,1y2, and 1y3 conform with the aims
of this research better; models of1y1,1y2, and1y3 are more
suitable for measuring the variations. The equations of these
final models are described as follows:

The friction force:
ln (|1y1|) =−1.4456− 41.0295× Sp+1.2441× 103 × e2

+ 70.6939× Sp × Sp+6.8074× 106 × e2×e2
− 1.4691× 104 × Sp × e2
+ 6.6636× 105 × Sp × hg

TABLE 2. Models of different expressions of variables.

+ 2.4173× 109 × e2 × e2 × e2
− 7.3389× 107 × Sp × Sp × e2 × e2
− 1.4164× 1011 × Sp × Sp × hg × hg
− 5.2914× 1019 × e2 × e2 × e3 × e3 (4)

The load-carrying capacity:

ln (|1y2|) = −4.0711+ 2.3083× 103 × d0 − 8.8529× Sp
+ 2.8337× 105 × hg
+ 2.5964× 105 × ed(mean)
+ 3.1724× 105 × d0 × d0
− 2.4387× 1010 × hg × hg
+ 3.7820× 1010 × ed(mean) × ed(mean)
+ 2.2778× 1010 × ed(sd) × ed(sd)
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FIGURE 6. Accuracy of the models that built based on BP neural network with different parameters.

+ 1.5692× 105 × e2 × e2
− 2.4202× 108 × d0 × ed(mean)
− 3.3317× 108 × d0 × ed(sd)
− 1.7203× 103 × Sp × e2
+ 3.9812× 109 × e2 × e3 (5)

The coefficient of friction:

ln (|1y3|) =−4.2506−5.9680× 103 × d0 + 13.1233× Sp
− 2.6087× 105 × hg
+ 2.8389× 105 × ed(mean)
+ 1.7777× 105 × ed(sd) + 4.6704× 102 × e2
+ 2.3152× 106 × d0 × d0−43.1271×Sp×Sp
+ 2.3073× 1010 × hg × hg
+ 4.2851× 1010 × ed(mean) × ed(mean)
− 1.6718× 105 × e2 × e2
+ 1.1361× 1014 × e3 × e3
− 2.6713× 108 × d0 × ed(mean)
− 2.1064× 108 × d0 × ed(sd)
− 1.0300× 103 × Sp × e2
− 2.5485× 109 × e2 × e3 (6)

The models can explain above 82.51%, 53.57%, and 80.01%
of variance independent variables for the friction force,
the load-carrying capacity, and the friction coefficient,
respectively.

C. MODELS WITH MONOLAYER BP NEURAL NETWORK
BP neural network is used to fit the data for improving the
accuracy of models. The approach of machine learning has
high goodness of fit but may cost more operation time and
result in the overfitting problem. To choose the appropriate
models, models’ parameters are tested. The number of units
in the hidden layer of neural networks is set from 5 to 100, and
the parameter for weight decay is set as 0.01, 0.05, and 0.1.
The data from numerical experiment are split into training
data set (70%) and validation data set (30%) by random

sampling method. The accuracy of prediction of the training
data is shown in Fig. 6.

In general, models’ accuracy improved as the decay
decreased and the size of hidden layer increased. The models
are stable when the size of hidden layer is up to about 50.
Therefore, the decay is set as 0.01 and the size of hidden
layer is set as 60 in the models with back-propagation neural
network.

The goodness of fit of those models is 99.99% for 1y1,
99.27% for 1y2, and 99.91% for 1y3 in terms of training
data. In validation data, the goodness of fit is 99.73% for
1y1, 97.51% for 1y2, and 96.52% for 1y3. The accuracy
is decrease due to the overfitting problem, but it is still
higher than 96.50%, which is acceptable. The real value and
predicted value in the whole dataset are very close, as shown
in Fig. 7.

IV. DISCUSSION
A. CRITICAL TEXTURE DIMENSIONS
In these models, the T value of each independent variable is
attained. It represents the influence degree of each indepen-
dent variable on the friction force, the load-carrying capacity,
and the coefficient of friction. The roundness error of texture
shape is considered, and these models are rerun. Based on the
T value, the importance of each independent variable can be
visualized in Fig. 8.

