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ABSTRACT The performance optimization problem is investigated for discrete-time control systems on
a multi-core platform. An integrated approach which considers both control performance and real-time
scheduling aspects is applied to allocate optimal periods to controller tasks. A real-time control system
is modeled as a set of directed acyclic graphs with weighted edges in this paper. The system allows
producer/consumer relationship between tasks, and the data dependence relationships between tasks are
uncoupled by attaching harmonic constraints to task periods. The period assignment problem is formu-
lated as an optimization problem, which minimizes the system performance loss index under multi-core
schedulability constraints. A heuristic search algorithm is proposed to solve this optimization problem and
select periods for real-time tasks scheduled by rate-monotonic scheduling algorithm. Experimental results
demonstrate that the proposed heuristic algorithm is capable of finding a high quality local optimal solution
with fast computing speed. The proposed method is applicable to online failure recovery and reconfiguration
in real-time control systems.

INDEX TERMS Control systems, multi-core processor, performance optimization, period selection,
real-time control system.

I. INTRODUCTION
Modern discrete-time control systems, such as avionics sys-
tem, automotive electronics and robot manipulator, are usu-
ally characterized by high complexity, high-integrity and
high-order nonlinearity. The control algorithm is normally
implemented as a set of periodic tasks with real-time con-
straints. The design and optimization of such systems should
consider both control aspects and real-time execution plat-
form aspects at the same time. Recently, a lot of work has been
focused on complex nonlinear systems with highly uncer-
tainties and dynamic disturbances. Learning system (such as
neural network, fuzzy logic, heuristic, etc.) based approaches
are proved to be particularly useful in designing such systems
(see [1]–[6] and the references therein). Their common basic
conception is to ensure the system output is converged to
given trajectories by adopting the approximation ability of
neural networks and other adaptive techniques. For discrete-
time systems in practical engineering, considering execu-
tion platform aspects, the output tracking performance and
system stability are often degraded because of the existence

of time delays. Therefore, a lot of work has been focused on
control design of time-delay systems, and there have been
many interesting results reported in [7]–[10]. For example,
in [7], to handle nonlinear dynamical systems with time
delays, an adaptive neural controller is systemically designed
which guarantees the semi-globally uniform boundedness
of all closed-loop signals. Apart from the work focused on
the control design of time-delay systems, the optimization
of the control system has also received a great deal of
attention [11], [12]. As discussed in [13], performance of a
discrete-time control system depends heavily on its sampling
frequency. With more frequent sensing and actuation, more
accurate control results can be obtained. Since a shorter task
execution period implies shorter input-output delay, which
meansmore recent sensing data have been used to produce the
actuation value, it can provide higher control performance.

On the other hand, although the system performance can be
enhanced by assigning the control tasks with shorter periods,
we have to notice the fact that the set of tasks resulting
from this controller may not be schedulable with the limited
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computing resources available. Even if the given set of tasks
is schedulable, the overall control performance may not be
optimal in the sense that they do not make full use of comput-
ing resources. Hence the control performance and real-time
schedulability have a trade-off relation in terms of practical
implementation [14]. As a consequence, the design of the
whole system should consider both the control aspects and
the real-time scheduling aspects at the same time. Such an
integrated approach is referred to as control/scheduling co-
design, and a lot of work has been focused on it [14]–[32].
A detailed discussion on related works is presented in the
next section. It is observed that most of the prior works have
been focused on uniprocessor platform with independent task
model. The period selection problem for data dependent tasks
on a multi-core processor has gained little attention.

Sincemulti-core architecture has improved processor com-
puting power and parallel processing capacity, multiple real-
time applications can be integrated into a single multi-core
processor platform, which conserves hardware resources and
improves the overall system performance.With the increasing
of integration and complexity, the design and optimization of
multi-core processor based control system has become amore
challenging work.

Motivated by the aforementioned observations, we study
the control system performance optimization problem on a
multi-core platform from a perspective of task period assign-
ment in this research. Compared with the existing works on
period selection problem, the main features of this paper lie
in the facts that: 1) the control system considered allows
data dependence relationships between tasks and runs on a
multi-core platform and 2) compared with the existing period
assignment methods, the proposed heuristic is with lower
computational complexity and suitable to be implemented for
on-line use.

