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ABSTRACT False data injection cyber-physical threat is a typical integrity attack in modern smart
grids. These days, data analytical methods have been employed to mitigate false data injection
attacks (FDIAs), especially when large scale smart grids generate huge amounts of data. In this paper, a novel
data analytical method is proposed to detect FDIAs based on data-centric paradigm employing the margin
setting algorithm (MSA). The performance of the proposed method is demonstrated through simulation
using the six-bus power network in a wide area measurement system environment, as well as experimental
data sets. Two FDIA scenarios, playback attack and time attack, are investigated. Experimental results are
compared with the support vector machine (SVM) and artificial neural network (ANN). The results indicate
that MSA yields better results in terms of detection accuracy than both the SVM and ANN when applied to
FDIA detection.

INDEX TERMS Data analytical, false data injection, cyber-physical attack, smart grid.

I. INTRODUCTION
Internet of Things (IoTs) and Cyber-physical systems (CPSs)
have emerged to represent the next generation of engineer-
ing systems that will drive the fourth industrial revolution.
Smart grid systems have evolved to follow this IoTs/CPSs
trend, becoming a critical societal infrastructure as it involves
vital elements in our day-to-day life. Meanwhile, the mod-
ern smart grid system brings new security challenge, i.e.,
cyber-physical attack or threat, due to the deep integration of
the physical space (traditional power network infrastructure)
with the cyber space (information sensing, processing and
control) for efficient energy consumption and transmission.
Therefore, cyber-physical attack exploits the vulnerabilities
in the cyber space that will have an adverse impact on the
physical space of smart grids. Consequently, it can undermine
or even totally disrupt the control systems underlying electric
power grids. Cyber-physical attacks have resulted in many
security problems, and have become a critical concern for
both industrial control system users and vendors. In 2010 the
Stuxnet worm attacked Iran’s Natanz nuclear fuel enrichment
facility and infected computers in other countries, including

India, Indonesia, China, Azerbaijan, South Korea, Malaysia,
the United States, the United Kingdom, Australia, Finland
and Germany [1]. More recently, Ukraine’s power grid was
successfully disrupted by a Trojan called ‘‘BlackEnergy’’ on
Dec 23, 2015, resulting in several power outages that affected
approximately 225,000 customers [2].

False data injection attacks (FDIAs), or bad data injection
attack, are the most studied cyber-physical attacks in smart
grid security from recent primary studies [3]. In this paper,
FDIA is broadly defined including data integrity attacks in
both cyber-space and physical space. Cyber-space FDIAs
contain cyber-attacks on the communication messages from
sensors and meters, etc., that result in invalid operations.
Physical space FDIA is introduced in the realm of electrical
power grid byDeng et al. in 2009 [4]. This attack violates data
integrity, which aims to inject malicious measurements and to
modify the state estimation results. FDIAs are stealth attacks
that can bypass the existing detection scheme. There are sev-
eral consequences of FDIA. For example, the dynamic pric-
ing signal can be manipulated by the malicious attacker [5].
Therefore, the adversary injects false measurements to
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disrupt the smart grid operations and cause economic
loss.

One key sensing component is the source of FDIAs: syn-
chronized phasor measurement units (PMUs) [6]. PMUs
provide a solution for time-synchronizing the phase and
sequence measurements from nodes that are geographically
dispersed, so as to monitor, control, evaluate, and protect the
smart grid system. However, traditional defense approaches
for FDIAs have not prepared for the data challenges caused
by the large-scale deployment of PMU in the future smart
grid CPS. Large volumes of data produced from PMU
presents real time computational and storage challenges [7].
However, this challenge also represents an opportunity for
data analytical techniques, such asmachine learning, to detect
and prevent FDIAs. Currently, machine learning algorithms
have been applied to cybersecurity fields of sensor networks,
vehicular networks and smart grid [8]–[11]. This trend comes
from the fact that cybersecurity has become more sophisti-
cated and complex than before, and traditional manual and
signature-based approaches are no longer effective [12]. The
feature of machine learning is that it attempts to process
large volumes of data by learning well from patterns at a
level that can be beyond human comprehension. Besides,
machine learning is able to learn the non-linear, complex
relationship between measurements to detect false PMU data
injection. Therefore, machine learning is a very attractive data
analytical approach for PMU data analytics under FDIAs.

Several analytical approaches have been proposed for
FDIAs mitigation in recent years, including the Particle
Swarm Optimization, Bayesian framework, Random Forests,
Adaboost, and the common path mining method to mitigate
FDIAs [12]–[15]. A most recent work proposed a FDIA dete-
ction method based on support vector machine (SVM) [16].
Inspired by recent work, a novel data analytical approach
based on the margin setting algorithm (MSA), is proposed
to mitigate cyber-physical attacks. MSA is a relatively new
machine learning algorithm that has been used in image
processing fields [17], [18]. This is the first work to employ
MSA to detect false data injection in smart grids. The test
results demonstrate the validity of the proposed MSA, which
outperforms the other existing machine learning approaches,
such as SVM and artificial neural networks with respect to
FDIAs detection accuracy.

