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ABSTRACT Due to atmospheric effects and secondary illumination, hyperspectral images (HSIs) usually
suffer from system noises, stripes, and dead pixels, which greatly degrade the imaging quality and limit the
precision of the subsequent processing. In this paper, a novel HSI mixed denoising method based on 3-D
spectral–spatial cross total variation (TV) is proposed to overcome such problem. First, the HSI is treated
as a 3-D cube, and the TV with 2-D spatial directions on the spectral difference images, which could be
treated as cross TV of HSI cube, is minimized to enhance the spatial smoothness and exploit the spectral
redundancy and correlation. Second, an adaptive mechanism for calculating the spectral–spatial weights is
adopted to balance the fidelity term and the cross TV regularization according to different spatial structures.
Alternating direction method of multipliers is finally extended to solve the proposed model by separating
it into several simpler subproblems. Experimental results on simulated and real-HSI data sets validated the
effectiveness of the proposed method.

INDEX TERMS Hyperspectral denoising, mixed noise removal, cross total variation, ADMM.

I. INTRODUCTION
Hyperspectral images, as a three-dimensional data cube with
hundreds or thousands of narrow spectral bands ranging
from 0.4 to 2.5 µm, have been widely used in various
fields [1], e.g., precise agriculture, mineral detection, envi-
ronment monitoring, urban planning and so on. However,
many factors degrade the quality of hyperspectral image in
course of acquiring the data and severely limit the precision of
subsequent processing, e.g., unmixing, classification [2] and
target detection. Therefore it is critical to develop an effective
preprocessing technique for HSI.

To date, a multitude of techniques have been developed
for HSI restoration. Maximum noise fraction (MNF) [3] and
noise-adjusted principal component (NAPC) [4] transforma-
tion are two famous conventional methods for noise reduction
of HSI and have been embedded in commercial software,
e.g., ENVI. By regarding each band of HSI as a gray-level

image, powerful denoising methods, such as block-matching
3-D filtering [5], nonlocal based algorithm [6], can be applied
to restore HSI data. However, this kind of method does not
take the spectral correlations into consideration, and often
results in a less competitive performance.

Due to the good properties of representing signals with
few coefficients and the multi-scale analysis [7], wavelet
based method is also a powerful instrument for HSI denois-
ing. In [8] and [9], the combination of principle compo-
nent analysis (PCA) and wavelet shrinkage, which utilizes
2D or 3D wavelet filter to remove the noise in the low-
energy PCA channels, was firstly proposed for HSI denos-
ing. Many other methods always combine wavelet transform
with sparse regularizations, such as Lasso penalty [10] or l1
penalty [11]. In [12], a wavelet-based sparse reduced-rank
regression (WSRRR) method was put forward for hyperspec-
tral restoration by minimizing the l1 sparse regularization on
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wavelet coefficient of the reduced-rank components. In [13],
the 2-D Daubechies wavelet for spatial dimension and 1-D
Fourier transform on spectral dimension was utilized for 3-D
HSI denoising, which exploited the spatial-spectral informa-
tion of HSI. The same idea was also applied in [14] using
block matching 3-D wavelet filtering [15].

Low rank representation (LRR) is another powerful tech-
nique and has achieved good performance in the field of
hyperspectral restoration. Lu et al. [16] proposed an LRR
method for stripe noise removal in HSI by exploiting the
high spectral correlation between different bands, and a
graph regularization was constructed to preserve the intrinsic
local structure. Zhang et al. [17] exploited an HSI restora-
tion method based on low-rank matrix recovery (LRMR).
He et al. [18] then improved the patchwise LRMR by a noise-
adjusted iteration strategy, which makes LRMR adaptive
for the noise intensity in different bands. Even LRMR was
constructed on overlapped patches and achieved good perfor-
mance for denoising Gaussian and sparse noise simultane-
ously, but it only considers the local similarity within patches.
To overcome such drawback, Zhu et al. [19] extended the
LRMR to nonlocal sense by a spectral nonlocal methods.
Meanwhile, Wang et al. [20] proposed a group low rank
representation (GLRR) for HSI denoising. GLRR enables
the exploitation of both the local similarity within a patch
and the nonlocal similarity across the patches in a group
simultaneously and achieves better performance. In [21],
the total variation regularization was combined with low
rank decomposition for the restoration of HSI. In addition,
sparse representation is one promising tool for image process-
ing [22] as well as in HSI denoising. In [23], sparse coding
based on learned dictionary was exploited to model the global
redundancy and correlation (RAC) in spatial domain and
local RAC in spectral domain. While in [24], a spectral-
spatial adaptive sparse representation method was proposed
to further generate better noise free estimation by jointly
sparse coding on the shape adaptive local regions [25]. More
literatures on low rank and sparse representation for HSI
denoising can be found in [26]–[28] and therein references.

Total variation (TV) regularization, which has shown great
potentials in natural image denoising [29]–[31], recently
draws more attentions in HSI restoration, denoising, and
inpainting. In [32], a spatial-spectral adaptive hyperspectral
TV (SSAHTV) was proposed for noise removal of HSI,
which can adaptively estimate the denoising strength accord-
ing to different spatial properties and different noise inten-
sity in bands. Due to being insensitive to image details of
SSAHTV, Yuan et al. [33] employed a spectral-spatial kernel
method to maintain the spectral correlations and preserve the
spatial structures. Meanwhile, Cheng et al. [34] extended the
SSAHTV to nonlocal sense, and presented a multichannel
nonlocal TV regularization for hyperspectral inpainting. The
problem was that it only joined all nonlocal gradients along
the spectral dimension and ignored the redundancy informa-
tion in bands. Then, Li et al. [35] calculated the nonlocal gra-
dients in both spectral and spatial dimensions and put forward

a multidimensional nonlocal TV model for hyperspectral
image recovery, which could explore more redundancy from
the highly correlated bands and lead to a better performance.
It is worth mentioning that these three local or nonlocal TV
models only consider the gradients in local or nonlocal sense
in spatial domain but ignore the spectral gradients, thus result
in a non real 3-D TV model. A normal way to extend the
conventional 2-D TV to a real 3-D cubic TV (CTV) is to
impose the spectral gradients [36], in which CTVwas defined
along two spatial dimensions and one spectral dimension,
thus leading to both spatial and spectral smooth results.
Due to the smoothness along both horizontal and vertical
directions in spatial domain, CTV does not work well in
removing stripe noise or dead lines. By constraining the gra-
dients in both the spatially horizontal and spectral directions,
Chang et al. [37], [38] employed an anisotropic spectral-
spatial total variation for multispectral image destriping and
denoising. However, all the above mentioned TV based
method can only remove one or two kinds of noise, and the
ideal of real cubic TV has not been exhaustively built to
explore spatial and spectral information completely.