The rest of this paper is structured as follows. Section 2
introduces some background knowledge and related works.
Section 3 describes the system model and assump-
tions used throughout this paper. A formal description
of our problem is presented in Section 4. Section 5
presents the proposed heuristic algorithm for the period
selection problem. The experimental results are pre-
sented in Section 6. Finally, Section 7 concludes this
paper.

II. BACKGROUND AND RELATED WORKS
A. SCHEDULABILITY CONSTRAINTS
To guarantee the timing requirements in real-time systems,
multiple periodic tasks are usually scheduled with a real-
time scheduling policy, such as rate monotonic schedul-
ing (RM) or earliest deadline first scheduling (EDF) [33].
Each scheduling policy has its corresponding schedulability
analysis method.

Historically, there have been two distinct approaches for
schedulability test: tests based on the notion of processor
utilization and tests based on response times [34].

Utilization is proven to be a sufficient measure of the schedu-
lability of real-time systems [33]. For multi-core processor
systems, there are several utilization bounds proposed under
RM scheduling policy:
• (Andersson et al. [35]) A task set can be success-
fully scheduled on a m-processor with rate monotonic
scheduling if the utilization of every individual task do
not exceedm/(3m−2), and the total utilization is at most
m2/(3m− 1).

• (Baruah and Goossens [36]) Any periodic task system
in which each taskąŕs utilization is no more than 1/3,
and the total utilizations of all the tasks is no more than
m/3, is successfully scheduled by Algorithm RM upon
m-processors.

• (Baker [37]) On a m-core processor, when deadline
equals period and priorities are rate monotonic, any set
of tasks with maximum individual task utilization umax
and minimum individual task utilization umin is feasible
if the total utilization does not exceed m(1 − umax)/
2+ umin.

B. PERFORMANCE INDEX
The performance of a real-time control system can be
reflected by various evaluation indexes. Traditionally, tran-
sient response time and steady-state accuracy [38], or system
error [23] are selected as the performance index to evaluate
controllers. In some cases, other evaluation indexes such as
energy consumption can also serve as the performance index.

The linear-quadratic-Gaussian (LQG) control problem is
one of fundamental optimal control problems, and the perfor-
mance of LQG controller tasks is formulated as a quadratic
cost function Eq. (1) by Astrom and Wittenmark [39],

J = E lim
tp→∞

1
tp

∫ tp

0
(x ′Q1x + u′Q2u)dt (1)

where x and u denote the state vector and the control vec-
tor, and tp is the maximum time to be considered in the
performance evaluation. Q1,Q2 are weighting matrices, and
E denotes the expectation operator. J can be interpreted as
the weighted sum of stationary variance of the plant state and
the control signal. Higher value of J indicates worse control
performance, so it is referred to as the performance loss
index [19]. For discrete-time control, Eq.(1) can be written
as a monotonic increasing function of the sampling period T :

J = J (T )

In some case, it has been proven that the cost-function Eq. (1)
can be approximated by a quadratic function of the sampling
period [40]

J ≈ α + βT + γT 2 (2)

or even a linear function of the sampling period [41]

J ≈ α + βT
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C. RELATED WORKS
For real-time control systems, the co-design problem
was initially formalized as an optimization problem by
Seto et al. [14]. The system performance index is expressed
as an exponential decay function, and period is selected as
the optimization variable which is restricted within its feasi-
ble region to guarantee system schedulability. The proposed
method is built on dynamic priority scheduling. Later, in [15],
they presented another algorithm based on fixed priority
scheduling methods to select optimal periods for the task set.

The optimization method proposed by Seto et al. [14]
is further extended by many researchers. Palopoli et al. [16]
developed optimal period assignment for a set of state feed-
back controllers using the stability radius as a performance
criterion. Bini and Natale [18] provided a search-based algo-
rithm that finds the task activation rates maximizing a
performance function within the deadline constraints in
systems scheduled by fixed priorities. Wu et al. [19] pre-
sented a methodology that selects task periods and deadlines
under feasibility constraints. The interference generated by
the concurrent execution of multiple tasks was considered
when formalizing the optimization problem upon the convex
approximation of EDF (Earliest Deadline First scheduling)
deadline space.

