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ABSTRACT GNSS multi-frequency multi-system carrier phase differential positioning has become the
main technology used in high-precision positioning. Until recently, the fault detection and exclusion (FDE)
methods for multi-frequency multi-system carrier phase differential positioning mostly focus on procession
of errors in the carrier phase domain, which cannot exclude all the faults causing a faulted baseline resolution,
e.g., a fault that occurs in resolution process. Besides, the multi-fault of multi-frequency in the carrier phase
domain cannot be identified due to the multi-frequency carrier phase observation errors’ high correlation.
We present a method of autonomous FDE based on multi-frequency multi-system carrier phase differential
positioning. It focuses on the procession of errors in the position domain, and detects and excludes the faults
in different frequency baseline resolutions caused not only by measurement fault as traditional method,
but also the resolution fault, which can enhance the robustness and accuracy of the differential positioning
system. The experimental results show that the method can effectively detect and exclude the failure of
different frequency baseline resolutions and then the accurate multi-frequency multi-system positioning
results can subsequently be effectively fused. The proposed method improves the accuracy and robustness
of the differential positioning system.

INDEX TERMS Carrier phase differential positioning, fault detection and exclusion, GNSS,multi-frequency
multi-system.

I. INTRODUCTION
Satellite navigation systems have been widely used in var-
ious fields, and the overall trend regarding such systems
is to provide high-precision services for real-time applica-
tions. Although single-frequency receivers have low hard-
ware costs, satellite navigation positioning results of a
single frequency receiver are less reliable and less robust
because of their small number of observations, making it
difficult to use them effectively in a variety of complex
environments. In addition, a single satellite navigation sys-
tem cannot have guaranteed integrity, robustness, continu-
ity and availability; in particular, in certain high-precision
positioning applications, as well cannot meet the needs
of indicators or ensure that the system continues to work
reliably. To improve the reliability and robustness of the
satellite navigation and positioning system, further improve-
ment of the accuracy of positioning systems, multi-frequency
bands or additional constellations are required for joint
positioning, which can fully utilize multi-frequency multi-
system signal to strengthen the robustness and availability of

the system. At present, the Global Positioning System (GPS)
includes 31 available satellites and three civil frequencies of
L1/L2/L5; the GLONASS system has 23 available satellites
and three civil frequencies of L1/L2/L3; and the BeiDou
Navigation System (BDS) includes 23 available satellites
and three civil frequencies of B1/B2/B3. The continuous
improvement of these satellite navigation systems is impor-
tant for obtaining a high-precision and high-robustness multi-
frequency multi-system positioning system.

Research institutions have conducted in-depth studies with
the aim of fully utilizing the redundancy of multi-frequency
multi-system. As early as 1982, Hatch proposed a clas-
sic linear combination with a dual-frequency carrier phase
and pseudorange, eliminating the effects of the first-order
ionosphere, troposphere, receiver clock error, and satellite
clock error, which simplified the data processing model
and improved the processing efficiency [1]. Ordonez con-
ducted the first differential positioning experiments com-
bining GPS and GLONASS, and showed that multi-system
differential positioning had a positive effect on these sys-
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tems [2]. He et al. obtained the positioning results of a
BeiDou/GPS dual-frequency single epoch for the first time.
The results of the 8 km short baseline static positioning using
the UB240 BD2/GPS dual-mode receivers were based on
a single-epoch geometric correlation of the double differ-
ence model [3]. The results indicated that the dual-frequency
positioning outperformed the single-frequency positioning
and that multi-frequency multi-system positioning outper-
formed multi-frequency single-system positioning. The posi-
tioning accuracy of the dual-frequency dual-systemwas 5 cm.
Chu et al. achieved a tri-frequency dual-system joint solution
by combiningGPS andGalileo triple-frequency observations.
Under the simulation conditions, a baseline resolution accu-
racy of 4 mm was achieved under 134 km-long baseline
conditions [4].