II. RELATED WORK
Recently, research has been conducted to defend against
FDIA as a cyber-physical threat in CPS. The central part
of CPS is the control system. From a modeling point
of view from the control theory community, most of the
research is based on model-based paradigm [3]. However,
with the growing trend of large scale CPSs, huge amounts
of data are produced. The enormous data, i.e., ‘‘Big Data’’
in CPS demands more cost-effective solutions: data-based
paradigms, to handle the big data challenge. Accordingly, the
FDIAs defense mechanisms can be classified as theoretical,
application-based approaches and data analytical approaches

using machine learning, artificial intelligence, data mining,
statistics, etc.

A. THEORETICAL-BASED APPROACHES
Some methods have been proposed to defend FDIAs theoret-
ically. The attacker builds attack vectors that are against the
state estimations [19]. The pioneer work of FDIAs presented
this attack with the assumption that power grid configuration,
such as topological information and transmission line admit-
tance are known to the adversary. If the topology informa-
tion is even altered by the adversary, the state estimations
will be falsified. Kim et al. presented an FDIA under the
incorrect network topology that deceives control center by
altering certain meters and network switches [20]. Jia et al.
discussed that FDIAs can cause errors in topology and state
estimation, which results in bad data injection to the real-
time location margin price [21]. Similarly, another topology
poisoning attack scenario showed that it could compromise
optimal power flow routine [22]. Esmalifalak et al. pro-
posed an inference algorithm based on a linear independent
component analysis (ICA). Grid topology and power states
could be inferred from phasor observations by an attacker.
Attacker could launch a low detectable FDIA [23]. Besides,
Liu et al. propose nuclear norm minimization method and
low rank matrix factorization approach to solve matrix sepa-
ration and detect FDIAs [24]. These FDIAs are based on the
DC power flow model. Besides, FDIAs under the AC mod-
els are discussed by some researchers as well. Rahman and
Mohsenian-Rad presented a method for constructing a non-
linear FDIA under AC model [25]. Gu et al. proposed a new
detection method by tracking the dynamics of measurement
variations calculated using metrics of Kullback-Leibler dis-
tance (KLD) of two distributions. When FDIAs are injected,
KLD becomes larger as current distribution of measurement
variations deviates from old data [26].

B. APPLICATION-BASED APPROACHES
Other methods are proposed on the application domain
to FIDAs. Lin et al. proposed an approach on FDIAs against
distributed energy distribution. This approach led to the con-
sequence of disrupting the effectiveness of the distribution
process [27]. Besides, some research work indicates that
large scale PMU deployment can defend against FIDAs,
but the cost is very high [28]. To address this drawback, a
PMU placement algorithm is proposed by modeling an opti-
mization problem. Solving this problem will place minimum
number of PMUs at optimal locations with least cost [29].
Another similar work proposed greed algorithms that can be
utilized to place secure PMUs at appropriate locations [28].
However, the PMU deployment still suffers from the time
stamp attack that sends falsified GPS signals [30]. Besides,
FDIAs can inject a set of significant measurements,
which masks the transmission line outages [31]. The other
application-based methods take into account of the structures
of networks. Ozay et al. considered both centralized and dis-
tributed structures under sparse FDIAs, which compromises
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a modest number of meter readings [32]. Liu et al. proposed
an efficient method to find the optimal FDIA local region
with less network information, i.e., parameter information of
a limited number of power lines [33].

C. DATA ANALYTICS APPROACHES
Only a small number of FDIA research are based on data
analytical methods, including statistics, data mining, machine
learning, and artificial intelligence. Especially, machine
learning and deep learning used by data intensive applica-
tions, i.e., big data collected from sensors and meters, provide
a way to tackle complex structure data sets with artificial
intelligence.

For statistical methods, a regularized maximum likeli-
hood estimator (MLE) is proposed to recover the grid topol-
ogy from public available market data. This market data is
the real-time locational marginal prices that are computed
based on Lagrange multipliers of the network-constrained
economic dispatch. The grid topology Laplacian matrix is
estimated through an algorithm based on iterative direction
method of multipliers (ADMM) [35]. Another recent work
proposed a new Cumulative Sum (CUSUM) algorithm based
on the generalized likelihood ratio (GLR) for FDIAs online
sequential detection [13]. This approach outperforms the
existing first-order cumulative sums detectors with respect
to the average detection delay. Valenzuela et al. developed
an algorithm to detect anomalies from real-time power flow
results based on principle component analysis (PCA). PCA is
used to differentiate regular power flow variability from irreg-
ular ones [35]. Another method utilized PCA approximation
to conduct roughly stealthy FDIAs without the knowledge of
grid topology [36].

