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ABSTRACT The small cells have been equipped with caching and multicast capabilities to save energy
and ease backhaul burden. However, given the increasing diversity of user association in heterogeneous
networks, traditional schemes may fail to exploit the energy-saving potential of caching and multicast. In this
paper, we propose the model to minimize total power consumption by jointly optimizing the user association
and cache deployment. The formulated joint optimization problem is decomposed and reformulated as a
NP-complete set partition problem. Motivated by the idea of the tactile networks, the devices can find the
candidate user grouping based on its own utility. The utility function is judiciously designed to reduce
the searching space without compromising optimality. Then, a heuristic caching algorithm is proposed
by rigorously deriving the upper and lower bounds of cache placement. Simulation results show that
our proposed scheme outperforms the other existing multicast and caching algorithms in terms of power
consumption by up to 28%, while keeping the load among base stations balanced.

INDEX TERMS Heterogeneous networks, multicast transmission, cooperative caching, set partition
problem.

I. INTRODUCTION
With the ever-increasing smart mobile devices, the needs for
emerging applications and services are exploding, warning a
sharp increase in mobile data traffic [1]. Dense deployment
of small base stations (SBSs) is a key approach to support the
unprecedented growth of mobile data traffic [2]–[4]. How-
ever it exerts huge pressure on backhaul links and increases
energy consumption on the wireless network side. Enabling
the fifth generation of mobile technology (5G), approaches
to alleviating the backhaul burden and achieving green com-
munications are necessary but thorny. In addition, efficient
approaches to manipulating burst flow generated in the case
of disaster recovery environment or live sport matches are
also in active demand. Fortunately, the central features of the
ever-increasing content demand provide further chances to
handle the problems above.

The first feature of the traffic demand is redundant [5],
i.e., majority of the requests are generated for only a small
number of popular services. The repeated requests for the
same contents and the dense deployment of SBSs both will
exert huge pressure on backhaul links. To alleviate the bur-
den of backhaul, endowed with caching in the SBSs is a

promising approach [5]. By storing possibly reusable con-
tents in advance, the burden of wireless backhaul can be
significantly reduced because of the proactive assist of SBSs
which cache the required content. However, as pointed in [6],
the most popular contents should be given a high priority
while caching when BSs are sparsely deployed. While the
BSs are densely deployed, the design of caching strategy is
challenging.

The second feature of the traffic demand is group-
oriented [7]. Plenty of group-oriented applications are emerg-
ing, such as one to many files transfer, military group action
in battlefield [7] and Samsung’s Group Play service [8].
Besides, requests for live sport matches and some new
released videos might also be generated simultaneously [9].
However, the simultaneous requests will lead to the network
congestion especially on limited wireless capacity. To relieve
the ‘‘on air’’ congestion, enabling multicasting at Base Sta-
tions(BSs) is considered as an effective approach to serve
requests for the same content occurring simultaneously or in
a time-limited window.

Though the two techniquesmentioned above seem to target
for different directions, they can be integrated seamlessly
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to improve the performance of wireless network. Especially
with the ever-growing energy consumption due to the steep
increase of service demand, the development of green 5G net-
works has become a mainstream concern. However, existing
works which jointly consider cache placement and multicast
scheduling have not considered the influence of cooperative
caching promoted by the dense deployment of SBSs. Spe-
cially, cooperative caching can enable more user traffic to be
offloaded to the low-power small cells to alleviate congestion
at high-power MBSs in heterogenous networks [10].

In this paper, we focus on the cooperative multicast
scheduling and cooperative caching placement in heteroge-
neous wireless networks. Due to the dense deployment of
SBSs in the next generation networks, increasing the diver-
sity of cached contents by cooperative caching can offload
more data traffic. In addition, much lower transmit power is
required when the user request is served by an SBS in the
vicinity compared with the power consumption required by
an MBS [11]. Hence, the potential power-saving gain can
be achieved by enabling the cooperative multicast scheduling
among neighboring SBSs to exploit all the possible multicast
opportunities. The main contributions of our paper are sum-
marized as follows:
• Facilitated with the densely deployed SBSs, we exploit
the possible multicast opportunities with cooperative
caching placement. Unlike [17]–[21], we take into con-
sideration collaboration at BSs both for the design
of multicast scheduling and caching placement. And
a joint cooperative caching and multicast scheduling
model minimizing the system power consumption is
proposed, in which more user requests can be offloaded
to the lower-power SBSs rather than served by the
higher-power MBS. Thus the system load can be better
balanced.

• The developed model is proved NP-hard. To make the
problem more tractable, we introduce the definitions of
user group and user cluster and then decompose the
problem into two subproblems: cooperative multicast
scheduling and cooperative caching placement.

• Furthermore, we present a distributive user associa-
tion algorithm for further utilizing the Set Partition
Problem (SPP) to solve the subproblem of cooper-
ative multicast scheduling. Together with the user
association, we propose the Multicast and Cooper-
ative Caching (MCC) algorithm to jointly optimize
the cache placement and minimize the system power
consumption.

The remainder of this paper is organized as follows:
Section II gives a brief review of the main researches on the
two techniques. In Section III, the formulation of the mul-
ticast scheduling and cooperative cache placement problem
is presented and the proposed MCC algorithm is introduced
in Section IV. In Section V, effectiveness of the proposed
approach is provided and followed by the conclusions of the
paper in Section VI. The key notations used throughout the
paper are summarized in Table 1.