The multi-frequency multi-system guarantees the high
robustness of the positioning system. But faults will lead to
various resolutions of GNSS multi-frequency multi-system,
which is so called multi-value problem. Thus, the multi-value
problem must be solved by detecting and excluding the fault
results and realizes high positioning precision by fusing accu-
rate results. At present, there are mainly two types of methods
for fault detection and exclusion for carrier phase differen-
tial positioning systems in the carrier phase domain. The
detection–identification–adaptation (DIA) method is used to
perform the quality control and fault exclusion [5]. However,
when using DIA in carrier phase domain for single satellite
data diagnose, carrier phase errors cannot be easily iden-
tified due to the high correlation between multi-frequency
carrier phase observation errors [6]. Besides, it is difficult
for DIA to specify the appropriate alternative hypotheses for
a particular application. And another type of method based
on the combination of observations or Kalman filtering pro-
cessing is proposed for specific error, e.g. cycle slips, mul-
tipath [7]–[9]. These methods are inapplicable to the multi-
frequency multi-system positioning system, where the multi-
failures from different sources occur simultaneously for a
high possibility. Moreover, existed FDE are processed in the
carrier phase domain, some small outliers in carrier phase
measurements may not be excluded, as these could affect the
baseline resolution. Even if there are no outliers in the carrier
phase measurements, the resolution processing of positioning
results may also result in faults. For example, in the integer
ambiguity resolutions, the determined optimal solution may
not the right solution, which will influence the positioning
result. In the position domain, different frequency positioning
results can be compared to avoid faults of integer ambiguity
resolutions at some frequencies. The capability gap is why
the reported method in the position domain is important.

The method proposed adopts high-precision carrier phase
differential positioning to resolve baseline resolutions of var-
ious frequencies of different systems respectively and uses
the consistency of the baseline vector to detect faults and
fuse accurate solutions. If there is no fault in a frequency,
the sum of the squared errors (SSE) of carrier baseline
observation residual vector follows the chi-square distribu-
tion; otherwise, it will not follow the chi-square distribution.
Thus, a chi-square test is used for fault detection, which
differs from traditional ones because of applied scenarios.
The chi-square test was widely used to detect the fault of the
state estimates of the filter [10] and of the chi-squared pseu-

dorange residual-based RAIM at measurement level [11].
In this paper, we firstly use the chi-square test for detect fault
of carrier observation residual in the position domain.

However, the SSE is a scalar. It does not have redundancy,
which is necessary for fault exclusion. We need to extract the
fault baseline resolution from all resolutions. In this paper,
the baseline multi-frequency solution separation is used for
fault exclusion. The solution separation method is a widely
implemented method for fault detection [12], [13]. It uses
separations of all in view satellites position solution and
the solution of satellite subset where the hypothetical fault
satellites are removed. In order to use the modified solu-
tion separation method for fault exclusion, we develop new
separations of hypothetical fault frequency baseline and the
all frequency baseline. The separations follow the Gaussian
distribution. And the mean of the separations are related to
frequency fault, whereas the variances are not. Thus, the max-
imum likelihood estimation can be used to identify the most
likely fault baseline. If there are two or more fault baselines,
a grouping method will be used for multi-fault exclusion.

The proposed method fully utilizes the redundancy of
the multi-frequency multi-system to solve the multi-value
problem, which enhances the robustness and accuracy of the
differential positioning. This autonomous fault detection and
exclusion method is advantageous in that it can detect and
exclude the anomaly of the multi-frequency multi-system
positioning system’s baseline resolutions effectively; there
is no need to account for the correlation between constella-
tions or frequencies; it detects fault in position domain can
avoid the effect of the resolution problem in some frequen-
cies; specification of alternative hypotheses for particular
applications is unnecessary.

First, the basic model of the high-precision carrier phase
differential positioning is discussed. This model is used to
resolve the baselines of different frequencies in different
navigation systems. Next, an autonomous fault detection and
exclusion method for multi-frequency multi-system differ-
ential positioning is introduced. A chi-square test is used
for fault detection based on carrier observation residual in
the position domain. And a new baseline multi-frequency
solution separation is used for failure exclusion. The accurate
resolutions are effectively fused after detecting and exclud-
ing the abnormal baseline resolutions, which could improve
the robustness of the system. Then, practical experiments
are conducted to validate the performance of the proposed
method. Finally, a summary and discussion are presented.