For machine learning, data mining and artificial intel-
ligence approaches, most of them are used for anomaly
detection for FDIAs. Kosut et al. proposed an approach
that utilized a Bayesian framework to formulate the
FDIAs problems. They introduced a heuristic to detect FDIAs
with low computational overhead [12]. Hink et al. detected
the power system faults and cyber-attacks using several
batch processing-based machine learning and data mining
algorithms, including Random Forests, Naïve Bayes, SVM,
Adaboost, etc. [14]. Pan et al. proposed a hybrid intru-
sion detection system using common path mining method
to detect abnormal power system events from data with a
fusion of PMU data, information from relay, network secu-
rity logs and energy management system (EMS) logs [15].
Landford et al. proposed a machine learning approach to
detect FDIAs using a two-class SVM. This method analyzed
the change of correlation between two PMUparameters using
Pearson correlation coefficient [16].

III. MACHINE LEARNING ALGORITHMS
Supervised learning approach leverages the prior knowledge
of the training labels and features in the training set to make
classifications or predications for the testing data sets.MSA is
able to learn from the large volumes of historical time series

PMU data to detect FDI anomalies and make predications.
Another two popular classification algorithms are support
vector machines and artificial neural networks. They are used
for comparison in our experiment.

A. ARTIFICIAL NEURAL NETWORKS
Artificial neural networks (ANN) is a computational architec-
ture that mimics the biological neural structure of the brain
and form interconnected groups of artificial neurons. Each
neuron in ANNs is a set of input values (xi) and associ-
ated weights (wi). The neurons are organized into layers.
ANN starts with the input layer. The next layer contains at
least one hidden layer. The final layer is the output layer.
Among the various architecture of ANN, the feedforward,
back propagation (BP) neural network is the most popular,
effective model to recognize patterns.

Suppose the input of ANN is x = [x1, x2, . . . , xn]T and
output y (x) = [y1, y2, . . . , yn]T . The exists a mapping M
from the input space X : {x ∈ X |x is the input to the system}
to output space Y : {y ∈ Y |y is the output of the system for
given input x}. The mapping M is presented as [37]:

M : X → Y (1)

The BP learning process can be considered a process to
gradually adjust the network internal parameters, i.e., weight
w in the weight space ω, i.e., w ∈ ω, so that the difference
between the expected outputs ŷ(x,w) and real outputs y(x) of
the network is minimal:

min‖ŷ (x,w)− y (x) ‖2 (2)

This process contains two phases: forward propagation
and weight update. During first phase, the input value is
propagated from input layer, via the hidden layer to the
output layer using the weight value and offset value of the
network. Then the output of the network is compared with
the expected output. The difference between the real output
and expected output is the error. The second phase, the weight
is continuously updated and modified to minimize the error.

B. SUPPORT VECTOR MACHINE
SVM is a supervised machine learning algorithm that uses
training data sets to make predictions. The goal of SVM is
to separate a given set of binary labeled training data with
a hyperplane that is maximally distant from them, i.e. with
maximized margin. However, a hyperplane cannot separate
the training data if they are non-linearly separable. Hence,
‘‘kernels trick’’ is introduced to map the training data from
its original input space to a high dimensional space where
a linear mapping can be achieved. In this case, the hyper-
plane found by the SVM in the feature space corresponding
to a non-linear decision boundary in the original input space.
Several common kernel functions are: linear kernel, Gaussian
radial basis kernel and Sigmoid kernel, etc [38].

Given a training data set with n data samples as (xi, yi),
where xi ∈ Rd , yi ∈ {−1, 1} , i = 1, 2, . . . , n., xi is the
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feature vector and yi is the classification label. The decision
boundary of SVM is a hyerplane H : (w, b), where w is a
normal vector, or a weight vector, perpendicular to the hyper-
plane with initial value w0 = 0. It is adjusted iteratively each
time when training examples are misclassified by current w.
b is the bias. The hyperplane equation is defined as

wT xi + b = 0. (3)

To assign class labels to each class for test data, another
two hyperplane H1 and H2 are used to determine their clas-
sification labels:{

H1 : wT xi + b ≥ 1, if yi = +1
H2 : wT xi + b ≤ −1, if yi = −1

(4)

Therefore, since the final goal is to find the hyperlane
with the largest margin, it should satisfy the equation (4)
and minimize weight vector | |w| |2, where | |·| |2 is Euclidian
norm function. The points on H1 and H2 are called support
vectors. To solve the minimization problem, Lagrange multi-
plier method and Karush-Kuhn-Tucker (KTT) condition are
used to transform this problem to its dual problem. Therefore,
an equivalent dual problem of minimizing | |w| |2 is a maxi-
mization problem solving by QP (Quadratic Programming)
below:

maximize W (α) =

m∑
i=1

αi −
1
2

m∑
i=1

m∑
j=1

αiαjyiyjxi · xj

subject to
∑m

i=1
yiαi = 0

W =
∑m

i=1
αiyjxi

0 ≤ αi ≤ C, i = 1, . . . ,m. (5)

Where α1, . . . αm is the Lagrangian multiplier associated
with each training example (xi, yi). The Lagrangian multi-
pliers are bounded by C, called a box constraint. αi is the
lagrangian multipliers for the support vectors.