The above methods of the control/scheduling co-design
problem are time consuming and can be utilized off-line
only. In order to improve the flexibility and robustness of
the system, later work has moved the optimization algorithm
from off-line to on-line use. Cervin et al. [21] proposed an
on-line sampling period adjustment method based on esti-
mates of current plant states and noise intensities. The opti-
mization method is based on the expressions relating the
expected cost over a finite horizon to the sampling period,
the computational delay, and the amount of noise acting on
the plant. Du et al. [22] proposed an analytic solution for
schedulable situation of the optimization problem using the
method of Lagrange multipliers. And an integrated method
is proposed for the condition that the system is overloaded
which has a deterministic time complexity and is suitable for
on-line use. Recently, Cha et al. [23] proposed search-based
heuristic algorithm which finds near-optimal feasible periods
maximizing the overall control performance. Their algorithm
has a linear complexity.

In the literature, period selection problem has been studied
not only for control systems but also for general real-
time systems. The most commonly used method to con-
duct period assignment is to assign harmonic periods to
the tasks, because RM can guarantee 100% utilization if
the periods are harmonic [24]. Also, harmonic period val-
ues can generate smaller hyperperiod which is calculated
as the least common multiple (LCM) of the tasks’ periods.
The hyperperiod is the interval at which the entire sched-
ule is repeated, the shorter the hyperperiod the shorter the
scheduling table, and consequently the smaller the mem-
ory footprint. Nasri et al. [25], [26] presented a model to
describe harmonic relations between ranges of period values,

rather than between discrete numbers. Harmonic periods are
assigned to the tasks by finding harmonic sub-intervals within
given period ranges of the task set. Xu [27] proposed a
method for adjusting the periods of periodic tasks to reduce
the least common multiple (LCM) of the period lengths.
Adjusted period lengths are closely harmonically related to
each other, which makes it easier to generate a pre-run-time
scheduling to schedule periodic tasks. Brocal et al. [28] and
Ripoll and Ballester-Ripoll [29] both studied the method of
minimizing hyperperiod when assigning periods to a set of
periodic tasks.

The common assumption of the above researches about
period assignment problem is that the tasks run independently
on a uniprocessor platform. In practice, however, tasks in a
real-time system have a variety of interactive relationships,
such as producer/consumer relation [30]. Gerber et al. [31]
considered a system with tasks connected by asynchronous
channels, in which the endpoints are the system’s external
inputs and outputs. The system is rendered in an asyn-
chronous task graph format with end-to-end timing con-
straints on its inputs and outputs. Periods are allocated to the
tasks according to the end-to-end constraints.

Despite the above researches, the period assignment prob-
lem on a multi-core processor has gained little attention even
though it is in a position to enhance the system computing
power.Moreover, the data dependences between control tasks
and other general real-time tasks were not considered in the
period selection problem. In this paper, we address the period
assignment problem on a multi-core processor. We consider a
real-time control system consisted of a set of tasks connected
by asynchronous channels.

III. SYSTEM MODEL AND ASSUMPTIONS
In this paper, a multi-core platform consists of m identical
cores, m ≥ 2, denoted as P = {P1,P2, . . . ,Pm}. The
system task set consists of N periodic tasks, denoted as Γ =
{τ1, τ2, . . . , τN }. Each task has three parameters (Ci,Ti, pi).
Ci is the worst case execution time of τi, Ti is the inter-arrival
time (period) between any two consecutive jobs of τi, and pi
is the priority of τi. ui = Ci/Ti is the processor utilization
of task τi, and U =

∑n
i=1 ui is the system total utilization.