TABLE 1. List of key notations.

II. RELATED WORK
Multicast and cache have been regarded as two promising
approaches to handle the problems brought by the explo-
sive growth of mobile data traffic. In this paper, we aim to
combine the advantages of cooperative multicast scheduling
and cooperative caching to further exploit the potential power
reduction. In the following, we discuss the related work,
emphasizing the main differences compared to our work.

A. RELATED WORK
The caching placement approaches have been studied
in [12]–[16]. The joint design and optimization of caching
and user association policy minimizing the average download
delay were explored in [12]. However, user requests were
served throughmultiple unicast transmissions leading to extra
power consumption. Similar to [12], Cui et al. [13] studied
the optimal caching and user association in heterogeneous
networks with wireless backhaul, where the multicast trans-
mission were also not considered. A cooperative transmis-
sion scheme under random caching at SBSs was proposed
in [14] and the caching distribution was optimized to maxi-
mize the successful transmission probability. Chae et al. [15]
identified a tradeoff between the content diversity and the
cooperative gain and proposed a probabilistic caching policy
for balancing the tradeoff optimally. However, the works
mentioned above were all studied based on unicast trans-
mission. In [7], a general solution addressing the design of
caching policy for reliable multicast service was presented.
Bao et al. [16] proposed an optimal client cache size alloca-
tion scheme combined with a multicast technique-batching.

In addition to the researches on caching placement
strategies with unicast transmission or multicast-aware trans-
mission for-mentioned, multicast scheduling schemes in
cache-enabled wireless networks have also been studied
in many existing works [17]–[21]. The optimal dynamic
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multicast scheduling to jointly minimize the average delay,
power and fetching cost was studied in [17], where the
caching design was given. Similar to [17], the work in [18]
established a content-centric content request queue model
and proposed a structure-aware stochastic content multi-
cast scheduling algorithm to jointly optimize the average
delay and service costs for elastic services in heterogeneous
cellular networks. Zhang et al. [19] designed a combination
scheme of parallel transmission where the MBS and SBSs
parallely transmitted the requested contents, and coopera-
tive transmission where multiple SBSs cooperatively trans-
mitted the requests to the multicast group users. However,
this scheme ignored the cooperative scheduling of MBS and
SBSs. In addition, each BS cached the most popular con-
tents ignoring the gain brought by the cooperative caching.
Similarly, Cui et al. [20] presented amulticasting design with
a random caching and derived an asymptotically optimal
algorithm to maximize the successful transmission probabil-
ity for single-tier networks. However, the proposed caching
design confined the full usage of content diversity. Both the
optimization and performance analysis were extended to the
multi-tier heterogeneous networks in [21]. However, both
in [20] and [21], the main focus were put on the multicast
transmission of requests for the cached contents while we also
take into consideration the multicast transmission opportuni-
ties for the uncached contents.

While the works mentioned above are optimization of
caching policy in multicast-aware networks or design of
multicast scheduling scheme in cache-enabled networks,
studies on joint optimization of multicast scheduling and
cache placement were presented in [22]–[25]. Firstly,
Poularakis et al. [22] jointly studied the caching policy and
multicast scheduling scheme in delay tolerant networks by
formulating a discrete optimization problem, which was the
most relevant to ours. However, collaboration at the BSs were
not considered. Therefore, when the contents that requested
by users could not be found in the cache of the local SBS, they
could only be served by MBS at a more higher level of power
consumption instead of being served by the neighboring
SBSs. In addition, thework in [23] addressed the performance
limits of client caching enabled video-on-demand services in
wireless multicast networks with asynchronous requests. And
a joint cache allocation and multicast delivery scheme min-
imizing the average bandwidth consumption was proposed
and analyzed. Combined the advantages of multicast con-
tent delivery and cooperative content sharing, a compound
caching policy was developed in [24]. Similarly, based on
the characteristics of multicast and cooperation among BSs,
the cooperative caching scheme for multicasting was pro-
posed in [25] to improve the cache hit ratio and efficiency of
content delivery. However, they both ignored the interaction
between SBSs. Therefore, the potential of reducing power
consumption was not fully exploited.

In our paper, in order to combine the advantages of coop-
erative multicast transmission and cooperative caching place-
ment, we jointly optimize the caching placement with user

FIGURE 1. A motivating example of the transmission scheme. (a) unicast
based caching. (b) multicast based caching. (c) multicast based and
cooperative caching.

association to further explore the potential of power reduc-
tion by exploiting all the possible multicasting opportunities.
Moreover, the proposed scheme can be implemented in a
distributed manner to reduce the signaling and computation
complexity.

B. MOTIVATING EXAMPLE
A motivating example of the above modifications is given
in Fig. 1. We consider a multicast and cooperative caching
system with two SBSs, six users and three contents in the toy
example. Schemes shown in Fig. 1(a) and Fig. 1(b) are also
utilized in [22]. In the toy example, we assume each SBS can
only store one content due to the limited cache capacity.