IV. FALSE DATA INJECTION ATTACKS
A. FALSE DATA INJECTION ATTACK
False data can be injected into the physical model of the smart
grid, so that the state estimation is corrupted. Let us assume
the physical model of smart grid with N buses in AC power
model can be viewed as follows [40]:

z = h(x)+ e (6)

where x is an n-dimensional state vector x {x1, x2, . . . , xn}T

(xi ∈ R) for n state variables. z is an m-dimensional state
vector z {z1, z2, . . . , zm}T (zi ∈ R) for m measurements,
including the injected active or reactive power flow for each
bus, transmission lines, etc. e is a m–dimensional error vector.
This error vector assumes a Gaussian noise with mean value
of 0 and covariance R. In the DC power model,

z = Hx+ e (7)

where H is an invariable Jacobi matrix of h(x) denoted as:

H =
∂h(x)
∂x
|x=x0 (8)

After FDIA, the measurement z will be:

z = h (x)+ e+ α (9)

where α is the attack vector. The bad data detector (BDD)
module examines difference between real value z and esti-
mated ẑ. If difference exceeds threshold value τ , i.e.,∣∣ẑ− z

∣∣ > τ (10)

the false data will be detected.

B. FDIAs TAXONOMY
Only limited number of studies mentioned on FDIAs taxon-
omy. Most current survey research only broadly classifies the
cyber-physical threats into several categories by the target of
the attacks: software, hardware, communication stack, imple-
mentation of protocols. Ashok et al. classified threats into
timing-based attacks that flood the communication network
with packets; integrity attacks that corrupt the data; reply
attacks that hijack the packets in transit of PMU and PDC
(power distribution center) [41]. Other research work classi-
fies the FDIAs in defense mechanism and attack strategy, or
in cyber-side and physical side. However, their taxonomy is
not adequate for all types of FDIAs.

Moreover, many researches focus on model-based
paradigm that concentrates onmodelling the intelligent, coor-
dinated attacks in the past few years. However, with the large
volumes of data derived from more and more complicated
CPS, the cost of modelling tends to be higher comparing to
the efficiency and performance that get improved [3]. There-
fore, cybersecurity is intertwined with big data, thus cyber-
physical threats (CPTs), especially FDIAs are proposed to
study and to be classified in a data-based model for the
future CPS. This aim is achieved through comprehensively
studying all current FDIAs in both cyber and physical layer,
and classifying FDI-CPTs in a data centric paradigm.

V. DATA CENTRIC PARADIGM OF FDIAs
Data centric paradigm is the trend to analyze the FDIAs
with respect to attacks on data. Nowadays, smart grid
CPS have been collecting massive amounts of domain-
specific information, such as PMUs. Given large volumes
of data generated in real time, it is necessary to shift from
traditional model-based paradigm that only considers the
attack models to the data centric paradigm for data analytics.
This comes from the fact that model-based methods have
limitation of performance and efficiency improvement when
processing big data from CPS. Besides, fast development of
hardware, such as graphic processing unit (GPU) provides
itself as a high-performance tool to accelerate big data ana-
lytical tasks.

Data centric paradigm aims to analyze the FDIAs in
cyber-physical layers, and the integration of the two layers.
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FIGURE 1. Proposed Data Centric Paradigm FDIAs taxonomy (Delete AMI
Data).

Data attacks attempt to insert, alter, or delete data or control
commands in both layers. One consequence is misleading
the smart grid to make wrong decisions. Figure 1 shows the
proposed big data centric paradigm to classify FDIAs. This
taxonomy contains three categories: 1) big data in cyber layer,
including communication message big data. They are the data
transported through network protocols, such as Modbus/TCP,
DNP3/TCP, IEC 61850, etc.; 2) big data in physical layer,
including PMU and Timing big data. They are the data that
affect the physical model of smart grids; 3) big data across
both layers. They are Meta data for sophisticated FDIAs,
which integrate two or more diverse data sets.

A. NETWORK COMMUNICATION MESSAGE BIG DATA
FDIAs in the cyber-layer are attacks that intrude into the
communication network. They include several attacks by
jamming the network communication by false data, flooding
packets in the network. One result is password and authen-
tication failure. Another result of FDIAs is the Denial of
Service(DoS) attack on both sensor data and control data, so
that availability of the devices is lost. In home area networks,
the number of connections for smart meters is limited. The
FDIAs spoof this identity, and flood large amounts of bad
data to reach the connection limit to result in denial of service.
Then smart meters are out of network, FDIAs can launch the
next steps of attack to inject false data to control center.