We assume that the deadline of a task is equal to the period.
To represent the data dependencies between tasks, Gerber

et al. [31] denoted a real-time system as a directed acyclic
graph G(Γ,E), where Γ is the task set and E is a set of
directed edges between tasks. An edge τi → τj denotes a
producer/consumer relationship where τi produces data that
τj consumes.
In this paper, the concept of directed acyclic graphs in real-

time systems is further refined. In practice, it is common that
the producer generates a plurality of data in one execution,
and the consumer needs to execute multiple times to consume
these data. For each producer/consumer pair we define a
data transfer ratio which is denoted as r . A weighted edge
τi

r=x
−−→ τj denotes that τi produces x data in one execution for

τj to consume, where x is a positive, non-zero integer. In this
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FIGURE 1. An example of real-time system.

work, we assume that the real-time data flow is paramount,
which means that every data produced by the producer should
be processed by the consumer in real-time. With this consid-
eration, in order to ensure that the two tasks stay ‘‘in-phase’’,
each producer/consumer pair τi

r=x
−−→ τj is constrained to have

harmonic periods such that Ti is an integer multiple of Tj, and
Ti/Tj = x.

A real-time system is represented by a set of irrelevant
directed acyclic graphs {G1,G2, . . . ,GN } and a set of inde-
pendent tasks ΓI . Each task graph Gi(Γi,Ei) is treated as a
subsystem of the real-time control system, where Γi is a sub-
set of the system task set, thus Γ = {Γ1, Γ2, . . . , Γn, ΓI }.
Figure 1 shows an example real-time system consists of three
task graphs and a set of independent tasks.

In the remainder of this paper, the following additional
notations are used.
Γtail A set of tasks having no consumer tasks. They have no

outgoing edges in the task graph.
Γkey A set of key tasks whose performances can represent

a subsystem’s performance profile. They are manually
assigned with period constraints at the initial design
stage. ΓK ⊂ Γtail .

It is assumed that the tail tasks τi ∈ Γtail are some typical
control tasks (i.e. closed loop control tasks), and the non-tail
tasks are designed to produce necessary data for the control
tasks. Usually, the period of a control task is constrained
into an acceptable range during the design phase. However,
if there is more than one tail task in a subsystem, it will cause
conflict if all the tail tasks are manually assigned with period
ranges due to the harmonic constraints. Note that in a subsys-
tem task graph, once a tail task’s period is determined, other
tasks’ periods can be calculated according to the harmonic
relations between them. So only one tail task in a subsystem
task graph is selected to be constrained with a period range,
the other tasks’ periods should be calculated according to
the harmonic constraints. The selected task should have the
most critical timing constraint in the subsystem, and the
subsystem’s performance can be represented by this task.
To be specific, the periods Ti of each control task τi ∈ Γkey
are constrained into intervals (i.e. Ti = [Tmini ,Tmaxi ]), where
Tmini ,Tmaxi are derived from the performance requirements.

IV. PROBLEM DESCRIPTION
This section gives a formal definition of the period selection
problem. The following scenario is considered: On a multi-
core processor platform, for the task set Γ of N real-time
tasks where the periods Ti of key tasks τi ∈ Γkey is given
as a range [Tmini ,Tmaxi ], find the optimal period for each
task such that the performance loss index is minimized under
schedulability constraints.

A. PERFORMANCE FUNCTION
The quadratic approximation cost function Eq.(2) is selected
as the performance metric for each tail task τi ∈ Γtail . In par-
ticular, we assume that Ji(Ti) is a monotonous with respect to
Ti when Ti > 0. The global system performance loss index is
defined as a weighted sum of Ji as in the following:

J =
∑
τi∈Γtail

wiJi(Ti) (3)

where wi is a user-defined constant factor which denotes the
importance of a task.

B. CONSTRAINTS
The period of a controller task is subject to constraints from
both control theorem and real-time scheduling theory. The
period range [Tmini ,Tmaxi ] of a key task τi ∈ Γkey is gener-
ated according to the required control performance, such as
transient response and steady-state accuracy. For the entire
task set Γ , periods are constraint by multi-core utilization
bound to guarantee schedulability. With RM scheduling pol-
icy adopted, individual task utilization and system total uti-
lization are limited within one of the schedulability bounds
described above.

C. OPTIMIZATION PROBLEM
Summarizing the discussion above, the period selection prob-
lem in this work is formulated as a nonlinear constraint
optimization problem Eq.(4).

min J =
∑
τi∈Γtail

wiJi(Ti)

s.t.