In this paper, we propose a novel 3-D spatial-spectral TV
regularization, called 3-D cross TV (3DCrTV), for simul-
taneously removing several types of noise, such as Gaus-
sian noise, impulse noise, and stripes in HSI. The flowchart
of the proposed method is shown in Figure 1. This 3-D
cross TV consists of 2-D spatial TV on the spectral differ-
ence images (1-D spectral TV), which can explore the spec-
tral redundancy and spatial smoothness simultaneously and
reveal the fact that total variation on the spectral difference
images is as smooth as possible, see Fig. 2(d) and (e). The
main idea and contributions of this paper are summarized as
follows.

1) The HSI is treated as a 3-D cube and the proposed
3DCrTV is defined as a 2-D spatial TV (along horizon-
tal and vertical directions) across the spectral difference
image (1-D spectral TV), which enforces the spectral
and spatial smoothness simultaneously, thus suppress-
ing the spectral-spatial noises effectively.

2) The spatial-spectral weights of TV regularization are
calculated according to the sum of spatial gradients
along spectral dimension. This adaptive mechanism for
calculating the weights could preserve the edge and
texture details in spatial domain.

3) The proposed 3DCrTV is a general form of total vari-
ation on the spectral difference image of HSI, it can
easily be extended to nonlocal or structural tensor
sense, thus exploring much more detail information for
restoring HSI.

4) The restoration model is established to remove Gaus-
sian noise and sparse noise (i.e., impulse noise and
stripes or dead lines) simultaneously. The alternating
direction method of multipliers (ADMM) is utilized to
split the proposed model into several simpler subprob-
lems, and experimental evaluations of simulated and
real HSI datasets are provided.
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FIGURE 1. Flowchart of the proposed method.

FIGURE 2. Band 10 of different difference images of the clean HSI.
(a) DhX; (b) Dv X; (c) Dz X; (d) Dh(Dz X); (e) Dv (Dz X).

The remainder of the paper is organized as follows.
Section II formulates the restoration problem for HSI in
variational framework using TV regularization. Section III
describes the proposed 3DCrTV model which is defined as
2-D spatial TV on the spectral difference image, as well
as the adaptive mechanism of calculating the weights and
optimization algorithm. Section IV illustrates the restoration
results on the simulated and real hyperspectral datasets in
comparison with other state-of-the-art methods. Section V
concludes with some remarks.

II. PROBLEM FORMULATION
A. OBSERVATION MODEL
First, we make some notations for HSI restoration problem.
LetX ∈ Rm×n×l represent a clean HSI cube withm×n spatial
dimension and l spectral dimension. Then, the observed HSI

cube Y ∈ Rm×n×l corrupted by Gaussian noise N ∈ Rm×n×l

and sparse noise S ∈ Rm×n×l can be formulated as

Y = X+ S+ N (1)

This mixed noise formulation was first utilized for hyperspec-
tral restoration in [17] using LRMR. It is used in removing
the gaussian noise brought by the imaging sensors and model
system, as well as the sparse noise like dead lines or stripes
brought by pushbroom sensors.

B. RESTORATION MODEL
Having the model (1) in mind, the restoration model of
reducing mixed Gaussian and sparse noises for HSI can be
formulated as

min
X,S
||Y− X− S||2F + λ1J1(S)+ λ2J2(X), (2)

where, J1(S) is usually modeled as sparse regularization, i.e.
||S||1 = 6i|si| where si is the element of S and J2(X) is the
regularization associated to the clean HSI X, which always
models the prior properties of the clean HSI. A good choice
of J2(X) is the total variation regularization. λ1 and λ2 are two
parameters, which make tradeoff between the fidelity term
and regularizations.

C. TV RELATED REGULARIZATION
TV regularization is usually used to model the image as
piecewise smooth, which is one of the intrinsic priors for
natural images. The band-by-band hyperspectral total vari-
ation (HTV) can be expressed as [39], [40]

HTV(X) =
∑
k

∑
i,j

√
(DhX(i, j, k))2 + (DvX(i, j, k))2


(3)
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whereDh andDv denote the horizontal and vertical difference
operators along the spatial dimension, respectively. X(i, j, k)
denotes a pixel at the spatal location (i, j) in the kth band.
This HTV model is an extension of the conventional TV by
summing the gradient magnitudes of each band of HSI, and it
only exploits the spatial smoothness of HSI. Moreover, HTV
enforces the same strength in each band, thus producing a
worse denoising performance.

To define a hyperspectral TV model that can adap-
tively adjust the denoising strength of different bands,
Yuan et al. [32] extended the vectorial TV (VTV) model for
hyperspectral image.

VTV(X) =
∑
i,j


√∑

k

(DhX(i, j, k))2 + (DvX(i, j, k))2


(4)

The VTV model couples the gradients of all bands at every
spatial location of HSI. By doing so, the bands with higher
noise intensities will be smoothed stronger, and vice versa.
However, both HTV and VTV models only exploit spatial
information and ignore the spectral smoothness of HSI, they
could not remove the heavy Gaussian noise and sparse noise
very well.