II. HIGH-PRECISION DIFFERENTIAL POSITIONING
In this paper, the used positioning model is based on
the orthogonal transformation algorithm suitable for short
baseline relative positioning proposed by Chang [14], [15].
The positioning model differs from the common double-
differenced model in that it uses Householder transformation
to reduce the clock error. This method does not consider
the cross-correlation between observations, and the double-
differenced integer ambiguity can still be obtained.

The high-precision differential positioning scheme is
shown in Fig.1.

A is the base station, and its position is obtained by long-
term measurement. The rover is denoted by B. Then suppose
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FIGURE 1. Geometry of high-precision differential positioning.

that there are mi visible satellites in frequency Li (subscript i
defines different frequency); we have that

yφi,S =
1
λi
Ei · b− Ni,S + eβ + vφi,S , vφi,S ∼ N (0, 2σ 2

φ,iImi )

(1)

where:
yφi,S is fractional single-difference phase observations in

units of cycles;
Ei is themi×3matrix of normalized single-difference line-

of-sight vectors;
vφi,S is single-difference phase noise;
Ni,S is the single-difference integer ambiguity vector;
λi is the wave length;
e is a vector of order mi for which each entry is 1;
β is the clock bias.
Let Pi ∈ Rmi×mi be a Householder transformation such that

Piemi =
√
mie1, Pi = Imi −

2uuT

uTu
, u ≡ e1 −

1
√
mi

emi

(2)

with e1 = (1, 0, · · · , 0)T =
(
1 0

)T . Then,
Pi =


1
√
mi

ēTmi−1
√
mi

ēmi−1
√
mi

Imi−1 −
ēmi−1 · ē

T
mi−1

mi −
√
mi

 ≡
[
pi1
P̄i

]
(3)

where P̄i =

[
ēmi−1√
mi

Imi−1 −
ēmi−1·ē

T
mi−1

mi−
√
mi

]
, ēmi−1 =

(1, 1, · · · , 1)T . Multiplying (1) by Pi from the left, we obtain[
pi1y

φ
i

P̄iyφi

]
=

1
λi

[
pi1E

i

P̄iEi

]
b−

[
pi1Ni,S

P̄iNi,S

]

+

[
1
0

]
√
miβ +

[
pi1v

φ
i,S

P̄ivφi,S

]
(4)

After the Householder transformation, there are mi − 1
equations that do not include receive clock error β. Thus,
we choose the mi − 1 equations, and then,

P̄iyφi =
1
λi
P̄iEib− P̄iNi,S + P̄ivφi,S (5)

Because the Householder transformation is an orthogonal
transformation, it does not change the statistical properties of
the noise:

P̄ivφi,S ∼ N
(
0, 2σ 2

i,ϕImi−1
)

(6)

We introduce the double difference integer ambiguity:

Ni,D =
[
N2i,S − N1i,S ,N3i,S − N1i,S , . . . ,Nmi,S − N1i,S

]T .
Define Fi ≡ Imi−1 −

ēmi−1 ē
T
mi−1

mi−
√
mi
, Ji ≡

[
−ēmi−1 Imi−1

]
,

we then obtain the equation below:

P̄iNi,s = FiJiNi,s = FiNi,D (7)

Then, (5) can be rewritten as

P̄iyφi =
1
λi
P̄iEib− FiNi,D + P̄ivφi,S ,

P̄ivφi,S ∼ N
(
0, 2σ 2

i,ϕImi−1
)

(8)

Using the orthogonal transformation, we can obtain the
double difference integer ambiguity from single difference
carrier equations, and the transformed measurements are still
uncorrelated.