The unicast based caching scheme is presented in Fig. 1(a).
Each user request is served by unicast transmission. The opti-
mal caching decision is to place themost popular content with
respect to the local demand in this scheme [22]. Therefore,
the most popular content represented by the red diamond is
stored in both SBSs. The power consumption in this scheme
is pu = p11 + p12 + p24 + p03 + p05 + p06. Taking p12
for example, p12 indicates the power cost required by SBS 1
to serve requests generated by user 2. Notably, the index 0
represents MBS. Similar definitions are applied to the other
notations.

In Fig. 1(b), the multicast transmission is introduced.
Users that request the same content can be formed into a
group and then served by a multicast transmission. Therefore,
to save power consumption as much as possible, the optimal
caching policy changes. SBS 1 caches the content repre-
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FIGURE 2. Multicast and cooperative cache-enabled heterogeneous
wireless networks.

sented by the red diamond according to the local demand and
SBS 2 can either store the content represented by the yellow
diamond or the green one. User requests for the same con-
tent are aggregated and served via MBS multicast transmis-
sions. Hence, the power consumption of the scheme shown
in Fig. 1(b) is pm = p25+max{p03, p06}+max{p01, p02, p04}.
The last term denotes that the power consumption required
by MBS or SBSs to multicast a content to a user group is the
highest power required in the group.

However, the multicast and caching scheme illustrated
in Fig. 1(b) does not consider the cooperative caching
between adjacent BSs. As shown in Fig. 1(c), request for the
content represented by the green diamond generated by user
6 is associated to SBS 2 which does not store the content.
If user 6 is in the coverage area of SBS 1 at the same time,
both requests of user 3 and user 6 can be served by a multicast
transmission of SBS 1. Especiallywhen the channel condition
between user 6 and MBS is very poor, serving user 6 by
SBS 2 is able to reduce the total network power consumption
effectively. Hence, the power consumption is pc = p25 +
max{p13, p16} +max{p01, p02, p04}.

Obviously, we have pc ≤ pm ≤ pu in most cases. The
above example demonstrates the efficiency of the proposed
scheme which combines the multicast transmission with
cooperative caching and better exploits the available space
of content caching and delivering.

III. SYSTEM MODEL
As illustrated in Fig. 2, we consider a heterogeneous net-
work consisting of M base stations (BSs) and K mobile
users, where the users can request N contents. Particularly,
the BSs are indexed by {0, 1, 2, . . . ,M}, where the macro
BS is denoted by BS 0 and the SBSs are indexed by m =
{1, 2, . . . ,M}. Let K = {1, 2, . . . ,K } denote the mobile
users andN = {1, 2, . . . ,N } be the set of contents requested
by all the users. Each SBS is able to cache part of the contents,
and themacro BS is assumed to have access to all the contents
in N .

Due to the ultra dense deployment of small cells,
the mobile users in Fig. 2 can be in the coverage of multiple

SBSs. Consider a discrete-time communication system, e.g.,
5G networks, operating in time slots. In each time slot, users
requesting the same content n are assigned with the same
color, naturally forming a group K′n and being served by
multicast transmission. If BS m multicasts a certain content
to its scheduling user group, the transmitting power required
should satisfy all the pending requests. Users in coverage
hole of SBSs can only be served by MBS. Besides, a MBS
multicast transmission is also used to satisfy the requests
generated by users whose associated SBSs have not cached
the requested content.

The popularity of the contents in N follows the Zipf dis-
tribution, and is identical to all users [26], [27]. Particularly,
the probability of content n being requested can be given by

P(n) =
n−α

6N
f=1f

−α
, (1)

where α indicates the skewness of the request distribu-
tion [27]. During a time slot, each user is assumed to request
at most one content from the content set N [20].
By referring to the SINR criteria [28], the minimum trans-

mit power of BS m to deliver a content to user k , denoted by
Pmk , can be given by

Pmk = P0 − gk − gm + lmk + ψk , (2)

where P0 represents the receiver sensitivity of the device;
gk and gm denote the antenna gain of user k and BS m,
respectively; lmk is the path loss between BS m and user
k; ψk is the shadow component. Typically, the transmission
power of the MBS is much higher than that of the SBSs
due to the large path loss lmk to provide full coverage of the
network [18].

IV. PROBLEM FORMULATION AND TRANSFORMATION
Green communication is one of the major challenges in 5G
networks. In this paper, we aim to minimize the power con-
sumption of network operators, while ensuring the quality of
service of all the users. The problem is formulated to jointly
optimize multicast scheduling and caching policy, given by

P : min
∑
n∈N

∑
m∈M∪{0}

max
k∈K′n

Pmk · tmk ,

s.t. C1: (1− xmn) · tmk = 0,∀n ∈ N , k ∈ K′n,m ∈ Ak ,

C2:
∑

m∈M∪{0}
tmk = 1,∀n ∈ N , k ∈ K′n,

C3:
∑
n∈N

xmn ≤ Sm,∀n ∈ N ,m ∈M,

C4: tmk ∈ {0, 1},∀k ∈ K′n,m ∈M,

C5: xmn ∈ {0, 1},∀n ∈ N ,m ∈M, (3)

where xmn ∈ {0, 1} denotes whether content n is stored in SBS
m (xmn = 1) or not (xmn = 0). The transmission decision is
represented by tmk , where tmk = 1 indicates that BS m serves
user k , otherwise, tmk = 0. Let Ak be the BS cluster which
can serve user k.
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FIGURE 3. The diagrammatic sketch of user group and user cluster.