A straightforward way to extend the TV model to a 3-D
version is to impose the spatial-spectral total variation into a
unit system and it can be formulated as follows.

3DTV(X) =
∑
i,j,k{√

(DhX(i, j, k))2 + (DvX(i, j, k))2 + ρ(DzX(i, j, k))2
}
(5)

where Dz is a linear operator corresponding to the spectral
difference, ρ is the parameter which controls the proportion
of spectral difference. Now, the 3DTV in (5) exploits both
spatial and spectral smoothness for HSI, and the definitions
of its three operators are expressed as

DhX(i, j, k) = X(i+ 1, j, k)− X(i, j, k)
DvX(i, j, k) = X(i, j+ 1, k)− X(i, j, k)
DzX(i, j, k) = X(i, j, k + 1)− X(i, j, k)

(6)

By enforcing the constraints on two spatial dimensions and
one spectral dimension, the piecewise smoothness in both
domains can be pursued.

III. PROPOSED 3D CROSS TV MODEL FOR
HSI DENOISING
A. PROPOSED 3DCRTV MODEL
We note that Dz(X) still contains lots of detail information of
the clean HSI (see Fig. 2 (c)), and minimizing 3DTV regular-
ization defined in (5) will result in an estimate which does not
converge to the clean HSI, meanwhile, weaken the spectral
features (i.e., absorption peak) of the original spectrum.

To overcome aforementioned drawbacks, in this paper, we
propose a 3D cross TV model which exploits the spectral-
spatial information by enforcing spatial smoothness on the
spectral difference space, for HSI mixed denoising. The
model can be formulated as

min
X,S
||Y− X− S||2F + λ1||S||1 + λ2CrTV(X), (7)

where

CrTV(X) = HTV(DzX) =
∑
k

∑
i,j{√

(Dh(DzX(i, j, k)))2+(Dv(DzX(i, j, k)))2)
}
(8)

is a 2D spatial TV defined on the spectral difference images,
which can exploit the spatial information as well as the
spectral information at the same time. The advantages of the
proposed 3DCrTV model are twofold.
1) It exploits the intrinsic properties of HSI cube that the

total variation in the spectral difference space is as
smooth as possible, see Fig. 2 (d) and (e).

2) It depicts a new neighborhood system for 3-D images,
which can exploit more information for restoration.
Clearly speaking, for a given pixel (i, j, k), the CrTV
regularization can be expressed as:

Dh(DzX(i, j, k)) = Dh(X(i, j, k + 1)− X(i, j, k))

= X(i+ 1, j, k + 1)− X(i, j, k)

− (DhX(i, j, k)+ DzX(i, j, k)︸ ︷︷ ︸) (9)

From (9), the Dh(DzX(i, j, k)) term not only con-
tains DhX(i, j, k) and DzX(i, j, k) terms, but also
involves extra information exploited by the diago-
nal pixel in the neighbourhood system. Analogous
to Dh(DzX(i, j, k)), Dv(DzX(i, j, k)) has the similar
properties.

To make the CrTV regularization have the adaptive prop-
erty with the spatial structure distribution, we adopt the
mechanism in [32] to involve a spatial weight W for each
pixel. The weight W is calculated by summing the gradient
of the clean HSI along the spectral direction, and can be
expressed as

W(i, j) =
1

1+ µs
∑l

k=1

√
(DhX(i, j, k))2 + (DvX(i, j, k))2

(10)

where, µs is a constant parameter, and W ∈ Rm×n. In order
to fit different HSI dataset, the weight is normalized as
W = W/w, where w is the mean value of W. By treating
the equal strength in all bands, we finally replicateW to be a
m× n× l matrix.

Having (7) and (10) in mind, the proposed spatially
weighted 3DCrTV (termed as 3DCrWTV) model can be
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formulated in the constraint form as

min
X,S
||Y− X− S||2F + λ1||S||1 + λ2W� (HTV(V1)),

s.t. V1 = DzX (11)

where � denotes the multiplication in component-wise.

B. OPTIMIZATION ALGORITHM
Due to non-differential property of the model (11), the alter-
nating direction of multipliers (ADMM) method is extended
to separate it into several simpler subproblems. By involving
the variants V1 = DzX, V2 = DhV1 and V3 = DvV1, the
model (11) can be rewritten as

min
X,S
||Y− X− S||2F + λ1||S||1 + λ2W� ϕ(V2,V3)

subject to V1 = DzX

V2 = DhV1

V3 = DvV1. (12)

where

ϕ(V2,V3) =
∑
k

∑
i,j

{√
(V2(i, j, k))2 + (V3(i, j, k))2

}
(13)

The augmented Lagrangian function of (12) can be
formulated as

L(X,S,V1, . . . ,V3,D1, . . . ,D3)

= ||Y− X− S||2F + λ1||S||1
+ λ2W� ϕ(V2,V3)+ µ||V1 − DzX− D1||

2
F

+µ||V2 − DhV1 − D2||
2
F + µ||V3 − DvV1 − D3||

2
F ,

(14)

where D1, ..,D3 are augmented multipliers related to vari-
ablesV1, ..,V3, and µ is the regularization parameters. Here,
we employ the same parametersµ for the three regularization
terms.

Since it is still difficult to solve problem (14) simulta-
neously, the alternating minimization scheme is utilized to
solve it by optimizing one variable while fixing the others.
Thus, the problem (14) can be converted into several simpler
subproblems.

• The subproblem related to X is

min
X
||Y− X− S||2F + µ||V1 − DzX− D1||

2
F (15)

It is a convex problem and equals to the following linear
problem

(I+ µDTz Dz)X = (Y− S)+ µDTz (V1 − D1) (16)

which has a closed form solution by the fast Fourier
transform (FFT) in (17), where F(·) is the fast
Fourier transform and F−1(·) is the inverse transform.

The superscripts T and H denote the operator of trans-
pose and complex conjugate, respectively.