We define vector z = −Ni,D, which represents the double
difference integer ambiguity. Equation (8) becomes

P̄iyφi =
1
λi
P̄iEib+ Fiz+ P̄ivφi,S ,

P̄ivφi,S ∼ N
(
0, 2σ 2

i,ϕImi−1
)

(9)

Then, we compute the QR factorization of 1
λi
P̄iEi:

QT
(
1
λi
P̄iEi

)
=

[
R
0

]
, QT

=

[
U
V

]
(10)

where R is a 3×3 nonsingular upper triangular matrix and Q
is an (mi − 1)× (mi − 1) orthogonal matrix.
Multiplying (9) by Q from the left yields[

UP̄
i
yφi

VP̄
i
yφi

]
=

[
R
0

]
b+

[
UFiz
VFiz

]
+

[
UP̄

i
vφi,S

VP̄
i
vφi,S

]
(11)

We eliminate the baseline vector b, obtaining

VP̄
i
yφi = VFiz+ VP̄

i
vφi,S , VP̄ivφi,S ∼ N

(
0, 2σ 2

i,ϕImi−4
)
(12)

Because P̄i is (mi − 1) × mi, it does not have full column
rank, and we will not be able to obtain a unique estimate
of z. Thus, we use multi-epoch equations to calculate the float
resolution of the double difference integer ambiguity.

The multi-epoch method uses the measurements of many
epochs, which increases the data redundancy and model
strength considerably. In this manner, a recursive QR decom-
position method is used to obtain the float solution of integer
ambiguity at the initial time [14]. This approach using the data

26844 VOLUME 5, 2017



X. Liang et al.: GNSS Multi-Frequency Multi-System Highly Robust Differential Positioning Based on an Autonomous FDE Method

of two successive epochs can help improve the precision of
the float integer ambiguity resolution and avoid large-scale
computation, guaranteeing accurate positioning results and
numerical stability. The LAMBDA method is then used to
fix the integer ambiguity [16].

III. CHI-SQUARE TEST FOR FAULT DETECTION
Because different constellations and different frequencies of
the same constellation are independent of each other, each
frequency may have positioning resolution biases caused by
multipath, problems regarding the hardware devices or other
reasons. The fault must be effectively detected after solving
the baseline vector separately, avoiding the combination of
wrong positioning results.

From (11) we can obtain

UP̄
i
yφi = Rb+ UFiz+ UP̄

i
vφi,S ,

UiP̄ivφi,S ∼ N
(
0, 2σ 2

i,ϕI3
)

(13)

When the integer ambiguity z is obtained, we can obtain

UP̄
i
yfi−UF

iz = Rb+ UP̄
i
vfi,S, UiP̄ivfi,S ∼ N

(
0, 2σ 2

i,ϕI3
)

(14)

Defining P0 = UP̄
i
yφi − UFiz, w0 = U iP̄ivφi,S and con-

sidering the fault a0 in the positioning results of the different
frequencies, we obtain

P0 = R0b0 + a0 + w0 (15)

By combining multi-frequency together to detect the resolu-
tion biases of frequencies, we obtain

P0 =

P01
P02
. . .
P0n

, R0 =

R01
R02
. . .
R0n

, w0 =

w01
w02
. . .
w0n

,

a0 =

 a01
a02
. . .
a0n

, (n ≥ 2) (16)

where P0 is a 3n × 1 matrix, R0 is a 3n × 3 matrix, and b0
is a 3 × 1 matrix. And consistency test requires at least two
frequencies’ resolutions to be compared for fault detection.

This yields

P0n = R0n

[ bN
bE
bU

]
+

[ a0nN
a0nE
a0nU

]
+ w0n (17)

Assuming that when a frequency has faults, its fault devia-
tion is defined as a0nN = a0nE = a0nU = ai, and the standard
deviation of each frequency in all three baseline directions is
σi, and the normalization of (15) defines the weight matrix:

W0 =



σ 2
1 0 0 0 · · · 0 0 0
0 σ 2

1 0 0 · · · 0 0 0
0 0 σ 2

1 0 · · · 0 0 0

0 0 0
. . . 0 0 0

0 0 0 · · · 0 σ 2
n 0 0

0 0 0 · · · 0 0 σ 2
n 0

0 0 0 · · · 0 0 0 σ 2
n



−1

,

W0n =

 σ 2
n 0 0
0 σ 2

n 0
0 0 σ 2

n

−1 (18)