B. PMU AND TIMING BIG DATA
FDIAs in the physical-layer are attacks that intrude into the
smart grid with the knowledge of configuration of power
system. The mainly source comes from stealthy false data
injection from PMU. After false data is injected into the phys-
ical model of the smart grid, the state estimation is corrupted.
It is proposed to classify FDIAs according to the data source:
PMU and time stamp data. One example of timing stamp
attack (TSA) happens when the adversary injects the false
data into GPS signal and disrupt PMUs time synchronization.

FIGURE 2. Quantitative FDIAs Evaluation.

The consequence is the transmission line fault, voltage insta-
bilities and event location disturbance.

C. META BIG DATA
FDIAs in a more sophisticated type integrate cyber-layer and
physical layer. It may require an automated mechanism to
mingle multiple highly diverse datasets. In big data approach,
we can use ontology-based semantic analysis to find the
scheme of relationships between concepts for FDIAs [42].
This type of FDIAs can be analyzed by a hybrid approach
using attack graphs [43]. An attack graph is a succinct rep-
resentation of all paths in a system. In this graph, the final
node is the attacker’s goal. Some FDIAs are sophisticated
through a chain of steps to achieve adversary’s goal across
cyber-physical layers.

D. QUANTITATIVE EVALUATION
There are many FDI cyber-physical threats, how to quan-
titatively evaluate them can give us a guidance about the
severity of FDIAs. Through this approach, we can find the
most critical FDIAs in smart grids. Current risk analysis
model contains attack trees, CRAMM [44]. It is a method that
can quantitatively evaluate risks through an analysis model.
Evaluation of FDIAs can be proposed to use the risk analysis
model in CRAMM shown in Figure 2. This risk analysis
involves the identification and assessment of three aspects.
They are values of assets, levels of threats and vulnerabilities.
Final evaluation can be determined as a product of threat,
vulnerability, and asset values:

Risk = Asset× Threat× Vulnerability (11)

Values of assets will evaluate the importance of the data.
A scoring system with metrics is proposed here, which
is inspired from Common Vulnerability Scoring System
(CVSS). This score considers of several metrics for FDIAs
integrity attack as shown in Table 1.

VI. PROPOSED MARGIN SETTING ALGORITHM
Margin setting algorithm is a novel data analytical approach
based on machine learning. It is the first work to apply
MSA to mitigate FDIAs. MSA can learn from the data and
recognize patterns, and perform anomaly detection on data
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TABLE 1. FDIA vulnerability impact score metrics.

FIGURE 3. Proposed Data Centric Paradigm FDIAs taxonomy.

in CPSs, such as smart grids. Decision boundaries of MSA
are hyperspheres called prototypes. It is defined as a center-
radius form,

G =
{(
ωi,Ri,Cp

)
, (i = 1, 2, . . . ,N )

}
(12)

where ωi is the center of G, Ri is the radius of G, Cp is the
class label. p is the total number of classes for classification.
N is the number of prototypes belonging to class Cp.
Figure 3 shows the data flow using MSA data analytical

method to detect FDIAs: (a) Data acquisition: large volumes
of PMU data is collected. FDIAs are injected adversary
into PMU data. (b) Data storage: in this stage, big data
are loaded using the Hadoop approach [45]. Hadoop can
provide resilient storage and big data sets processing in a
distributed computing environment. NoSQL may be used to
provide mechanisms for the retrieval of data that is not in
the traditional relational database format [46]. (c) Data ana-
lytics: in this stage, data are retrieved from database server.
There are mainly two tasks for this phase: 1) FDIA detection.
FDIAs can be detected byMSA data analytical method based
on the time series historical PMU data; 2) FDIA can be
predicted in the future if they match the similar pattern that
we have learned fromMSA. TheMSA algorithm is explained
below using the flowchart in Figure 4. Online PMU data
is gathered from PDC as the input of the MSA algorithm.
MSA build initial classification boundaries called prototypes.
Then the prototypes are trained by MSA to generate the
optimal prototypes as the output. The output can classify the
abnormal data and normal data. Abnormal data are results
from FDIAs.