X = F−1
(
F(Y− S+ µDTz (V1 − D1))

1+ µF(Dz)HF(Dz)

)
(17)

• The subproblem related to S is

min
S
λ1||S||1 + ||Y− X− S||2F (18)

which can be easily solved by the soft threshold operator

S ≡ soft(η1, λ) = sign(η1)×max
{
0, |η1| −

λ

2

}
(19)

where η1 = Y− X.
• The subproblems related to V2, V3 are summarized as{

minV2 λ2W� ϕ(V2,V3)+ µ||V2−DhV1−D2||
2
F

minV3 λ2W� ϕ(V2,V3)+ µ||V3−DvV1−D3||
2
F

(20)

These two variables should be solved jointly and the
solution is given by a band-by-band vector-soft thresh-
old function.

{V2(:, :, k),V3(:, :, k)} =
max(||C||F − λ

µ
, 0)

max(||C||F − λ
µ
, 0)+ λ

µ

C

(21)

where

C = {W(:, :, k)� η2(:, :, k),W(:, :, k)� η3(:, :, k)},

(22)

η2 = DhV1+D2, η3 = DvV1+D3, and (:, :, k) denotes
the kth band of HSI.

• The subproblem related to V1 is

min
V1

µ||V1 − DzX− D1||
2
F + µ||V2 − DhV1−D2||

2
F

+µ||V3 − DvV1 − D3||
2
F (23)

which has the similar form as subproblem (15), and
equals to the following linear system

(I+ DThDh + D
T
v Dv)V1 = DzX+ D1 + DTh (V2 − D2)

+DTv (V3 − D3) (24)

which also has the closed form solution by FFT and the
solution is given as

V1 = F−1
(

F(ξ1 + D
T
h ξ2 + D

T
v ξ3)

1+ F(Dh)HF(Dh)+ F(Dv)HF(Dv)

)
(25)

where ξ1 = DzX+ D1, ξ2 = V2 − D2, ξ3 = V3 − D3.
The aforementioned process can be summarized as pseu-

docode in Algorithm 1.
The convergence of the Algorithm 1 using ADMM could

be guaranteed theoretically in [41]. Moreover, the conver-
gence rate of ADMM algorithm depends on parameter µ.
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Algorithm 1 Extended ADMM Method for TV Model on
Spectral Difference Image

1: Initialization set k = 0, λ1 > 0, λ1 > 0, µ > 0, V(0)
1 ,

V(0)
2 , V(0)

3 , D(0)
1 , D(0)

2 , D(0)
3 ,W = ones(m, n, l).

2: Repeat
3: calculate X(k+1) according to Eq. (17)
4: calculate V(k+1)

1 according to Eq. (25)
5: S(k+1) = soft(Y− X(k+1), λ1

µ
)

6: V2 and V3 are calculated by Eq. (21)
7: Update multipliers
8: D(k+1)

1 ← D(k)
1 + DzX

(k+1)
− V(k+1)

1
9: D(k+1)

2 ← D(k)
2 + DhV

(k+1)
1 − V(k+1)

2
10: D(k+1)

3 ← D(k)
3 − DvV

(k+1)
1 − V(k+1)

3
11: Update weight
12: calculateW according to Eq. (10)
13: Update iteration k = k + 1
14: Until some stopping criterion is satisfied

We experimentally verify that the proposed algorithm has an
absolutely fast convergence rate with µ = 0.8. It is worth
mentioning that all matrices involved in Algorithm 1 are
calculated in 3-D dimension.

Finally, the computational complexity of the proposed
algorithm is provided. According to previous section, we
recall that l is the number of the bands of the input HSI
cube, and q = m × n is the total number of pixels in each
band. Then, in Algorithm 1, the computational complexity
for accelerating X and V1 by FFT is O(lq log q), while the
S, V2, V3 subproblems are solved by efficient soft threshold
and vector-soft threshold operators respectively, with a linear
computational complexity ofO(lq). Taking all parts into con-
sideration, the overall order of complexity per iteration for
Algorithm 1 is O(lq log q).

IV. EXPERIMENT
Experiments with simulated and real data are conducted to
demonstrate the effectiveness of our proposed method for
HSI restoration. For comparison, five different state-of-the-
art HSI restoration methods are employed as the bench-
mark in the experiments, i.e., BM4D [14], PCABM4D [9],
LRMR [17], 3DTV in (5) and the LRTV [21]. BM4D is the
block matching 4-D filtering method, which is the extension
of BM3D to volumetric data and has been demonstrated as
one of the best denoising methods for natural images while
PCABM4D is the method combining principal component
analysis and BM4D, which utilizes BM4D filter on the low
energy principal components for noise removal. LRMR is one
of the representative methods with low rank matrix recovery
via GoDec algorithm, while LRTV is a total variation reg-
ularized low rank method, and both of them have achieved
promising performance in removing the mixed noise of HSI.

As in [17] and [32], the mean peak signal-to-noise
ratio (MPSNR) index and the mean structural similarity
(MSSIM) index [42], mean feature similarity (MFSIM)

index [43], erreur relative globale adimensionnelle de synthe
‘se (ERGAS) [44] and mean spectral angle (MSA) [45] are
employed to give a quantitative assessment of HSI restoration
results. Three of the indices are defined as:

MPSNR =
1
l

l∑
i=1

PSNRi

=
1
l

l∑
i=1

10 log10

(
max(Xi)

MSE(Xi, X̂i)

)
(26)

MSSIM =
1
l

l∑
i=1

MSSIMi

=
1
l

l∑
i=1

10 log10

×

 (2µXiµX̂i
+ C1)(2σXiX̂i + C2)

(µ2
Xi
+ µ2

X̂i
+ C1)(σ 2

Xi
+ σ 2

X̂i
+ C2)

 (27)

MSA =
1

m× n

m×n∑
i=1

cos−1(xi, x̂i) (28)

where, max(Xi) stands for the maximum value of the ith band
image of input HSI X, and MSE stands for the mean square
error. µXi and µX̂i

stand for the average values of ith band

image of clean HSI X and reconstructed HSI X̂, respectively,
while σXi and σX̂i stand for the variances and σXiX̂i is the

covariance betweenXi and X̂i. Generally, the larger MPSNR,
MSSIM and MFSIM values denote the better results whereas
the smaller ERGAS andMSA values denote the better results.