A number of factors have significant influence on the
variations of the friction force, the load-carrying capacity,
and the friction coefficient. For the friction force, the most
influential factor is manufacturing errors of area density. For
the load-carrying capacity, the most influential factors are
manufacturing errors of dimple diameter, and the shape (rep-
resented by ed(sd) and roundness). For the friction coeffi-
cient, the manufacturing errors of dimple diameter are more
influential than that of the dimple depth and the area den-
sity. The imperfect shape has a lower level of impact com-
pared with manufacturing errors of dimple diameter but has
the similar impact with the manufacturing errors of area
density.
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FIGURE 7. The actual value and the predicted value for each performance parameter.

FIGURE 8. The importance of each independent variable in the cubic model.

B. VARIATIONS OF SURFACE TEXTURE PERFORMANCE
The manufacturing errors have greater influence in models
of 1y1,1y2, and 1y3 compared with models of y1, y2, and
y3. One explanation is that 1y1,1y2, and 1y3 directly rep-
resent the influence of manufacturing errors on variations of
surface texture performance. However, it is not clear whether
1y1,1y2, and 1y3 are obvious based on y1, y2, and y3,
so rates of them are calculated and are shown in Fig. 9.

Generally, the variation of the friction force is less than
that of the load-carrying capacity and the friction coefficient,
which means that the dimensional uncertainty and imperfect
texture shape only have little influence on friction force. As to
the load-carrying capacity and the friction coefficient, range
of variations is from−8% to 8%, and there are a large number
of outliers. About two fourths of the rates are in the range
of 0% to 1% (for 1y2/y2) or −1% to 0% (for 1y3/y3). The
manufacturing errors lead to the increase in the load-carrying
capacity and the decrease in the friction coefficient about
0.3% and 0.6%on average. Themanufacturing errors slightly,
but insignificantly, improve the performance of surface
textures.

C. OPTIMAL PERFORMANCE
The analysis of critical texture dimensions reveals that
manufacturing errors usually improve the surface texture

FIGURE 9. Boxplot of rates of 1y1, 1y2, and 1y3 and y1, y2, and y3.

performance at the three-sigma level. Therefore, in order to
obtain the optimum texture performance, the variations of
the friction force and the friction coefficient that caused by
manufacturing errors should be controlled as negative values,
and those of the load-carrying capacity should be controlled
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TABLE 3. Optimized values and corresponding parameters.

as large positive values. A generalized simulated annealing
algorithm, from ‘‘GenSA’’ package in R [21], is used to
calculate the minimum value of 1y1, 1y2, and 1y3. The
results are shown in Table 3.

Regarding the manufacturing errors of texture dimensions,
1y2 calls for a large value of ed(mean) and a moderate value
of ed(sd) and roundness. This means that the dimple shape
should be controlled as a rough circle, and size of the cir-
cle is likely to be manufactured as large as possible. The
result is consistent to the demand of the maximum value
of d0 [19]. As to1y3, it requires a moderate value of ed(mean).
The optimal values of ed(sd) and roundness are large, so the
dimple shape should also be imperfect. Besides, it is found
that 1y2 and 1y3 call for minimum value of e2. It should
be emphasized that the predictions, which adopt the hybrid
method of BP neural network and genetic algorithm, are
good at predicting optimal values of dependent variables
(i.e., surface performance) instead of independent vari-
ables (i.e., the shape of textures). The reason is that a subtle
change in nerve cells would result in great variation in the
whole BP neutral network because of back-adjusting. There-
fore, stable results are given after making multiple runs of the
programs, and only the same trends of optimal parameters are
discussed.

In a prior research [19], a large dimple diameter (around
1883 µm) and a moderate dimple depth (5.5-6.5 µm) was
set in order to obtain high performance in terms of load-
carrying capacity and friction coefficient. Since the texture
dimensions have the main influence on texture performance
and their manufacturing errors only have limited influence,
the optimized texture dimensions in reference [19] are recom-
mended. Then, the corresponding values the textures’ manu-
facturing errors are given in Table 3.

TABLE 4. Differences between y1, y2, y3 with manufacturing errors and
y1, y2, y3 without manufacturing errors.