VII. TEST RESULTS
In this section, the performance of the proposed MSA is
demonstrated by comparing it with another two state of the art
machine learning data analytical methods - SVM and ANN.
Extensive experiments are conducted on both the simulation

Algorithm 1 MSA Cyber-Physical Attack Detector
Notation: Unif [0,1]: random numbers from [0, 1] space
with uniform distribution.
Prototype: Gi =

(
ωi,Ri,Cp

)
(i = 1, 2, . . . ,N ), ωi is the

center,Ri is the radius,Cp is the class label.N is the number
of prototypes belonging to class Cp.
MFnGi : maximum fitness of the nth mutation.
θ : θ -percent margin θ = 0;
MQ: maximum number of generation MQ = 20;
MW: maximum number of mutation MW = 20;
M : Number of mutation M = 0;
Q : Number of generation. Q = 0;
Input: PMU time series data including n features to build
a training set S with k samples, where S = {(x1, . . . , xm).
xi(1 ≤ k ≤ m) is n-dimension (n ≥ 2) vector. Training
sets labels Cp(p = 1, 2) is associated with each training
data sample xk indicating two classes, abnormal C1 = −1
and C2 = 1 (normal).
Initialize:
Set θ ← 0, MQ← 20, MW← 20, M← 0, Q← 0;
While S 6= ∅ or Q <MQ

Normalize S into [0,1] space. Randomly generate N n-
dimensional data sample ωi ∈ Unif[0, 1].
While MFnGi > MFn+1Gi or M < MW
1) Build prototypes for training set including abnormal and

normal class. Gi =
(
ωi,Ri,Cp

)
(i = 1, 2, . . . , h <

N ) for each class Cp. Suppose there are h prototypes
for abnormal class C1, (N-h) prototypes for normal
class C2.

2) Center ωi with class Cp is decided by the minimum
Euclidean distance di from each ωi to xk ,

di = min| |ωi − xk | |. (13)

If xk is with label Cp, then ωi is the center of class Cp.
3) Radius Ri with class Cp for each ωi:

Ri = min| |ωi − xk | |. (14)

If p = 1, xk is with a class label Cp when p = 2.
If p = 2, xk is with a class label Cp when p = 1.

4) Calculate fitness forGi for each class Cp separately. The
fitness of Gi is denoted as FGi . Its value is the number
of data samples falling inside of Gi (a hypersphere)
geometrically. The largest FGi is detonated as MFGi .

5) Mutation. Select a center ω′i of prototype Gi of class Cp
to mutate. Calculate fp:

fp =
FGi∑h
1 FGi

. (15)

If i in ω′i satisfy the following and ζ ∈ Unif[0, 1]:∑i−1

ξ=1
fξ < ζ ≤

∑i

ξ=1
fξ . (16)

Mutate ω′i to its neighbor area. The mutated centers are:

ω′i + δ. (17)

VOLUME 5, 2017 26027



Y. Wang et al.: Novel Data Analytical Approach for False Data Injection Cyber-Physical Attack Mitigation in Smart Grids

Algorithm 1 (Continued.) MSA Cyber-Physical Attack
Detector

Where δ = εαU . ε is random sign symbol {−1,1}. α ∈
Unif[0, 1]. U is the maximum perturbation:

U =

{
ωk ωk < 0.5
1− ωk otherwise.

(18)

6) M← M+ 1
end while

7) Update training set. Store the optimal prototypeGoi with
MFnGi , and radius Ri,o. Remove all data samples falling
inside of all prototypes of the current generation n,
denoted as Gni geometrically. The radius of Gni is Ri,n:

Ri,n = (1− 0.01θ )Ri,n (19)

Store the reduced training set S ′. Where 0 ≤ θ < 100.
8) S← S′

9) Q← Q+ 1
end while
Output: Total optimal prototypes Goi for each generation
for each class label Cp:

GCp = ∪
Q
t=1G

o
i |t,Cp . (20)

The prototypes GCp geometrically classify the abnormal
data, i.e., spoofed data, and normal data.

FIGURE 4. MSA Cyber-Physical Attacker Detector Flowchart.

PMUdata sets and real-world PMU data sets. Simulation data
sets are generated from a six-bus power system employing
MATLAB/Simulink in the multi-area WAMS network based
on synchrophasors data.

A. SYSTEM DESCRIPTION
The principle of a multi-area WAMS network scenario
based on synchrophasors data with the aid of a broadband

TABLE 2. Simulation parameters.

communication network is described in this section. The
system consists mainly of two layers (physical power layer
and cyber communication layer) as shown in Figure 5.
First, the electrical power system layer, which consists of
line-line 208V generating station with 50-kW output rated
power, a wind-based power renewable source of 24-kW
rated power, 3-power transformers (T1-T3) linking the dif-
ferent parts of the electrical system, 3-short transmission
lines (T.L.1-T.L.3), 6-buses (B1-B6), 11- circuit breakers
(CB1-CB11) and 2-loads each of 30-kW. Secondly, the
WAMS communication layer consists of 3-PMUs, locating
at generation and load buses, and one phasor data concen-
trator (1-PDC) which collects the data received from the
remote PMUs. The PDC performs protocol conversion from
IEEE C37.118 to several common power system protocols
suitable for analysis and control actions in the control center.
A satellite GPS synchronization device is used to enable all
PMU measurements and date collection for all buses at same
instant.