FIGURE 3. HYDICE Washington DC dataset used in the simulated
experiment (false color image composed of bands 60, 27, 17 for the red,
green and blue wavelength, respectively).

A. SIMULATED EXPERIMENT ON HYDICE
In the first simulated experiment, the Hyperspectral Dig-
ital Imagery Collection Experiment (HYDICE) image of
the Washington DC Mall is adopted. A subimage of size
256× 256× 191 is used in the experiment, see Fig 3. Before
the simulated process, the gray values of each band of the HSI
are normalized to the range of [0, 1], and after the restoration,
they will be stretched back to the original range. In simulated
experiments, three kinds of noise are added to theWashington
DC image according to [17].
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FIGURE 4. Band 2 image of the restoration results in Washington DC dataset. (a) Original band 2; (b) noisy band
(PSNR = 19.50 dB); (c) BM4D (PSNR = 31.16 dB); (d) PCABM4D (PSNR = 32.43 dB); (e) 3DTV (PSNR = 21.33 dB);
(f) LRMR (PSNR = 27.09 dB); (g) LRTV (PSNR = 32.47 dB); (h) 3DCrTV (PSNR = 35.29 dB).

• Zero-mean Gaussian noise is added to all the bands
of input HSI. For different bands, the noise intensity
is different. The SNR value of each band varies from
10 to 20 dB randomly.

• Impulse noise is added to 20 bands randomly. The per-
centage of impulse noise is 20%.

• Stripes are simulated for 10 bands, in which 5 bands are
the same as the impulse noise bands, and 5 bands are
chosen randomly from the rest, and the mean SNR value
of the simulated data is 12.92 dB.

Due to the complexity and variety of noise, the param-
eters of our method are chosen empirically. For BM4D,
PCABM4D, 3DTV, LRMR and LRTV algorithms, we set the
parameters according to the references and then tune them
slightly to obtain the optimal results. For the first simulated
dataset, the parameters are set as follows. For BM4D, the only
parameter is the standard deviation, which is set to 0.15. For
PCABM4D, the number of high energy channel is set to 2.
For 3DTV, the regularization parameter for spatial TV is set
to 0.005, while for spectral TV it is set to 0.15 due to the heavy
stripe noise, and the parameter for sparse regularization is set
to 0.1. For LRMR, the patch size is set as q = 26, the step size
is set to 8, and the value of low rank parameter is set as r = 4,
and sparse parameter is set to k = 6000. For LRTV method,
the low rank parameter is set as r = 8, and the parameter for
total variation regularization is set as τ = 0.005, while the
other associated paramors are set as described in the reference
paper. For the proposed 3DCrTV and 3DCrWTV algorithms,
there are only two parameters, which are set as λ1 = 0.05,
λ2 = 0.1, respectively.

In order to thoroughly illustrate the restoration results,
images contaminated by different combination of these three

kinds of noises are presented to show the visual effect.
Fig. 4 shows the image of band 2 before and after restora-
tion, which is only corrupted by Gaussian noise with PSNR
value of 19.50 dB. From Fig. 4, it is obvious that the pro-
posed 3DCrTV algorithm performs the best among those six
methods since it simultaneously removes the heavy Gaussian
noise and preserves the fine details of the original image.
BM4D can also suppress the Gaussian noise in an extent, but
many fine details of the image are oversmoothed obviously.
PCABM4D can produce better results than BM4D, but some
fine details are also lost [see the zoom-in portion for details].
3DTV performs the worst in those six methods, it loses a lot
of fine details. LRMR can effectively remove the Gaussian
noise, but in order to pursue the low rank properties of the
wholeHSI cube, LRMRperforms almost as worst as 3DTV in
terms of PSNR. The LRTV could remove the Gaussian noise
effectively and produce the acceptable results, but it is still
slightly lower than 3DCrTV.

Fig. 5 illustrates the restoration results of band 32, which
is contaminated by Gaussian noise, impulse noise, and stripe
noise simultaneously. From Fig. 5, it is obviously observed
that the proposed 3DCrTV method can remove the mixed
Gaussian noise, impulse noise and stripes effectively, and lead
to the best performance among those six methods. BM4D can
suppress the Gaussian noise very well, but it fails to remove
the impulse noise and the fine details of the pixels surround-
ing the impulse noise are severely distorted. PCABM4D can
successfully remove the Gaussian noise and impulse noise
in an extent. However, both BM4D and PCABM4D fail to
remove the stripes in the image. 3DTV can remove the mixed
Gaussian noise, impulse noise and stripes simultaneously by
strengthening TV constraint along spectral direction, and it
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FIGURE 5. Band 32 image of the restoration results in Washington DC dataset. (a) Original band 32; (b) noisy band
(PSNR = 10.27 dB); (c) BM4D (PSNR = 12.77 dB); (d) PCABM4D (PSNR = 14.81 dB); (e) 3DTV (PSNR = 38.61 dB);
(f) LRMR (PSNR = 28.38 dB); (g) LRTV (PSNR = 16.06 dB); (h) 3DCrTV (PSNR = 39.80 dB).