Ci < Ti
Tmini ≤ Ti ≤ Tmaxi (τi ∈ Γkey)
U ≤ Ubound (τi ∈ Γ )

(4)

V. THE OPTIMIZATION ALGORITHM
To find Ti with the minimum J , the simplest method is to
explore the entire feasible domain for every task combination
while checking the schedulability and calculating the per-
formance function. However, this exhaustive search method
is not applicable even with a small number of tasks due to
its high complexity. Instead, we propose a heuristic search
algorithm that finds an acceptable suboptimal solution with a
very low computational complexity.
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A. ANALYTIC SOLUTION AND NUMERICAL METHOD
As described above, the period selection problem is formal-
ized as a nonlinear constrained multi-variable optimization
problem. This kind of problem is soluble analytically using
the method of Lagrangian multipliers by introducing relax-
ation factors to transform inequality constraints to equality
constraints. However, when the number of tasks is large, it is
very hard to solve the Lagrange equations. Therefore, numer-
ical methods are introduced to solve this kind of problem.

There are also some search-based numerical methods
for this kind of optimization problem, such as gradient
descent method, simulated annealing, and genetic algo-
rithm (GA) [32]. These techniques are available in some opti-
mization modeling software such as MATLAB and LINGO.
These numerical methods are very effective, but the problems
are always solved offline. For example, LINGO has a set of
powerful built-in solvers for linear, nonlinear optimization
problems, but they cannot be integrated into a real-time con-
trol system.

In the case that a part of the system is reconstructed during
runtime (e.g. the data transfer ratios are changed), the tasks’
periods should be re-optimized in real-time. A fast and prac-
ticable heuristic search algorithm is proposed in the next
subsection.

B. HEURISTIC ALGORITHM
In the optimization problem Eq.(4), the performance loss
index J is expressed as a summation of all the control tasks’
cost functions, while the cost function of a control task is
modeled as a monotone increasing function of period. The
optimization objective function is monotonous with respect
to each task’s period. As a result, the system performance loss
index can be minimized by narrowing the periods of each task
iteratively. A heuristic search algorithm is developed taking
this observation into account.

In the first step of the heuristic algorithm, each task’s
period is initialized with the maximum value in the given
range: T 0

i = Tmaxi , which means that the initial solution
has the highest performance loss index. Then the heuristic
algorithm iteratively decreases the periods of each task within
the schedulability constraint.

The core of this heuristic algorithm is the rule of thumb
for reducing the periods so as to minimize the system per-
formance loss index. In the searching progress, a feasible
solution is transferred to the next one following a direction
which guarantees a decrease of the performance loss index.
Notice that J has different partial derivatives for each Ti.
Due to the property ∂J/∂Ti > 0, a decrease of any task
period will always achieve a lower performance loss index.
With the decrease of separate tasks’ period Ti, the value of
J is reduced at different rates. For example, Figure 2 shows
the cost functions of two tasks, where the current periods
of task 1 and 2 are 4ms and 3ms. It’s obvious that the cost
function J has a larger partial derivative with respect to T1.
Compared to T2, decreasing 1 unit time of T1 could lead to a

FIGURE 2. Example cost functions of two controller tasks.

greater degradation of J . So it is more effective in reducing
the system cost J to decrease the period of a task which has
larger partial derivative ∂J/∂Ti preferentially.
The cost function J is a monotone increasing with respect

to every Ti. During the iteration, J is decreased along with the
descending of Ti, and the system utilization is increased and
converged on the schedulability bound. Baker’s bound also
changes with decreasing Ti because it is determined by umax
and umin. umax and umin are increased as the number of itera-
tions increases, and higher umax can result in lower schedula-
bility bound.Which means that if umax is increased, the upper
bound of the system total utilization is decreased, and there
is less allowance for the task periods to be decreased. As a
consequence, the searching progress probably converges to
a solution which is far from being optimal. To combat this,
umax should not be increased during the iterations. On the
other hand, higher umin leads to higher schedulability bound,
so tasks with lower utilization should decrease their periods
more quickly.

Consequently, the rule of thumb in this heuristic search
algorithm can be summarized as follows:
• Task with lager partial derivative ∂J/∂Ti is given pref-
erence to reduce its period Ti more quickly.