B. VALIDATION SETUP
A software-based validation setup was constructed to validate
the proposed approach in WAMS for smart grid applications.
The simulation is performed in MATLAB/Simulink 2016a
programming environment on a desktop computer with Intel
Core i7-4790, 3.6-GHz CPU, 64-bit Windows 7 Enterprise
operating system. Figure 6 shows the Simulink model of a
six-bus power system incorporated in WAMS environment.

The simulation parameters are shown in Tables 2, 3.
As shown in Table 2, bus 1, to which a 50 kW generator is
connected, is the swing bus. Bus 2, to which a 24 kW wind
power generation and local load are connected, is a voltage-
controlled bus. Buses 3-6 are load busses. With current PMU
technology, the sampling rate of PMUs can reach as fast as
48 samples per cycle, i.e., 2880 samples per second. Such a
high sampling speed, however, is not feasible in this study
as the proposed estimators need to process the transmitted
data and perform the computation within the time frame.
PMU measurements are sampled at 10 kHz in this study.
A total of 100,000 data sample measurements are col-
lected from each PMU to investigate the proposed
MSA performance.
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TABLE 3. Simplified π model line parameters in the software simulation.

TABLE 4. FDIA detection performance of simulated data sets for playback
attack.

The performance evaluation of MSA is compared with
SVM and ANN. The default parameters are chosen. In MSA,
the maximum generation MW = 20 and Maximum muta-
tion MQ = 20. In ANN, a feed forward back-propagation
network is implemented. The maximum number of epochs
to train is set to 10, performance goal is set to 0, and
learning rate is 0.01. In SVM, radial basis function is used
for kernel type. Other parameters are default values in
LibSVM [47]. All results are averaged from ten repeated
experiments.

C. ATTACK MODEL
Data points can be dropped for loss of internet connection.
Some large disturbance may be caused by short circuits on
transmission lines, large or sudden loss of generation or load,
transmission line trip and reclosing actions. All zero mag-
nitude, angles and frequencies are pre-processed so that this
case will not affect the performance of the proposed method.
In a large cyber-physical system, differentiating normal and
abnormal data can be overwhelming since cyber-physical
attacks can be very complicated and may lead system to
behave naturally. To model FDI scenario and evaluate the
performance of our proposed algorithm, it is assumed that
the attacker can take control of a subset of PMU readings.
We consider two cases when attackers have limited knowl-
edge of the power network. They are spoof playback and
time attack [49], [50]. For some knowledgeable attackers,
they may launch complicated attack by injecting data that
matches the patterns of the normal events. This situation
is beyond the scope of this paper, since it is rare for
large-scale power networks. Suppose the total time we col-
lected the data is T, two FDI scenarios are constructed as
follows:

1) PLAYBACK ATTACK
The initial T/2 time of the data is played back in reverse to
produce the latter T/2 time data. Data is collected based on
time. The three attributes: magnitude, angle and frequency
are recorded. Time t and t + 1 denote the time that two data
samples collected sequentially.

FIGURE 5. The proposed WAMS network involving wind renewable power
plant.

FIGURE 6. Simulink model schematic of the proposed system.

2) TIME ATTACK
The final T/2 of data is re-sampled using different rates
of time. The rates of time vary from very slow (a factor
of 4 slower than real-time) to near real time (a factor of 7/6
slower than real-time).

D. SIMULATION DATA SETS
The PMU data collected from the Simulink model of WAMS
network. The false data ratio for PMU1, PMU2 and PMU3
under playback attack are: 0.334%, 0.196% and 0.086% for
totally 100,000 samples.

The experimental results for FDI playback attack is
reported in Table 4. It can be seen that the proposed MSA
outperforms ANN and SVM in terms of detection accuracy
for all three PMU stations. Moreover, when the false data
ratio increases, the performance of all three algorithms, pre-
senting a decreasing trend as shown in Figure 7. Besides,
when the false data ratio increases, MSA tends to yield better
performance comparing to ANN and SVM. For example,
when false data ratio is 0.086% in PMU3 station, MSA has
a slightly better performance, i.e., 0.003% better than ANN
and 0.009% than SVM. However, in PMU1 station case with
0.334% false data ratio, MSA is 0.01% and 0.025% better
than ANN and SVM, respectively.

The results for FDI time attack are reported in Table 5.
It is observed that MSA gives higher detection accuracy in
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TABLE 5. FDIA detection performance of simulated data sets for time attack.

FIGURE 7. FDIA Detection Performance in terms of false data ratio among
proposed MSA, ANN, and SVM using simulated PMU data from the
Simulink model of WAMS network under playback attack.

TABLE 6. FDIA detection performance of experimental data sets for
playback attack.

all scenarios we consider in this experiment. When the re-
sampling rates gets slower, ranging from a factor of 7/6 to
4 slower than the real time, the detection accuracy perfor-
mance increases. For example,MSA performance raises from
97.634% to 99.557% when the re-sample rate is changed
from 7/6 (near real time) to a factor of 4 slower than real
time. In addition, note that when the false data ratio is the
lowest for PMU3 station, the MSA can only yield a slightly
better performance than ANN, i.e., 0.002%, 0.004%, 0.004%
and 0.003% better in the four time-attack scenarios. However,
when the false data ratio is highest in PMU1 station, theMSA
yields an average 0.01% better than ANN. This indicates that
the larger the false data ratio, the better performance MSA
compared with SVM and ANN.