FIGURE 6. Band 37 image of the restoration results in Washington DC dataset. (a) Original band 37; (b) noisy band
(PSNR = 11.52 dB); (c) BM4D (PSNR = 16.17 dB); (d) PCABM4D (PSNR = 24.01 dB); (e) 3DTV (PSNR = 37.33 dB);
(f) LRMR (PSNR = 36.65 dB); (g) LRTV (PSNR = 38.90 dB); (h) 3DCrTV (PSNR = 40.37 dB).

almost leads to a result as better as 3DCrTV. LRMR can also
effectively remove the mixed three noises in an extent, and
lead to a relatively good result. But for the stripes, due to the
different noise intensity in each band and the stripe lines in
the same 20 bands, LRMR regards the stripes as a low rank
component and fails to remove them completely. For LRTV,
it performs even worse than LRMR in removing the stripe
noise. The reason is that when the low rank regularization
could not successfully remove the stripe noise and treat it as

one low rank component, TV regularization will enhance the
stripe noise instead of getting rid of it.

Band 37 is corrupted by Gaussian noise and impulse
noise, while band 114 is corrupted by Gaussian noise and
stripe noise. The restoration results of these two bands are
illustrated in Fig. 6 and Fig. 7, respectively. From Fig. 6
and Fig. 7, it can be concluded that BM4D can effectively
remove Gaussian noise, but fail to remove the impulse noise
and the stripe noise. PCABM4D can almost totally remove
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FIGURE 7. Band 114 image of the restoration results in Washington DC dataset. (a) Original band 114; (b) noisy band
(PSNR = 16.11 dB); (c) BM4D (PSNR = 16.67 dB); (d) PCABM4D (PSNR = 17.51 dB); (e) 3DTV (PSNR = 33.59 dB);
(f) LRMR (PSNR = 29.30 dB); (g) LRTV (PSNR = 16.92 dB); (h) 3DCrTV (PSNR = 35.92 dB).

FIGURE 8. Spectrum of pixel (110, 206) which belongs to the class of building roof in the restoration results. (a) Original; (b) Noise-corrupted; (c) BM4D;
(d) PCABM4D; (e) 3DTV; (f) LRMR; (g) LRTV; (h) 3DCrTV.

the Gaussian noise and the impulse noise, but also fail to
remove the stripe noise. 3DTV can remove the Gaussian,
impulse noises and stripes simultaneously due to the TV
constraint along spectral direction, but its performance in
removing the heavy Gaussian noise is not good. LRMR can
effectively remove the mixed Gaussian noise, impulse noise,
and strip noise. However, when the HSI cube are heavily
corrupted by these three kinds of noise in different intensity,
it fails to balance the reduction of all noises simultaneously.

For example, LRMR can completely remove the stripe noise
in band 37 but fail to completely remove the stripe noise
in band 32 and band 114. In addition, for the bands with
heavy stripe noise, LRMR regards the stripes as a low rank
component and fails to remove them. LRTV usually could
perform slightly better than LRMR, except that when low
rank regularization could not totally remove the stripe lines
and treat them as one of the low rank components. In this
case, TV regularization would enhance the stripes because it
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FIGURE 9. Difference spectrum of original spectrum and the reconstructed spectrum in the pixel (110, 206) (a) Noise-corrupted; (b) BM4D; (c) PCABM4D;
(d) 3DTV; (e) LRMR; (f) LRTV; (g) 3DCrTV.

FIGURE 10. PSNR and SSIM values in each band of the reconstructed Washington DC dataset with different
algorithms. (a) PSNR; (b) SSIM.

enforces the difference along one of directions of the stripe
noise. For example, LRTV performs better than LRMR in
band 2 and band 37 but performs worse than LRMR in band
32 and band 114. The proposed 3DCrTV algorithm can deal
with the most complicated situation and lead to the best
results among those six methods.

To further compare the restoration performance of those six
algorithms, the spectral signature of pixel (110, 206), which
belongs to the class of building roof, is plotted and presented
in Fig. 8. The differences of the spectral signature between
the original spectrum and the reconstructed spectrum of pixel
(110, 206) is presented in Fig. 9. From Fig. 8, it is obvious
that the proposed 3DCrTV reconstructed the best spectral
signatures among those restoration algorithms. For 3DTV,
even it produces a relatively smooth spectrum, some details
(i.e. absorption peak) circled in the pink ellipse in Fig. 8 (d)

are lost. For BM4D, PCABM4D, LRMR, LRTV methods,
it is obvious to see that there are more or less fluctuations
(circled by the ellipses) in the restored spectra. It means that
those method could not remove the stripe noise completely
at the pixel (110,206). The similar phenomenon could also
be found in Fig. 9, it also leads us to conclude that the
proposed 3DCrTV produces the best results among all those
six methods.

In addition, the PSNR and SSIM values in each band of
the reconstructed results with different restoration algorithms
are illustrated in Fig. 10. From it, we can conclude that the
PSNR and SSIM values in almost all of the bands obtained
by our algorithm are higher than those of the other five
algorithms. Furthermore, even the noise intensity has a slight
impact of the results constructed by our algorithm, it leads to
an extremely good results in the bands corrupted by mixed
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FIGURE 11. MPSNR and MSSIM values as a function of parameter λ1 and λ2. (a) MPSNR versus λ1 and λ2; (b) MSSIM versus λ1 and λ2; (c) MSA versus
λ1 and λ2.

TABLE 1. MPSNR and MSSIM values of the restoration results in Washington DC dataset.

Gaussian noise, impulse noise and strip noise. Our method
has a better ability in balancing the restoration results in
bands with heavy and different noise intensity than LRMR.
Benefiting from the weights at every spatial location, the pro-
posed 3DCrWTV performances slightly better than 3DCrTV
in almost all of the bands in terms of PSNR and SSIM.

The relationship between MPSNR, MSSIM and MSA val-
ues produced by the proposed method with logarithm value
of the sparse parameter λ1 andCrTV regularization parameter
λ2 are presented in Fig. 11, where, λ1 and λ2 are chosen from
[0.001, 0.003, 0.005, 0.008, 0.01, 0.03, 0.05, 0.1, 0.2, 0.5, 1].
From Fig. 11, it is observed that sparse parameter λ1 really
has a relatively strong impact on the performance. However,
when the value of λ1 is in the range of [0.01 − 0.2], our
method could produce relatively better results. In addition,
the proposed method is really robust with regard to the CrTV
regularization parameter λ2, even the value of λ2 is in the
whole range of [0.01 − 1], the proposed method can lead to
a good results with PSNR up to almost 38 dB.