D. CONTROL OF MACHINING PRECISION
The manufacturing error at the three-sigma level is a com-
mon control of machining precision, but it only has a subtle
impact on performance. To analyze the causes, machining
precision is reset at the one-sigma level, and the statistical
analysis is rerun. The influence of manufacturing errors on
the surface texture performance are compared with both the
three-sigma level as well as with the one-sigma level. The
differences between y1, y2, y3 with manufacturing errors and
y1, y2, y3 without manufacturing errors are shown in Table 4.
The results show that the differences in the three-sigma
level are not significant, which means that the improvement
of surface texture performance is not noticeable. However,
the differences between performance with e and without e
are significant when the manufacturing errors are at the one-
sigma level. As shown in Fig. 10, when the laser texturing
only reaches one-sigma performance level, the value of load-
carrying capacity decreases, and the value of friction coeffi-
cient increases dramatically, which means that the textured
performance significantly declines. Therefore, the control of
machining precision at the one-sigma level is insufficient.
Machining precision should be controlled at the three-sigma
level to maintain the texture performance.

Further insight can be gained by performing an in-depth
analysis of the influence of each kind ofmanufacturing errors.
For this purpose, two errors are controlled when one error is
tested in the condition of the three-sigma level. It is found that
more than half of resulting errors contribute to a significant
change in surface performance. For example, when d0 and Sp
are fixed at 100 µm and 30% respectively, the manufacturing
error of hg around 1 µm and 5.5 µm results in a dramatic
change in friction force (t = 2.904, p = 0.004; t = 3.510,
p < 0.001). But at approximately 10 µm, no obvious change
is apparent (t = 1.006, p = 0.316). However, all kinds of
manufacturing errors in a real manufacturing environment are
likely to occur simultaneously, so the mixed effect could be
more meaningful.
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FIGURE 10. Comparisons between performances with one-sigma and three-sigma manufacturing errors (∗the difference is significant).

FIGURE 11. The imperfect texture shape controlled by machining precision at the one-sigma level (a), the two-sigma level (b),
and the three-sigma level(c).

E. IN-DEPTH ANALYSIS ON IMPERFECT TEXTURE SHAPE
Among those manufacturing errors, imperfect texture shape
caused by the dimple diameter’s errors is a very difficult
problem to tackled using traditional simulation methods.
To further analyze its impact on the texture performance,
the texture shape with different machining precision is inves-
tigated. The area density and the dimple’s depth are fixed
at 30% and 5.5 µm respectively, and their manufacturing
errors are ignored. The dimple’s diameter is set as 100 µm.
As shown in Fig. 11, texture shape at the one-sigma level is
obviously irregular compared to that at the two-sigma level
and the three-sigma level. With the increase of machining
precision, the average diameter is nearly unchanged, but the
variance of diameter is decreased (SD of the diameter, one-
sigma level: 9.804; two-sigma level: 5.119; three-sigma level:
3.258) and the texture shape become rounder (roundness
of the diameter, one-sigma level: 32.994; two-sigma level:
17.015; three-sigma level: 10.678). Fig. 11 shows that the
numerical simulations can generally capture the imperfect
texture shape.

The influence of an imperfect texture shape at one-sigma,
two-sigma, and three-sigma machining precision on surface
texture performance is calculated using the models with BP

neural network (as shown in Fig. 12). With the increase of
machining precision, variations of the friction force, the load-
carrying capacity, and the friction coefficient are decreased.
All of them are positive value, which means that the imper-
fect texture shape improves the performance of friction but
decreases the performance of carrying capacity. For the load-
carrying capacity, it seems that the performance among dif-
ferent machining precision is not remarkable according to
the similar values of the three levels and the large error bars.
However, for the friction force, the performance dramatically
decreases at the two-sigma level and the three-sigma level.
The texture shape should be controlled at least the two-sigma
level and preferably at the three-sigma level to gain better
performance in terms of friction coefficient.