Constraint C1 states that SBS m needs to cache content
n to serve the users requesting this content. Constraint C2
guarantees that user k can be served by at most one BS
at the same time. Constraint C3 ensures that the size of
stored contents in BS m will not exceed the capacity of its
cache. Both xmn and tmk are binary variables, and therefore,
constraint C1 can be rewritten as

C6: xmn ≥ tmk ,∀n ∈ N , k ∈ K′n,m ∈ Ak . (4)

Each BS m will multicast content n to the users in group
Km
n = {k|tmk = 1,∀k ∈ K′n}. In order to satisfy the require-

ments of all the users inKm
n , the transmission power should be

set as the maximum of the destined users, i.e., maxk∈K′n Pmk ·
tmk as shown in the objective of P.

Solving the integer programming problem P is non-trivial.
First, the integer programming problem is NP-hard in gen-
eral [29]. It will be even challenging to solve P when consid-
ering its complicate constraints on the optimization variables.
Moreover, the transmission decisions are heavily coupled
with each other, due to the non-linear objective function.
This limits the efficiency of existing integer programming
solver [30].

To improve the tractability of problem P, we introduce user
cluster and user group in Definition 1, and then remove the
coupling brought by the maximum notation in the objective.
Definition 1: The user group is a set of users. In this paper,

any subset i of K′n can be called a user group, denoted by Gni .
User cluster Gn is defined as the set of all the user groups,
i.e., Gn = {Gn1 ,G

n
2 , . . . ,G

n
i , . . .}. Namely, we have

Gn = {Gni : G
n
i ⊆ K′n}, (5)

where Gn is the collection of all subsets of K′n. The relation-
ship between user group and user cluster is dictated in Fig. 3.

The main objective of P is to optimize caching placement
and assign each user with a serving BS. By introducing
the definition of user grouping, P can be reformulated as
selecting the optimal set of user groups in Gn and the cor-
responding BS for multicasting the content to each selected
user group Gni , given by

P1 : min
∑
n∈N

∑
m∈M∪{0}

cmi · ymGni

s.t. C3,C5,

C7: xmn ≥ ymGni ,∀n ∈ N ,Gni ∈ Gn,

C8: ymGni = {0, 1},∀m ∈M,Gni ∈ Gn,
C9: ∪m∈M ymGni · G

n
i = K′n,

C10: ymGni · G
n
i ∩ ymGnj · G

n
j =∅,∀G

n
i ,G

n
j ∈G

n, n∈N ,
(6)

where ymGni is a binary variable indicating whether BS m
serves user group Gni (ymGni = 1) or not (ymGni = 0). And
we have

ymGni = 1⇒ tmk = 1,∀k ∈ Gni . (7)

where cmi = maxk∈Gin Pmk denotes the cost of assigning
the user group Gni to the BS m. In P1, the strong coupling
among variables in the objective has been removed.

However, P1 is still non-trivial due to the severe coupling
between the cache placement and transmission decisions.
Particularly, C9 indicates that the solution should contain all
the users requesting content n and C10 implies that each
user group in the solutions should be disjoint, i.e., each user
can only be served by a BS at a time. These two constraints
introduce severe coupling between the cache placement and
transmission decisions.

V. THE DESIGN OF MCC ALGORITHM
In this section, we decomposed P1 into two subproblems,
i.e., (a) multicast scheduling given the cache placement,
and (b) optimizing cache placement given the multicast
scheduling of subproblem (a). We solve these two subprob-
lems iteratively to obtain the solution for P1. In subprob-
lem (a), the transmission decisions are decoupled between
different requested contents of the users, and can be decom-
posed into N subproblems, given by

P2 : min
∑

m∈M∪{0}
cmi · ymGni

s.t. C8,C9 and C10. (8)

In the following, we focus on the decomposed sub-
problem P2 and propose the Multicast and Cooperative
Caching (MCC) algorithm to jointly optimize the transmis-
sion scheduling and cache placement iteratively.

A. SET PARTITION PROBLEM (SPP)
Given all possible user groups, P2 can be regarded as a set
partition problem (SPP) [31] with the following structure

SPP : min
n∑
j=1

cjxj

s.t.
n∑
j=1

aijxj = 1,∀i = 1, 2, . . . ,m,

xj = {0, 1}, ∀i = 1, 2, . . . ,m, (9)

where I = {1, 2, . . . ,m} and J = {1, 2, . . . , n} denote the set
of row and column index, respectively. Let Pj = {i ∈ I |aij =
1} be the set of row index with value of 1 in the column j.
Solution J ′ is a partition to (9), when satisfying

∪j∈J ′Pj = I , (10)
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FIGURE 4. A sketch map of the user partition, which is the coefficient
matrix for users (rows) and user groups (columns). The columns 1, 2
and 5 or the columns 3 and 4 form a possible partition.

Pj ∩ Ph = ∅, ∀j, h ∈ J ′, j 6= h. (11)

Fig. 4 illustrates the relation between set partition in SPP
and user partition in P2. In Fig. 4, the set of all users
can be regarded as the set of row index in SPP, i.e., I =
{1, 2, 3, 4, 5, 6}. Pj stands for a possible user group j, e.g.,
a22 = 1 and a52 = 1, hence, P2 = {2, 5}, namely user 2 and
user 5 belong to user group 2. Obviously, user groups 3 and
4 contain all users in I and users in each group are different.
Therefore, user group 3 and 4 can be considered as a user
partition of I .
The objective of SPP is to find the best partition with

minimal cost among all the possible partitions. Similarly,
given all the possible user groups, P2 aims to determine the
best user partition to minimize the total power consumption
required by each associated BS among all the possible user
partitions.