Table 1 exhibits the quantitative values of MSPNR and
MSSIM for the above six restoration methods as well
as the proposed 3DCrWTV method. From Table 1, it
can be observed that the values of all accuracy metrics
(i.e., MPSNR, MSSIM, FSSIM, ERGAS, MSA) show great
consistency with the visual evaluations. Moreover, the pro-
posed 3DCrWTV method could produce better performance
than 3DCrTV due to the adaptive spatial weights for every
pixels.

B. SIMULATED EXPERIMENT ON ROSIS
Reflective optics system imaging spectrometer (ROSIS)
images of the Pavia University, Italy, is used for the second
simulated experiment. The size of the subimage is 610×340,

FIGURE 12. ROSIS University of Pavia data set used in the simulated
experiment (false color image composed of bands 60, 27, 17 for the red,
green and blue wavelength, respectively).

with 103 bands in the spectral range of 0.43-0.86µm, and the
false color cube is illustrated in Fig. 12.
In the second simulated experiment, the original data are

added with Gaussian noise, salt-and-pepper noise, and stripe
noise simultaneously. Gaussian noise is added to all the bands
with σ = 5%, salt-and-pepper noise and stripe noise are
randomly added to 10 bands, the percentage of salt-and-
pepper noise is 20%, and the number of stripe lines is 10 in
each band. Furthermore, there are two bands that are added
with all the three kinds of noises, one of which is shown in
Fig. 13. The final mean SNR of the simulated data is 9.15 dB.

The restoration results of band 85, which are corrupted
with all three kinds of noises, are illustrated in Fig. 13.
From it, we can draw the same conclusion that our proposed
3DCrTV algorithm produces the best performance in terms
of PSNR and visual effect among those six methods. BM4D
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FIGURE 13. Band 85 image of the restoration results in University of Pavia dataset. (a) Original band; (b) noisy
band (PSNR = 11.09 dB); (c) BM4D (PSNR = 18.42 dB); (d) PCABM4D (PSNR = 18.42 dB); (e) 3DTV
(PSNR = 34.99 dB); (f) LRMR (PSNR = 37.16 dB); (g) LRTV (PSNR = 37.56 dB); (h) 3DCrTV (PSNR = 37.99 dB).

FIGURE 14. PSNR and SSIM values in each band of the reconstructed University of Paiva dataset with
different algorithms. (a) PSNR; (b) SSIM.

can remove Gaussian noise effectively, but fails to remove
the impulse noise and stripe noise. Besides, BM4D distorts
the details of the pixels surrounding the impulse noise seri-
ously. PCABM4D can do better than BM4D in removing the

Gaussian noise and impulse noise, but it also fails to get rid of
the strip lines. 3DTV can remove these three kinds of noises
simultaneously, but due to the strong strength of the TV
constraint along the spectral direction, it makes the spectra

VOLUME 5, 2017 27183



L. Sun et al.: Novel Weighted Cross TV Method for HSI Mixed Denoising

TABLE 2. MPSNR and MSSIM values of the restoration results in University of Pavia dataset.

TABLE 3. Classification accuracy (%) for the University of Pavia image using training and testing samples.

oversmoothed, this fact will be validated in the following
classification experiment. LRMR can effectively remove all
three kinds noises simultaneously, and almost produce the
results as good as that of the proposed 3DCrTV algorithm.
However, it fails to preserve some fine details of spatial
structures [see the zoom-in portion in Fig. 13(f)]. LRTV could
remove the noise of band 85 better than LRMR due to the
smoothness enforced by TV regularization in spatial domain.

Fig. 14 presents the PSNR and SSIM values in each band
of the reconstructed University of Pavia data set with dif-
ferent restoration methods. It is obvious that the proposed
3DCrTV and 3DCrWTV algorithm has an absolutely supe-
rior restoration performance in all of the bands. Furthermore,
for the bands contaminated by these three kinds of noises
simultaneously, 3DCrTV and 3DCrWTV can still produce
results that are as good as that of the other bands corrupted
by Gaussian noise only. These two phenomena both indicate
that our methods have an effective and stable performance
in simultaneously removing mixed Gaussian, impulse, and
stripe noises.

Table 2 exhibits the MPSNR and MSSIM values obtained
by the above six denoising algorithms as well as the proposed
3DCrWTV algorithm. In all indices, the 3DCrWTV method
outperforms the other six restoration methods. As mentioned
above, even LRTV could remove the mixed noise of band
85 very well, but the metrics are not better than LRMR,
especially for the MSA.

Another main purpose of the second experiment is to
evaluate the performance of the six restoration approaches
according to the classification results. Table 3 exhibits the
classification results of the University of Pavia data after
restoration byBM4D, PCABM4D, 3DTV, LRMR, LRTV and

FIGURE 15. HYDICE Urban dataset used in the real experiment (false
color image composed of bands 2, 103, 187 for the red, green and blue
wavelength, respectively).

the proposed 3DCrTV and 3DCrTVmethods, respectively. In
the experiment of classification, the sparse logistic regression
via variable splitting and augmented Lagrangian (LORSAL)
algorithm proposed in [46] is adopted as the classifier, and
50 samples of each class are randomly selected as the train-
ing samples. The classification results are measured by the
overall accuracy (OA), average accuracy (AA), and kappa
statistic (Kappa). All of the measurements listed in Table 3
are achieved by averaging the results of tenMonte Carlo runs.
It can be observed that classification results of the proposed
3DCrWTV method achieves the greater performance than
the other six approaches in terms of OA, AA and Kappa
statistic. Even 3DTV can produce restoration results as good
as LRMR in terms of PSNR, but it leads to relatively poor
classification results due to the oversmoothness of the spec-
tra. LRTV usually could produce slightly better results than
LRMR in removing the mixed noise, however, it is difficult
to keep the balance between the low rank regularization and
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FIGURE 16. Image of band 109 of the restoration results in Urban dataset. (a) Original image; (b) BM4D;
(c) PCABM4D; (d) 3DTV; (e) LRMR; (f) LRTV; (g) NAIRLMA; (h) 3DCrTV.

band-by-band TV regularization, thus distorting the spectra a
lot. It is the reason LRTV produces the worst classification
results among all competing methods.