• Tasks with lower utilization are given preference to
decrease their periods more quickly.

• The decrease of periods should avoid increasing of the
maximum task utilization umax .

The cutoff condition for iteration is that the utilization
of the current solution is close enough to the schedulability
bound. Decreasing amplitude of each task’s period for the
next iteration, to a large extent, is determined by the differ-
ence between current utilization and schedulability bound.

Let δU denote the difference between current utilization
and bound.

δnU = Un−1
bound − U

n−1 (n = 1, 2, . . .) (5)

where Un is the system total utilization of n-th iteration, and
Un
bound = m(1 − umax)/2 + umin is Baker’s schedulability

bound.
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In each iteration, the new period of key task τi is calculated
using Eq.(6)

T ni =
Ci
uni

(i ∈ {i|τi ∈ Γkey}) (6)

where ui is increased iteratively using Eq.(7)

uni = (1+ eδnU )u
n−1
i (7)

where e is a proportional coefficient. Eq.(7) ensures that every
task period is reduced and the total utilization is converged to
the schedulability bound when δU → 0.
However, the solution is obtained by decreasing each task’s

period averagely and yet it is not optimized. In order to
apply the rule of thumb described above, e is expanded as
a function which is directly proportional to J ′Ti and inversely
proportional to ui, as shown in Eq.(8)

eni = ci
J ′Ti

max(J ′)
max(un−1)

un−1i

(8)

where ci is a constant coefficient. J ′Ti = ∂J/∂Ti and
max(J ′) = max(J ′T1 , J

′
T2
, . . . J ′TN ). u

n
i is the utilization of τi

in n-th iteration. max(un) = max(un1, u
n
2, . . . , u

n
N ).

In order to prevent the schedulability bound from being
decreased quickly, Ti of the task which has the maximum
utilization is kept unchanged by setting ei to 0. Let τj denote
the task with max utilization, then uj = max(u1, u2, . . . , uN ).
If τj ∈ Γkey, let ej = 0. However, if τj /∈ Γkey, Tj is determined
by the corresponding key task (τk ) of the subsystem, to avoid
uj from being enlarged, Tk should remain unchanged in the
current iteration (let ek = 0). For example, in the sample
system shown in Figure 1, τ11 is selected as the key task of
subsystem G3(Γ3,E3). If τ10 has the maximum utilization in
the current iteration, to prevent T10 from being decreased, e11
should be set to 0.

Algorithm 1 shows the pseudo-code of this heuristic itera-
tive search method. The heuristic algorithm has a determin-
istic time complexity O(Nn) with N tasks and the maximum
iteration step is n.

VI. EXPERIMENTAL RESULTS
In this section, the performance of the proposed algorithm
is evaluated by comparison with some existing methods.
The experimental tests are carried out on an Intel Celeron
E3300 dual-core processor platform runs at 2.5GHz with
2GB RAM. The proposed heuristic algorithm is realized and
tested on the MATLAB platform.

A. EXPERIMENT 1
Firstly, a uniprocessor case is tested under the same experi-
ment settings as Du’s [22]. In [22], the performance function
of a controller task τi is modeled as Eq.(9), where wi is a
constant factor which denotes the importance of a task and
ai + biT 2

i is the quadratic fitting cost-function. The system
performance index is modeled as Eq.(10), the higher the
better.

Ji(Ti) = wi − (ai + biT 2
i ); (9)

Algorithm 1 Period Optimization Pseudo-Code
1: for all i such that τi ∈ Γkey do Ti = Tmaxi ;
2: end for
3: for all i such that τi /∈ Γkey do
4: Calculate Ti according to harmonic constraints;
5: end for
6: Calculate U and Ubound ;
7: if U > Ubound then
8: Error: Task set is non-schedulable initially;
9: end if
10: while Ubound − U > e do
11: Calculate δnU using Eq.(5);
12: for τi in Γkey do
13: Calculate J ′Ti ;
14: Calculate eni using Eq.(8);
15: (umax , j) = max(u1, u2, . . . , uN );
16: if τI ∈ Γkey then
17: ej = 0;
18: else
19: ek = 0;
20: end if
21: Calculate T n+1i using Eq.(6) and Eq.(7);
22: if Ti < Tmini then
23: Ti = Tmini ;
24: end if
25: end for
26: Calculate T n+1i for τi ∈ {Γ − Γkey};
27: Calculate U and Ubound ;
28: end while