Hence, the problem P2 should be solved in two phases:
user association and transmission determining. Due to the
complexity of obtaining all the subsets of K′n and the limit of
the coverage of BSs, firstly, we design an efficient algorithm
to partition users into different possible groups. Then, we can
chain these groups to feasible clusters, i.e., feasible partitions.

B. THE DESIGN OF THE ALGORITHM
In this section, we reduce the searching space of user group-
ing by judiciously designing a utility function to specify a
set of candidate optimal user groups. Then, a genetic algo-
rithm (GA) is adopted to obtain a near-optimal solution to P2.
Discovering the upper and lower bounds of P2, we propose a
heuristic algorithm to place the contents for each BS.

Note that the complexity of the proposed algorithm, sum-
marized in Algorithm 3, mainly depends on finding all the
possible user groups. By exploiting the proposed utility,
we can reduce the complexity and distribute the computation
to each mobile devices. This will enhance the practicality and
efficiency of the proposed algorithm.

1) USER ASSOCIATION
As the expanding of network size, the number of possible
user groups is tremendous. Due to the limit of coverage areas
of each BS, substantial redundancy of user groups can be
reduced.

Each BS can only serve users in its own coverage area.
Therefore, for any BS m ∈ M′

n, users in its coverage area

can be formulated as a possible group. Specially, for the set
of users only in the coverage area of MBS and users in the
coverage area of the SBSs that have not cached the requested
content, they should be classified into the same group. This
group is recorded as Gn2 and can only be served by MBS.
Remarkably, the transmission decision for users in overlap-

ping is non-trivial. In this paper, we define a utility function
to describe the gain of a transmission assignment for users in
overlapping areas shown in (12).

uik = max{c(Gni ), c(G
n
i ∪ k)} − max{c(G

n
i )}. (12)

uik stands for the cost increase of assigning user k to
group i. c(Gni ) denotes the power consumption required by
the associated BS of group Gni to serve all the users requesting
content n in group Gni by a multicast transmission.
Lemma 1: User k should be associated to the group Gni

with theminimumvalue of uik without loss of optimality. And
there is uik ≥ 0.

Proof: See Appendix A.
Note that the utility function can significantly reduce the

candidate user groups, without comprising the optimality of
P2. Moreover, the user grouping computation can be dis-
tributed to each mobile device. This can be achieved by
enabling devices to associate with proper BSs and reporting
the grouping results to the MBS to find the best user group.

The main process of user association is presented in Algo-
rithm 1.

Algorithm 1 The UC Algorithm
Require:

xmn, M′, K′n;
Ensure:

Gn = {Gn1 ,G
n
2 , . . . ,G

n
i , . . .}, c

n
= {cn1, c

n
2, . . . , c

n
i , . . .};

1: Initialize Gn1 = K′n, cn1 = maxk∈cn1 Pmk , c
n
2, c

n
2 =

maxk∈Gn2 Pmk , i=3;
2: for all SBSs m ∈M′ which satisfy that xmn = 1 do
3: Gni = {k|k ∈ K′n ∩ k ∈ Bm},cni = maxk∈cni Pmk ;
4: i++;
5: end for
6: for all users k in overlapping areas do
7: for all SBSs m that user k belongs to do
8: calculate the utiliy umk and select the minimum one

m′;
9: Gni = Gnm′+2 ∪ k , c

n
i = maxk∈Gni Pmk ;

10: i++;
11: end for
12: end for
13: for all clusters exist in Gn do
14: add all possible combinations of the groups

{Gn3 ,G
n
4 , . . . ,G

n
i } to Gn2 to form new groups and

calculate cni ;
15: end for

As outlined in Algorithm 1, we consider the set of users
only in the coverage area of each BS as possible user groups.
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FIGURE 5. Code representation.

Then for users in overlapping areas, we utilize the utility func-
tion to determine their serving BS. This process can reduce
the amount of user groups which can not reach the objective
function in problem P2. The objective of line 13 − 15 is to
select the set of users to be served by a multicast transmission
of MBS rather than served by SBSs. The above steps can
remove users with poor channel conditions from the user
group which will be served by MBS in the multicast-aware
caching algorithm in [22].

2) TRANSMISSION DETERMINING
In this section, we propose the Transmission Determin-
ing (TD) heuristic algorithm based on the Genetic Algo-
rithm (GA) to solve problemP2. TheGAprovides an efficient
approach to solve the NP-complete problem [32].
• Coding Representation. Considering the binary encod-

ing scheme, each user group has a identifier j, j =
1, 2, . . . , J , where J is the total number of user groups
obtained by Algorithm 1. A solution i can be represented as
Si = {Gni1 , . . . ,G

ni
j , . . . ,G

ni
J }, where Gnij is a 0 − 1 binary

variable and denotes whether user group Gnj is selected in
solution Si, i.e., Gnij = 1 indicates that users in group Gnj
will be selected as a whole to be served by a certain BS
and 0 otherwise. Specially, when Gnj = 1 or 0, we have
ymGnj = 1 or 0, where m is the associated BS of group Gnj .
Fig. 5 shows a coding example.
• Fitness and Selection. Given a possible solution Si,

the fitness of the solution is given as follows:

f ni =
J∑
j=1

cnj · G
ni
j . (13)

The tournament selection method [33] is used in which d
solutions are selected randomly and the one with the highest
fitness remains for further genetic processing. The process
repeats until the mating pool is filled.
• Crossover andMutation. To explore more promising and

new search space, many crossover techniques exist. In this
paper, we adopt the uniform crossover operator [34].