In summary, the experiments of restoration and classifica-
tion on the simulated datasets all indicate that the proposed
3DCrTV and 3DCrWTV methods both perform much better
than the state-of-the-art methods, i.e., BM4D, PCABM4D,
3DTV, LRMR and LRTV, in terms of quantitative assessment
and visual effect.

C. REAL DATA EXPERIMENT
The hyperspectral digital collection experiment (HYDICE)
dataset, Urban of Copperas Cove, Texas [47], is adopted
for the real data experiment. The size of the scene
is 307× 307× 220. Among all bands, bands 104-108,
139-151, and 207-210 are severely polluted by the atmo-
sphere and water absorption. The false color image composed
of band 2, 103, and 187 is shown in Fig. 15. From Fig. 15, it is
observed that the Urban data is corrupted by heavy Gaussian
noise, strips and dead lines. In this experiment, we add a
new state-of-the-art denoising method, i.e., noise-adjusted
iterative low-rank matrix approximation (NAILRMA) [18],
for comparison, due to its promising performance for hyper-
spectral restoration.

Fig. 16 illustrates the image of band 109 and the recon-
structed results with BM4D, PCABM4D, 3DTV, LRMR,
LRTV, NAIRLMA and 3DCrTV methods, while Fig. 17
presents the reconstructed results of band 207. It is obvi-
ously seen that the BM4D and PCABM4D methods both
perform poorly in removing the strip noise. For the parts
contaminated by heavy Gaussian noise, lots of fine details are

oversmoothed, and for the edges between trees and grasses,
the structures are distorted, see Fig. 16 (b) and (c). The 3DTV
method can reduce the Gaussian noise and stripe noise to
a certain extent, but it loses many fine details in the spatial
domain. For low rank based methods, i.e., LRMR, LRTV and
NAIRLMA, they could remove the mixed noise to an extent,
however, all of them fail to remove the heavy stripes in band
109 and 207 (see the zoom-in portions of the corresponding
images in Fig. 16 and Fig. 17). Themain reason is the fact that
the stripes and dead lines of this scene locate at the same place
in several adjacent bands. For example, the stripes exist at the
same place from band 100 to 109 and also band 201 to 220.
In this case, all low rank basedmethods would treat the stripes
or dead lines as one of the low rank components and fail to
get rid of them. For the proposed method, it could effectively
remove all mixed noise (including Gaussian noise, impulse
noise and structured stripes or dead lines) and preserve the
fine details very well, due to the HTV regularization on the
spectral difference space.

Fig. 18 plots the horizontal mean profiles of band 109,
which is a good way to evaluate the performance of different
restoration approaches in the ability of preserving spectrum.
Due to the existence of stripes, there are rapid fluctuations
in the results of BM4D, PCABM4D, LRMR, LRTV and
NAIRLMA methods. It validates that all those methods fail
to remove stripe noise completely. In addition, the 3DTV and
the proposed 3DCrTV can effectively remove the stripes and
produce much smoother mean profiles than other methods.
However, more smoother mean profiles do not stand for a
better restoration result, it should be jointly analyzed with the
spatial details shown in Fig. 16 and 17. As in Fig. 18 (c), the
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FIGURE 17. Image of band 207 of the restoration results in Urban dataset. (a) Original image; (b) BM4D; (c) PCABM4D;
(d) 3DTV; (e) LRMR; (f) LRTV; (g) NAIRLMA; (h) 3DCrTV.

FIGURE 18. Horizontal mean profiles of Band 109 of the restoration results in Urban dataset. (a) Original image; (b) BM4D; (c) PCABM4D; (d) 3DTV;
(e) LRMR; (f) LRTV; (g) NAIRLMA; (h) 3DCrTV.

3DTV algorithm can produce the mean profiles as smooth
as that of 3DCrTV, due to the spectral TV constraint, but in
the first two peaks of the spectrum, the DN values go up to
almost 0.25, it is far from the linear regression of the original
spectrum. Moreover, 3DTV loses a lot of details in spatial
domain.

In a word, the proposed 3DCrTV can not only effectively
remove Gaussian noise, impulse noise and structured stripes
in the real HSI, but also has potentials in preserving the fine
details and spectrum.

V. CONCLUSION
In this paper, a novel weighted cross total variation method
has been proposed for HSI restoration in the framework of
regularization variation. This CrTV consists of a 2-D spa-
tial TV on the spectral difference image, and exploits the
intrinsic property of smoothness and minimum energy of
the spectral difference images by treating the HSI as 3-D
cube. In order to solve the proposed model, which takes
all mixed Gaussian, impulse and strip noises into consid-
eration, 3DCrTV algorithm is proposed and accelerated by
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nFFT. Experiments on two simulated HSI datasets and one
real HSI dataset were conducted and validated that the pro-
posed 3DCrWTV algorithm outperforms other state-of-the-
art methods, i.e. BM4D, PCABM4D, 3DTV, LRMR, LRTV
and NAIRLMA in removing the mixed Gaussian, impulse
and strip noises simultaneously and effectively. In addition,
the proposed 3DCrTV and 3DCrWTV algorithms are quite
stable to the parameters λ1 and λ2.
As future work, we will consider a new spatial-spectral

adaptive mechanism for the proposed model, which can auto-
matically calculate the spatial-spectral weights according to
the spatial structures and spectral noise intensity. Further-
more, in the framework of cross TV, many other conventional
TV could be extended to define different cross TV and the
CrTV model can be also easily extended to the nonlocal
sense.
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