J =
n∑
i=1

Ji(Ti); (10)

With RM scheduling policy adopted, the uniprocessor
schedulability bound Eq.(11) [33] is applied as the optimiza-
tion constraint.

n∑
i=1

Ci/Ti ≤ n(21/n − 1); (11)

The coefficients and task parameters are shown in Table 1,
as well as the periods selected by Du’s method and our
heuristic. Compared with Du’s results, a different combina-
tion of task’s periods is found by the proposed method. The
performance index of the solution generated by our heuristic
is 51.70, which is higher than Du’s (51.39).

B. EXPERIMENT 2
In the second experiment, a dual-core processor based sample
systemwhich has the same architecture as Figure 1 is studied.
The task parameters are listed in Table 2. Tasks Γkey =
{τ3, τ8, τ11, τ13, τ14, τ15} are selected as the key tasks, and
their periods are constrained into ranges. In this experiment,
we implement a simplified cost function for each key task:
Ji = αiT 2

i , and wi = 1. Specifically, we assign αi a value
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TABLE 1. Parameters and periods of 8 tasks.

TABLE 2. Example task parameters(µs).

FIGURE 3. Comparison of three utilization bounds.

using the average value of the period range

αi =
T

T i
(τi ∈ Γkey) (12)

where Ti = (Tmini + Tmaxi )/2, and T = mean(Ti).

1) COMPARISON OF DIFFERENT UTILIZATION BOUNDS
The optimization problem Eq.(4) is modeled and solved
using LINGOwith Baruah, Andersson andBaker’s utilization
bound adopted as constraints respectively. Three local opti-
mal solutions are found by LINGO. Utilization and perfor-
mance loss index of the found solutions is shown in Figure 3.

Final convergent utilization of Baker’s bound is 92.08%,
which is much higher than Baruah’s (66.67%) and Anders-
son’s (80%), and the corresponding solution has theminimum

FIGURE 4. Period selection process.

performance loss index (0.55). As a result, Baker’s bound is
chosen as the default schedulability bound in our heuristic
algorithm.

2) CASE STUDY OF THE PROPOSED HEURISTIC ALGORITHM
In order to illustrate how the proposed heuristic algorithm
works, the period assignment problem of the sample system
is solved as a demonstration. Performance of the proposed
heuristic algorithm is estimated in comparison with the local
optimal solution found by LINGO. At the beginning of the
searching process, all the task periods are initialized with
the maximum value of the ranges. Then Ti are decreased
using the heuristic algorithm for lower performance loss
index and higher utilization. The period selection process
of key tasks’ periods with increasing number of iteration is
shown in Figure 4. Figure 5 shows the selected periods using
our heuristic and LINGO. Figure 6 and Figure 7 show the
changing process of system utilization and performance loss
index over the number of iteration.

As can be seen in Figure 4, with increasing number of
iteration, the periods are decreased respectively with dif-
ferent rates. T3 and T11 are decreased quickly and reach
their minimum allowable value at 8th and 13th iteration. For
task τ8, there is a step-like descent on T8, because τ8 or its
upstream tasks often have the maximum utilization in the task
set, so its period is kept unchanged for several iterations.

In Figure 5, most tasks’ period values derived from
the two methods are close, however, some tasks’ periods
(e.g. T9) differ considerably between the heuristic and
LINGO. This is because the period difference between two
methods is enlarged by the chained harmonic constraints.
Take task τ9 for example, T9 is derived from the key task in the
same sub-system (τ11) according to the harmonic constraints
between tasks. The harmonic constraint is transferred like:
T9

4
−→ T10

2
−→ T11. Consequently T9 = 8T11. T11 = 270

in heuristic algorithm’s solution, while the value is 296 in
LINGO’s solution. When it comes to task τ9, this difference
is enlarged 8 times.