F. PRACTICAL IMPLICATIONS
The control of texture shape and geometry dimensions
can be undemanding once it reaches three-sigma level.
Although certain novel texture shapes (e.g., chevron-shape)
have significantly higher surface performance than circular
textures [5], the circular dimple is still commonly used in
LST. However, the dimple shape is not easily to be manu-
factured as a perfect shape, such as perfect circle, because
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FIGURE 12. The influence of imperfect texture shape with different machining precision on the performance.

the manufacturing errors of dimple diameters probably have
impact on the dimple shape. It is found that the flaw in texture
shape and manufacturing errors of geometry dimension do
not have adverse impact on performance at the three-sigma
level. In contrast, the imperfect texture shape and dimension
uncertainly at the one-sigma level can dispel the texture’s
positive effects.

In addition, to better represent the LST dimples generated
by high pulses as shown in Fig. 2, the imperfect texture shape
needs to be divided into more sections. According to recent
research, very short pulses (e.g., from femtosecond lasers)
are used in LST to prevent the problem of lateral rims and
surface roughness. Lateral rims around the dimple edge is a
serious problem because they are hard to remove. In order
to increase the performance, Amanov et al. [15] combined
laser micropolishing and laser ablation for surface texturing
to smooth the ablated dimple bottom surface consistently, and
Perry et al. [22], [23] reduced the average surface rough-
ness of 5 µm wavelength line features from 0.112 µm to
0.015 µm. However, this is time-consuming and expensive
for reprocessing the semifinished product since laser surface
texturing process is already finished. Their studies focused on
improving roughness of dimple bottom surface, which means
that the benefit of their studies probably is more remarkable
for shallow dimples. In terms of sufficiently deep dimples, the
dimple bottom roughness have a relatively little effect [15],
and the roughness of dimple edge and broadside may have
more effect. Adopting the pulsed laser micropolishing to
reduce roughness should be further considered in practical
implications, and the numerical experiment and statistical
analysis in this research might provide an approach to esti-
mate the roughness.

Another important factor is the implementation of the
mass-conservative algorithm to model the cavitation effect
within the dimples. Cavitation in dimples is shown to
have significant influence on the performance of near-
parallel textured contacts [24]. Using the Jakobsson–
Floberg–Olsson (JFO) model and its modifications which are
widely used cavitation model can conserve mass continuity
and improve numerical instability, but it increases the model

complexity [25]–[28]. In view of cavitation effects and the
real environment, surface texture performance might have
other variations, thus implementing real experiment to vali-
date the results may be necessary.

In general, to enhance the texture performance, practition-
ers should first know the most important performance param-
eter and then determine the value of the dimple diameter,
the area density, and the dimple depth according to the pri-
mary stage of the research [19]. The control of manufacturing
errors from laser texturing at three-sigma performance level
is adequate, and the machining precision of one sigma is not
recommended.

V. CONCLUSIONS
This research explores the performance of surface textures
with imperfect texture shape and dimensional uncertainty
based on statistical models. A general method for quantifying
uncertainty of texture shape and dimensions is developed.
There are three major findings in this research:

First, themodels with back propagation neural network and
genetic algorithm can explain and predict the performance of
surface textures with imperfect texture shape and dimensional
uncertainty. The models could explain 99.73%, 97.51%, and
96.52% of variations in the friction force, the load-carrying
capacity, and the coefficient of friction, respectively.

Second, the statistical models reveal that the most influ-
ential factor of the friction force is the manufacturing errors
of area density. For the load-carrying capacity and the coeffi-
cient of friction, the most influential uncertainty is manufac-
turing errors associated with the dimple diameter, resulting in
imperfect shapes.

Third, manufacturing errors at the three-sigma level
slightly increase the performance of surface textures about
0.5% on average, which is not significant. However,
the laser texturing that reaches one-sigma performance
level can dramatically reduce the load-carrying capacity
and increase the coefficient of friction. Specifically, when
other dimensions are set as 30% for the area density,
5.5 µm for the dimple’s depth, and 100 µm for the dimple’s
diameter, the imperfect texture shape at the three-sigma level

VOLUME 5, 2017 27033



F. Mo et al.: Statistical Analysis of the Influence of Imperfect Texture Shape and Dimensional Uncertainty

can yield better performance than lower levels of control of
machining precision. In order to obtain the optimized value
of surface texture performance, manufacturing errors at the
one-sigma level should be avoided.
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