Then, we can obtain

W1/2
0 · P0 =W1/2

0 · R0b0W
1/2
0 · a0 +W1/2

0 · w0 (19)

Defining P = W1/2
0 · P0,R = W1/2

0 · R0,w = W1/2
0 ·

w0, a =W1/2
0 · a0, the equation (19) becomes:

P = Rb0 + a+ w (20)

where the elements of w are independently Gaussian dis-
tributed due to the baseline observations are influenced by the
multiple sources of errors and the errors between the different
frequencies are independent of each other. The left null space
of R is defined as the parity space and denoted as U2, i.e.,

U2R = 0 and U2UT
2 = I. (21)

The parity vector is defined as:

p = UT
2 P (22)

Substituting equation (20) and (21) into (22), we have:

p = U2(a+ w) (23)

The covariance of p is obtained as:

cov(p,p) = U2cov(w,w)UT
2 = I (24)

Accordingly, in context of no fault, i.e. a = 0, the parity
vector is in the following distribution:

p ∼ N (0, I3n−3) (25)

then pTp subjects to chi-square distribution with freedom of
3n− 3, i.e., pTp ∼ χ2(3n− 3).

A test statistic is defined as Dparity = pTp to perform the
following hypothetical test:

H0 : no fault happens, i.e., a = 0;
H1 : fault happens, i.e., a 6= 0.

The hypothesisH0 is accepted whenDparity ≤ Tχ2 , where the
Tχ2 is a threshold for fault detection determined by the false
alarm probability pFA, i.e., Tchi2 = χ−23n−3(pFA). Otherwise,
the hypothesis H1 is accepted and a fault is detected.

IV. BASELINE MULTI-FREQUENCY SOLUTION
SEPARATION FOR FAILURE EXCLUSION
After the fault detection, in order to avoid the fusion of fault
baselines, a fault baseline exclusion process is required. In
(20), because there should be at least three frequencies, n ≥ 3
must be satisfied to achieve the fault exclusion of redundancy
requirements.

We assume that b̂00 is the maximum probability estimation
of the baseline vector under the no-fault assumption. The
estimated values of (15) and (17) for the baseline vector are
obtained using the least-squares method.

b̂0 = (RT
0W0R0)−1RT

0W0P0 (26)

b̂0n = (RT
0nW0nR0n)−1RT

0nW0nP0n (27)
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Define test statistic vectors as q0 = b̂0 − b̂00 and q0n =
b̂0n − b̂00. As seen from the above mathematical model,
the following hypothesis test is

H0 : E {qi} = 0;D {qi} = δ2i , (i = 0, 01, 02 . . . 0n)
H1 : E {qi} = µi;D {qi} = δ2i , (i = 0, 01, 02 . . . 0n)

}
(28)

where µi = E {qi} = (RT
i WiRi)−1RT

i Wiai and δ2i =

(RT
i WiRi)−1.
Constructing a new test statistic vector gi = b̂0i − b̂0, (i =

1, 2 . . . n), the following hypothesis test exists:

H ′0 : E {gi} = 0;D {gi} = δ20i − δ20, (i = 1, 2 . . . n)
H ′1 : E{gi} = µ0i − µ0;D{gi} = δ20i − δ20, (i = 1, 2 . . . n)

}
(29)

Because the three baseline directions of the NEU coor-
dinate component are related, the three direction vectors of
the frequency baseline resolution must be separated. After
identifying a fault in one direction, the frequency resolution
must be faulted. We choose the test statistic of the north
direction vector to identify the faults. Its probability density
function is

p(gi) =
1[

2π (δ20i − δ
2
0)
]1/2 exp

{
−
[gi − (µ0i − µ0)]2

2(δ20i − δ
2
0)

}
(30)

In the multi-frequency system, the following processes are
different for single-fault and multi-fault, we discuss them
respectively.