After crossover, mutation is applied to each child which is
an operator that will change the value of a certain gene. The
GA introduces mutation to improve the local search ability
and maintains the population diversity.

However, the child generated by the crossover and muta-
tionmay be infeasible due to the strong constraints in problem
P2. Some users may be assigned to different BSs at the same
time or served by no BSs. The improvement algorithm in [34]
is used to modify the feasibility of the filial generation.

In summarize, the TD heuristic algorithm based on the
genetic algorithm is shown in Algorithm 2.

Algorithm 2 The TD Algorithm
1: Set the number of iteration t := 0;
2: Initialize S(t);
3: Evaluate S(t);
4: for each generation do
5: Select {S1, S2} from S(t);
6: gchild = crossover(S1,S2);
7: gchild = mutate(S1,S2);
8: Repair the feasibility of gchild ;
9: if gchild ∈ S(t) then
10: delete gchild and go to 5;
11: else
12: S(t + 1)← S(t) ∪ gchild ;
13: end if
14: Evaluate S(t + 1);
15: t ← t + 1;
16: end for
17: Find minS∈S(t) S;
18: Set S∗← S;
19: return S∗,f (S∗).

3) THE MULTICAST AND COOPERATIVE CACHING
ALGORITHM
In the above sections, the problem P2 is solved with
the given cache placement. Next, we are going to deter-
mine the cache placement based on the proposed heuristic
algorithm.

Firstly, we analyze the results of problem P2. Let {t∗mk} be
the set of sub-optimal solution obtained by Algorithm 2. P∗

is denoted as the corresponding power consumption, which
can be expressed as

P∗ =
∑

m∈M∪{0}
max
k∈K′n

Pmk · t∗mk . (14)

Assume that the capacity of each cache is infinite,
the power consumption of the corresponding solution in prob-
lem P2 is denoted by P.
Lemma 2: The power consumption of multicast and coop-

erative cache can be bounded by

P ≤ P∗ ≤ P = max
k∈K′n

P0k · t0k .

Proof: See Appendix B.
By incorporating Lemma 2 and the property in (4), we pro-

pose the MCC algorithm.
Firstly, we assume the SBSs store all the content and

compute the value of P and the corresponding transmis-
sion decision. Next, based on the obtained results of tmk ,
we set xmn = max{tmk ,∀k ∈ K′n} preliminarily. However,
the limit of cache capacity in some SBSs may be broken.
Then, we set xmn = 0 in the SBSs which break the cache
capacity successively and record the gap between the power
consumption obtained after setting xmn = 0 and P. We try to
store the content which makes the power consumption closer
to P.
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Algorithm 3 The MCC Algorithm
Require:

Sm;
Ensure:

P∗, xmn;
1: Initialize xmn = 1,∀m ∈ M, n ∈ N , current cache

capacity S ′m, P,8 = ∅ (the set of xmn = 0,∀m ∈M, n ∈
N ), � = ∅ (the set of xmn = 1,∀m ∈M, n ∈ N );

2: Calculate P and tmk by Algorithm 2;
3: repeat
4: Based on the temporary results of tmk , determine the

cache policy by xmn = max{tmk ,∀k ∈ K′n} and record
xmn in the corresponding set of 8 or �, i = 1.

5: Calculate the size S ′m of � for each SBS m.
6: if S ′m > Sm then
7: Set the value of xmn in� to zero and then obtain the

corresponding P′ = f (S∗), record M (n) = P′ − P;
8: Set M in ascending order, Choose the first Sm ele-

ments in order and set the corresponding xmn = 1,
otherwise xmn = 0;

9: end if
10: Base on the temporary results of line 4 − 9, optimize

tmk and P∗ using Algorithm 2;
11: i++;
12: until i > MaxIteration
13: return P∗, xmn.

VI. SIMULATION RESULTS
In this section, we provide numerical simulations to evaluate
the performance of the proposed MCC algorithm. We con-
sider a scenario with a MBS and 20 uniformly distributed
SBSs of which the coverage areas may be overlapped. All
the SBSs are assumed to have equal cache size. The antenna
gain of BSs and users are gn = 2.14dBi and gu =
2.14dBi, respectively. The distance-dependent pathloss of
MBS and SBSs are modeled as l0k = 128.1+37.6log10(d0k )
and lmk = 140.7 + 36.7log10(dmk ) respectively, where
dmk denotes the distance between BS m and user k in
kilometers [35].

To mitigate the interference in the considered system,
we take into consideration two cases. Firstly, multicast trans-
mission can reduce a lot of redundant transmission compared
with unicast transmission. Especially when the system is
lightly loaded, each BS only uses a small portion of frequency
subchannels for multicasting [36]. Therefore, the BSs are
allocated orthogonal subchannels for multicasting. When the
system is heavy loaded in multicasting service, the subchan-
nels for multicast transmission will not be fully orthogonal-
ized. Then an adaptive clustering framework for mitigating
the inter-cell interference can be used in which a directed
interference graph is designed to capture the dominant inter-
ference [37]. Together with this interference management
strategy, our proposed algorithm can be conducted in the
simulation.