FIGURE 8. FDIA Detection Performance in terms of false data ratio among
proposed MSA, ANN, and SVM using experimental data sets under
playback attack.

TABLE 7. Experimental data sets false data ratio for time attack.

E. EXPERIMENTAL DATA SETS
PMU data collected from Texas Synchrophasor Network are
chosen for our experiment to detect FDIAs using a real-PMU
dataset [48]. The sampling rate for this data is 30-Hz, so
only low frequency (<15Hz) oscillations can be analyzed.
An hourly PMU data consisting of 108,000 data points are
used for analysis. Each data point includes three signals:
voltage magnitude, angle and frequency. All measurements
are taken under the customer-level (120-V). There are six
PMU stations operating in the network. The name labels of
these stations are: McDonald, Harris, UT Pan, UT 3, Austin,
WACO. Experiments are conducted under playback attack
and time attack.

The performances of FDI playback attack are presented
in Table 6 and Figure 8. It is observed that the proposed

26030 VOLUME 5, 2017



Y. Wang et al.: Novel Data Analytical Approach for False Data Injection Cyber-Physical Attack Mitigation in Smart Grids

TABLE 8. FDIA detection performance of experimental data sets for time attack.

FIGURE 9. FDIA Detection Performance in terms of false data ratio among proposed MSA, ANN, and SVM using
experimental data sets under time attack for a factor of (7/6, 3/2, 2, 4) slower than real time sample rate.

MSA achieves better performance than SVM and ANN in all
six different PMU stations. The FDIA detection performance
presents the same trend as the experiment with simulation
data sets. When the false data ratio increases, all the algo-
rithms, SVM, ANN and the proposed MSA experience a
linear decline with respect to their performances to detect
FDIAs. Besides,MSA hasmuch better performance when the
false data ratio is higher. For instance, MSA achieves 0.02%
and 0.06% higher detection accuracy than ANN and SVM in
UT Pan station with the highest false data ratio of 1.851%
among six PMU stations.

Table 8 and Figure 9 illustrates the performances of MSA
with ANN and SVM for four FDI time attack scenario using

the experimental sets. The false data ratios for time attack
scenarios are presented in Table 7. The four scenarios are
simulated by changing the different re-sampling rate, i.e.
factor of 7/6, 3/2, 2 and 4 slower than real time in the final
30 minutes of the time series data sets. Overall, the MSA
outperforms NN and SVM in all four different scenarios for
all six PMU stations. When the false data ratio decreases,
the performance tends to increase. Take an example in the
factor of 7/6 scenario, the McDonald PMU yields 96.543%
accuracy when false data ratio is 1.784%. However, the per-
formance goes up to 97.522% for 0.663% false data ratio in
WACO PMU. Figures 9 presents a decline trend for FDI time
attack detection accuracy when the false data ratio increases.
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FIGURE 10. FDIA Detection Performance in terms of false data ratio
among proposed MSA, ANN, and SVM using experimental data sets
under time attack for a factor of (7/6, 3/2, 2, 4) slower than real time
sample rate.

Although the false data ratio varies in six PMU stations for
four different cases, it is worth to note that the re-sampling
rate gets slower, the performance gets higher in detection
accuracy. For example, it can be seen from Figure 10 that
when false data ratio is 0.8%, factor of 7/6 scenario outputs
about 97.45% detection accuracy, while factor of 3/2, 2 and
4 scenarios present higher detection accuracies of around
98.36%, 98.85% and 99.6%.

VIII. CONCLUSION
In this paper, a novel data analytical method employing
MSA was demonstrated to defend against false data injection
cyber-physical attack in smart grids. This is the first work to
use MSA to detect FDIAs. Besides, a data centric paradigm
is proposed to analyze the FDIAs in a big data scenario. The
performance of the proposedMSAmethod through both sim-
ulation and experimental data sets has been investigated. Sim-
ulation data sets were generated from a MATLAB/Simulink
model employing a six-bus power system in WAMS net-
work. The real-world data sets were entered based on hourly
data from Texas Synchrophasor Network. The experimental
results demonstrated that the proposed MSA achieved better
accuracy with minimum error than traditional SVM andANN
algorithms to detect FDIAs. In the future, more sophis-
ticated FIDAs cyber-physical attacks on PMU data will
be investigated based on the proposed method. Addition-
ally, the proposed MSA will be employed to process var-
ious enormous amount of data in real time, handling the
big data challenge in the future smart grid cyber-physical
systems.
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