(1) Assuming that only one frequency has faults at a time:

a0 =
[
0 · · · a0iN , a0iE , a0iU · · · 0

]T
= ai

[
0 · · · 1, 1, 1 · · · 0

]T (31)

Because the value of ai is unknown, the maximum like-
lihood estimation method is used to estimate its value.
According to the concept of maximum likelihood esti-
mation, when the maximum likelihood estimate value of
ai is reached, the probability density function p (gi) is
−

1
2 [gi − (µ0i − µ0)]2, which is maximized as well. The

derivation is as follows:

−
1
2
[gi − (µ0i − µ0)]2

= −
1
2

{[
gi − (RT

i WiRi)−1RT
i Wiai

−(RT
0W0R0)−1RT

0W0a0
]
F

}2
= −

1
2

{
gi − ai

[
(RT

i WiRi)−1RT
i Wie

−(RT
0W0R0)−1RT

0W0l
]
F

}2
= aigi

[
(RT

i WiRi)−1RT
i Wie− (RT

0W0R0)−1RT
0W0l

]
F

−
a2i
2

[
(RT

i WiRi)−1RT
i Wie− (RT

0W0R0)−1RT
0W0l

]2
F

−
g2i
2

(32)

where l = [0, 1, 1, 1, 0]T and []F represents the first row of
the matrix.

Equation (32) takes the derivative of ai; then, letting the
equation equal to zero, the maximum likelihood estimate of
the parameter ai is obtained as âi.
This estimate maximizes − 1

2 [gi − (µ0i − µ0)]2 and the
probability density function

p(gi) =
1[

2π (δ20i − δ
2
0)
]1/2 exp

{
−
[gi − (µ0i − µ0)]2

2(δ20i − δ
2
0)

}
,

making it reach the maximum p(gi)max. The frequency with
the highest probability density in all measured frequencies is
the most likely fault frequency.

(2) Assuming that two or more frequencies may have faults
at a time,

a0 =
[
0 · · · a0iN , a0iE , a0iU · · · a0jN , a0jE , a0jU · · · 0

]T
(33)

When two frequencies have faults at the same time, equa-
tion (32) becomes

−
1
2
[gi − (µ0i − µ0)]2

= −
1
2

{
gi −

[
(RT

i WiRi)−1RT
i Wiai

−(RT
0W0R0)−1RT

0W0a0
]
F

}2
= −

1
2

{
gi − ai

[
(RT

i WiRi)−1RT
i Wie

−(RT
0W0R0)−1RT

0W0l′
]
F

}2
(34)

where l′ = [0, 1, 1, 1, 0, aj/ai, aj/ai, aj/ai, 0]T .
Equation (34) consists of two unknowns. If we use the

maximum likelihood solution, the maximum likelihood esti-
mate is related to aj. The two failures cannot be distinguished,
and thus, the maximum likelihood estimation is no longer
available for multi-fault exclusion.

Thus, the grouping method is used to help exclude the
multiple faults. Fig.2 shows the procedure for the grouping
method of multi-fault exclusion. First, we suppose that there
is only a single fault. The single-fault exclusion method
is adopted to exclude the single fault. Then, the detection
method is used to detect the remaining frequency baseline
resolutions. If the fault can still be detected, the frequencies
of the system are considered to have a multi-failure prob-
lem. Then, we remove the relevant parameters of different
frequencies for testing in turn until the remaining frequency
baseline resolutions have no faults detected. In this manner,
there is no failure baseline resolution in the remaining fre-
quencies. In particular, when grouping into groups with two
frequencies, all groups detect faults after fault detection based
on the consistency of the baseline resolutions. This means
that only one frequency baseline resolution of all frequencies
is not faulty or all frequency baseline resolutions are faulty.
Because we cannot effectively determine which situation it
is at this time, system failure is defined. We can obtain the
current baseline resolution according to the Kalman filter
based on the last moment. We set the alarm time threshold
for the positioning system, and if the duration of the defined
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system fault is larger than the alarm threshold, the systemwill
assess the fault of the positioning system and transmit alarm
information. For the obtained fault-free baseline resolutions
of different frequencies, the weighted values for different
frequencies can be determined according to the measurement
accuracy of carrier phase. Then, to obtain the optimal baseline
solution, the optimally weighted average solution (OWAS)
method can be used to combine the baseline resolutions at
the same time [17].

b =
w1b1 + w2b2 + w3b3 + w4b4 + w5b5

w1 + w2 + w3 + w4 + w5
(35)

where w1 = 1/σ 2
1,ϕ,w2 = 1/σ 2

2,ϕ,w3 = 1/σ 2
3,ϕ,

w4 = 1/σ 2
4,ϕ,w5 = 1/σ 2

5,ϕ .