FIGURE 6. Performance comparison of the four algorithms with different
cache size, where K = 100 and α = 1.5.

And in each simulation trial, each user generates content
requests independently to a database of N = 500 contents.
Let A(t) , (Am,n(t)) be the request arrival process [18],
where Am,n(t) denotes the number of requests for content n
generated by users in BSm during time slot t . And the arrival
process of user request is modeled by the Independent Ref-
erence Model (IRM) [17], [18]. In IRM, the probability that
next request is independent of the earlier requests. Specially,
the arrival of user requests is not always simultaneous, but we
only focus on the multicast scheduling for the requests arriv-
ing in the same time slot. In addition, the content popularity
follows the Zipf distribution. And in the simulation, to get the
average value of each point, the analysis is repeated for 100
times in which both the locations of SBSs and users remain
unchanged.

To demonstrate the power-saving performance of the pro-
posed algorithm, we consider the following four strategies for
comparison:
• Unicast Transmission and Popularity-based

Caching (UTPC): The scheme is currently used in many
caching system. Each SBS caches the locally most popular
contents independently from the other SBSs. And each user
is served by a unicast transmission of its associated SBS only
when it stores the requested content, otherwise the request
can only be satisfied by MBS.
• Multicast Transmission and Popularity-based

Caching (MTPC): In this scheme, each SBS stores the locally
most popular contents independently and multicast transmis-
sion is adopted. A MBS multicast will occur when at least
one user cannot find the requested content n in the SBS cache,
i.e., when a request for the content n is generated only within
the coverage area of MBS or when the request generated by
a user associated to an SBS which has not stored it, all the
requests for the content nwill be served by theMBSmulticast
transmission [22].
• Multicast Transmission of MBS (MTM): All the user

requests are served by MBS multicast transmission.
• Multicast and Cooperative Caching (MCC): Our pro-

posed algorithm.
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FIGURE 7. Performance comparison of the four algorithms with different
user number, where Sm = 10 and α = 1.5.

Fig. 6 illustrates the power consumption versus the cache
size for the aforementioned four policies. We can observe
that better performance can be achieved by the proposed
MCC policy. With the increase of cache size, the power
consumption obtained by MCC decreases slightly and that of
the MTM and UTPC remain almost steady. In addition, for
the MTPC, the performance is greatly improved due to the
increase of cache capacity. That is because, the lager cache
capacity implies the more transmission opportunity for SBSs.
Hence, users can be served at a lower power consumption
of SBSs, especially for those with poor channel conditions
to MBS. Our proposed algorithm is not very sensitive to
the cache size because the cooperative caching enlarges the
capacity of each cache to some extent. For UTPC, the gain
obtained by the increase of cache size can be negligible due
to the large amount of user requests which are required to be
served by unicast transmission.

Fig. 7 shows the power consumption of the three algo-
rithms as the number of users increasing from 50 to 300.
We can see that the power consumption keeps increasing
with the growing number of users in the MTM, MTC and
MTPC algorithms. There is almost no difference between
the curves of the MTM and MTPC due to the limited cache
capacity and a substantial amount of user requests. With
limited cache capacity, more MBS multicast transmissions
tend to be adopted to serve users which is similar with the
MTM. Our proposed algorithm MCC outperforms the other
two.

Fig. 8, Fig. 9 and Fig. 10 compare the power consumption
among the different multicast and caching policy with dif-
ferent Zipf parameters, where the cache size is 5, 10 and 20
respectively. It can be seen that, in Fig. 8 the performance of
MTM and MTPC is almost the same. The reason is that, with
the limited cache capacity, the chances for SBSs transmission
is slim. Substantial amount of user requests are served by
MBS, i.e., the MTM policy. In contrast, there is little influ-
ence on the proposed algorithm. In Fig. 10, the performance
gap between the MTM and MTPC becomes wider than that
in Fig. 9. The MCC algorithm significantly outperforms the

FIGURE 8. Performance comparison of MTM, MCC and MTPC algorithms
with different Zipf parameters, where Sm = 5 and the user number is 100.

FIGURE 9. Performance comparison of MTM, MCC and MTPC algorithms
with different Zipf parameters, where Sm = 10 and the user number
is 100.

other two evenwith limited cache capacity. On the other hand,
the power consumption falls steadily as the value of Zipf
parameter increases. In general, α implies the skewness of
the content popularity distribution. Larger α indicates that
substantial amount of user requests are generated centering
on only a few number of contents. Therefore, a multicast
transmission can satisfy more user requests due to their con-
centrative property.

To show the efficiency of the MCC, MTPC and UTPC in
balancing the load, we calculated the load balancing based on
the Jain’s fairness factor which ranges from 1

M+1 (worst case)
to 1 (best case) [38].