In Figure 6 and 7, the initial system utilization is very
low and the performance loss index J is high because all
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FIGURE 5. Period values of the final solution.

FIGURE 6. Changing process of system processor utilization.

the tasks are assigned with the maximum allowable period
value initially. As the number of iteration increase, the system
utilization keeps increasing and J keeps decreasing because
the tasks’ periods are decreased using the heuristic algorithm.
Eventually, the system utilization is converged towards to the
schedulability bound within 70 iterations. The final solution
of the heuristic algorithm has a total utilization of 92.21%
which is very close to LINGO’s (92.08%). In the mean-
while, J is converged to 0.5385 which is even lower than
LINGO’s (0.5453).

C. EXPERIMENT 3
In this experiment, performance of the proposed heuristic
period selection algorithm is compared with several existing
methods:
• Traditional Gradient Descent method (GD).
• Function fmincon from MATLAB Optimization Tool-
box with Active Set algorithm implemented.

• Optimization software tool LINGO.
LINGO is a professional optimization software tool, and

it’s capable of generating high quality local optimal solu-
tions for the period selection problem. In this experiment,
we take the local optimal solution produced by LINGO as
the standard of comparison.

FIGURE 7. Performance loss index.

TABLE 3. Uniform distribution intervals (µs).

FIGURE 8. Performance loss index of different methods.

Multiple cases are tested in this experiment. In each case,
periods of 10 tasks are selected using different methods.
The task parameters are chosen randomly from continuous
uniform distribution on the intervals shown in Table 3. Exper-
imental results are reported in Figure 8 and Figure 9.

As shown in Figure 8, LINGO has generated the lowest
performance loss index in most cases. Compared to Gradi-
ent Descent Method and MATLAB Active Set Algorithm,
performance loss index produced by our heuristic is more
close to LINGO’s. Furthermore, LINGO and our heuristic
have achieved higher system utilization than the other two
methods, as shown in Figure 9.

To further evaluate the performance of our heuristic algo-
rithm.More cases are tested. With LINGO’s solution taken as
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FIGURE 9. Utilization of different methods.

FIGURE 10. Percentage error of performance loss index.

the standard of comparison, percentage error of performance
loss index between the other three methods and LINGO is
shown in Figure 10. Average percentage error and utiliza-
tion of 100 cases are shown in Figure 11. The results show
that the performance loss index generated by the heuristic
is only 2.58% higher averagely than LINGO’s while Active
Set Algorithm is 11.5% higher and Gradient Descent Method
is 61.8%. Average convergent utilization is 90%, which is
very close to LINGO’s (89.9%) and much higher than Active
Set (84.8%) and Gradient Descent (81.6%).

The efficiency of this heuristic period selection algorithm
is evaluated through measuring the consumption time to find
a local optimal solution. Periods are selected for randomly
generated task sets with different number of tasks using four
methods. Consumption time of different methods is reported
in Table 4. It is shown that our heuristic is much faster than
other methods. The searching process is completed within
less than 5ms, which is suitable for online use. There is a
decrease in the consumption time of GD and our heuristic
with the increasing number of tasks. Because when the task
set becomes numerous, the initial system utilization will be
greater. Consequently, it costs fewer iterations to increase

FIGURE 11. Average percentage error and utilization.

TABLE 4. Consumption time of different methods (s).

system utilization towards the schedulability bound. Active
Set Algorithm and LINGO become more time-consuming
when the number of tasks is greater.

VII. CONCLUSION
Discrete-time control system performance optimization prob-
lem is studied from a perspective of task period allocation on a
multi-core processor platform. The period selecting problem
is generalized as an optimization problem which minimizes
the system performance loss index under schedulability con-
straints. A heuristic search algorithm is proposed to solve
this optimization problem. Task periods are selected using
an empirical search method which decreases the task periods
iteratively until a local optimal solution is found. Extensive
simulations have been performed to compare the proposed
methodology with other methods. The results demonstrate
that the heuristic algorithmmanaged to keep the performance
loss at an acceptable level while maintaining a very low time
complexity.

In future work, the period assignment problem will be
investigated with other forms of performance index and
other scheduling policies (such as traditional fixed-priority
scheduling and EDF scheduling) adopted.
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