V. REAL DATA TESTS
To validate the performance of the autonomous fault detec-
tion and exclusion method in GNSS multi-frequency multi-
system differential positioning, tests on real data from the
Shanmei dam in Quanzhou, Fujian Province, China were
conducted using this highly robust system to monitor the
deformation of the dam. The test scene is shown in Fig.3.

The antennas used in the monitoring system are
HX-BS781A antennas of BDStar Navigation, which support
the L1/L2 frequencies of GPS, the B1/B2/B3 frequen-
cies of BD and L1/L2 frequencies of GLONASS, and
the low noise amplifier gain is 40 dB. The receivers are
Novatel BDM610 GNSS, which offer GPS L1/L2 and
BD B1/B2/B3 frequencies and the measurement accuracies
of the five frequencies are all 1 mm. The data update fre-
quency is 1 Hz. The computers at the monitoring station,
base station and control center are connected to the switch
through LAN. At the site of the dam, the baseline length
is measured to be 260 m using a commercial system
designed by the Huace Company. The measurement time is
78,694 epochs (approximately 22 h). We define the faults,
such as multipath, cycle-slip, and visible satellite-deficient
faults and integer ambiguity resolution failure, all as software
resolution failures to describe the faults more intuitively and
visually. Problems involving the network, receivers and other
factors, which cause observation measurement failure, are
defined as hardware failures.

The method of fault detection and exclusion fixes the
integer ambiguities of each frequency but does not need
to consider the strong correlation between different con-
stellations or the different frequencies of same constella-
tion. The consistencies of the baseline resolutions at five
frequencies are detected using the faulty detection method
described above. Because the measurement accuracy σi,ϕ
of all five frequencies is 0.001 m, according to (14), we
can obtain the weight of the carrier observation equation
(σ 2
i = 2 × 0.0012 = 2 × 10−6) and bring the weight into

the weight matrix for a normalized solution. The maximum
probability density function solution obtained using themaxi-
mum likelihood method is used to detect single faults, and the
grouping method is used to detect multiple faults. When there
are only two frequency baseline resolutions in each group
and no group meets the requirements of the consistency test,
only one frequency baseline resolution of the five frequen-
cies or no frequency baseline resolution is fault-free. At this

FIGURE 2. Flowchart for the grouping method for multi-fault exclusion.

point, the system can be considered to have a failure, and the
Kalman filter method can be used for the baseline resolution,
which is not discussed.

Defining the sum of the squares of the components of the
carrier observation vector residuals as FSSE = pTp, the fault
test statistic is:

TX =
√
FSSE/ (3n− 3) (36)
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FIGURE 3. Actual test scene of the Shaimei dam.

FSSE follows the chi-square distribution. The cumulative
distribution function of chi-squared distribution is expressed
as

P(x2; ν) =
∫ x2

0

1
20(v/2)

(x2/2)v/2−1e−x
2/2dx2 (37)

where x is the variable, and ν denotes the freedom.
The quantity of the probability of false alarm asPfa = 10−5

is expressed as:

x2i = χ
−2(Pfa, νi) (38)

Then, the baseline resolutions of the five frequencies are
divided into group of five-frequency baseline resolutions,
four-frequency baseline resolutions, three-frequency base-
line resolutions, and two-frequency baseline resolutions; the
detection thresholds of these groups are shown below:

T1
d =

√
x21/ (3n− 3) =

√
45/ (5× 3− 3) ≈ 1.9365 (39)

T2
d =

√
x22/ (3n− 3) =

√
40/ (4× 3− 3) ≈ 2.1082 (40)

T3
d =

√
x23/ (3n− 3) =

√
33/ (3× 3− 3) ≈ 2.3452 (41)

T4
d =

√
x24/ (3n− 3) =

√
26/ (2× 3− 3) ≈ 2.9439 (42)

The fault is detected by comparing TX and Td: if TX < Td,
there is no fault in the baseline resolutions of the group; if
TX > Td, a fault is considered to exist in the group, in which
case fault exclusion is necessary.