Fig. 11 compares the performance of the three algo-
rithms in load balancing with different cache size. Obviously,
the MTPC scheme shows a seriously unbalanced load. The
reason is that large proportions of users will be associated
with the MBS since users requesting the same content may
be scattered in the coverage areas of different SBSs and not
all the SBSs store the requested content and the requests
can only be served by a multicasting transmission of MBS.
By contrast, our proposed scheme achieves a better perfor-
mance in load balancing. The cooperation of neighboring
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FIGURE 10. Performance comparison of MTM, MCC and MTPC algorithms
with different Zipf parameters, where Sm = 20 and the user number
is 100.

FIGURE 11. Load balancing comparison with different cache size, where
α = 1.5 and the user number is 100.

FIGURE 12. Load balancing comparison with different Zipf parameters α,
where the number of users is 100 and the cache size is 10.

SBSs relieves the MBS load pressure and transfers congested
users to a lightly loaded SBS which will improve the overall
network’s power consumption. Moreover, as the cache size
increases, the curve of MCC goes up because more traffic can
be offloaded to the SBSs which store the requested contents
in the MCC scheme.

Fig. 12 shows the load balancing of the three algorithms
with different Zipf parameters. As can be seen in Fig. 12,
our proposed model outperforms the other two schemes

significantly. As the zipf parameter increases, the MTPC
scheme holds a relatively stable value, which is due to that
not all the SBSs store the requested contents in most cases,
a large proportion of users can only be served by the mul-
ticast transmission of MBS which will lead to overload of
MBS. Our proposed algorithm can provide users with more
candidate base stations while minimizing the system power
consumption. Part of the MBS’s traffic load can be shared
by SBSs. Therefore, a better load balancing can be achieved
by MCC. In addition, with the increasing of zipf parameters,
the performance of UTPC is obviously improved. The reason
is that a larger value of zipf parameter means the content
requests are more centralized and more easily found in local
caches. Hence, more requests can be served by a unicast
transmission locally rather than served by MBS.

VII. CONCLUSION
In this paper, the design of green network is investigated
by taking into consideration the multicast and coopera-
tive caching techniques. We formulate the multicast and
cooperative caching problem to minimize the network power
consumption. Based on the formulation, we decouple the
multicast scheduling for each content given the cache place-
ment. To make the problem more tractable, we decompose it
into two phases: user association and transmission determin-
ing. And then we transform the problem into the Set Parti-
tion Problem. Finally, a distributed multicast and cooperative
caching (MCC) algorithm is proposed. Simulation results
show that the proposed approach performs better in terms of
load balancing and is able to reduce the power consumption
up to 28% compared with the existing multicast and caching
scheme. Moreover, the algorithm outperforms better than the
benchmark algorithms evenwith limited cache capacity, large
user number and different content popularity distributions.

APPENDIX A
PROOF OF LEMMA 1
Obviously, uik ≥ 0 because when the power consumption
required by the associated BS of group i to serve user k is
smaller than c(Gni ), we have c(Gni ∪ k) = c(Gni ), otherwise,
c(Gni ∪ k) ≥ c(G

n
i ). Therefore, there is uik ≥ 0.

Assume ujk > uik but user k is partitioned into Gnj ∪ k
and group Gnj ∪ k is selected in the optimal solution. Regard
the other groups in the optimal solution as a big group which
is denoted by Gnj . Then the total power consumption of the

optimal solution is c(Gnj ∪ k) + c(G
n
j ). Obviously, G

n
j , G

n′
i =

Gni +k and Gn
′

= Gnj −G
n
i is also a feasible solution. Its power

consumption is c(Gnj )+ c(G
n′
i )+ c(Gn

′

).
We have ujk > uik , i.e., (max{c(Gnj ), c(G

n
j ∪ k)} −

max{c(Gnj )}) > (max{c(Gni ), c(G
n
i ∪ k)} − max{c(Gni )}).

Therefore, (max{c(Gnj ), c(G
n
j ∪ k)} + max{c(Gni )}) >

(max{c(Gni ), c(G
n
i ∪ k)} + max{c(Gnj )}). Based on the above

inequality, there is c(Gnj ∪ k)+ c(G
n
j ) = c(Gnj ∪ k)+ c(G

n
i )+

c(Gn′ ) > c(Gnj )+c(G
n
i ∪k)+c(Gn

′

) = c(Gnj )+c(G
n′
i )+c(Gn

′

).
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Thus, the optimal solution is Gnj , G
n′
i and Gn′ , namely, user

k should belong to group Gni which contradicts with the
assumption that the optimal solution is reached when user k
belongs to group Gnj .

APPENDIX B
PROOF OF LEMMA 2
Assume { ˆtmk} and P̂ are the set of optimal transmission deci-
sion and the corresponding power consumption, respectively.
And P̂ satisfies P̂ > P. However, when user requests are all
served by the multicast transmission of MBS, the power con-
sumption is maxk∈K′n P0k · t0k . This contradicts the assump-
tion. Therefore, the power consumption of the problem is
upper-bounded by P.

As for the lower bound P, denote the full cache placement
as xf . Turn certain elements 1 from matrix xf into 0 and
denote the new matrix as x′ which can be regarded as a
new cache placement strategy. Without loss of generality,
we assume that P = Pfm+P

f
0, which means that users request

content n are served partly by the multicast transmission of
SBS m and partly by MBS. And there is Pfm + Pf0 ≤ P.
However, if content n is not stored in SBS m in the cache
placement x′, the sub-optimal solution of Algorithm 2 is
maxk∈K′n P0k · t0k , i.e., P. Therefore, the lower bound is P.
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