The results of the baseline resolution obtained by combin-
ing the baseline resolutions of the five frequencies using the
proposed fault detection and exclusion method are compared
with the results of each frequency baseline resolution. The
test results are shown in Figs. 4-7.

The figures illustrate that the results of the single-
frequency baseline resolution do not have high robustness,
particularly for the BD system. Therefore, it is impossible
to accurately monitor the deformation of the dam at present
using a single frequency. Instead, multiple frequencies must
be used and fault detection and exclusion must be performed

FIGURE 4. Distributions of the baseline lengths of the combined five
frequencies through the proposed method, and the L1, L2, B1, B2,
B3 frequencies for the dam testing.

FIGURE 5. Distributions of the N baselines of the combined five
frequencies through the proposed method, and the L1, L2, B1, B2,
B3 frequencies for the dam testing.

TABLE 1. Baseline resolution results of the dam testing obtained using
the autonomous detection and exclusion method.

to obtain accurate baseline resolution results. The baseline
resolution results are shown in Table. 1.

The horizontal accuracy of the monitoring system is below
5 mm, and the vertical accuracy is below 10 mm, which are
accordance with the accuracy requirement of the Shanmei
dam deformation monitoring. The system ensures the robust-
ness of the baseline resolution using the described method.

Table. 2 illustrates that the baseline resolutions of the L1,
B2, and B3 frequencies are consistent in region 1 of Fig.8,
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FIGURE 6. Distributions of the E baselines of the combined five
frequencies through the proposed method, and the L1, L2, B1, B2,
B3 frequencies for the dam testing.

FIGURE 7. Distributions of the U baselines of the combined five
frequencies through the proposed method, and the L1, L2, B1, B2,
B3 frequencies for the dam testing.

and the detection is adopted without failure. At this point,
the missing alarm is triggered. The integration of the fault
baseline resolutions leads to an error. Because the three fre-
quencies are independent, the probabilities of simultaneous
failure and of the fault baseline resolutions meeting satisfying
the consistency requirement are extremely small. At this
point, the missing alarm is triggered. The integration of the
fault baseline resolutions leads to an error. Regions 2 and 3 are
the result of a system failure. Until the baseline resolutions
of the two frequencies are grouped, no group meets satis-
fies the requirement for detection consistency, which results
in this situation being defined as system failure. Moreover,

TABLE 2. Analysis results of the abnormal regions.

FIGURE 8. Distributions of the baseline length and the corresponding
number of frequencies used for the dam monitoring system.

the baseline resolution is recursive repeated from the previous
time by the Kalman filter. Because this is an example of a
high-precision positioning application for dam deformation
monitoring, the timeliness requirement of the dammonitoring
is less stringent. Thus, we set the alarm time threshold as
6 min. Because region 3 is unable to achieve multi-frequency
multi-system baseline resolution consistency for a relatively
long time, the alarm is triggered.

Fig. 9 shows the distributions of the visible satellites for
each frequency. The visible satellites are numbered after
filtering out the satellites with large cycle-slip through a
simple three-difference cycle-slip test method. There are still
several small cycle slips of the satellites that cannot be filtered
out. Due to the environment in which the dam is located,
the BD GEO satellites with a low elevation angle are eas-
ily obscured, and the probabilities of frequency occlusions
and cycle slips of the three BD frequencies are relatively
high, which affects the positioning accuracy. The GPS signal
is stable for the majority of the testing time, but both the
L1 and L2 frequencies are reinitialized due to a network inter-
ruption. The L1 and L2 frequencies are also affected by the
cycle slips. Failure may cause short-term integer ambiguity
resolutions to be inaccurate, affecting the positioning results.
Therefore, due to software resolution and hardware failure the
final positioning results are affected.
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FIGURE 9. Distributions of the visible satellites at the L1, L2, B1, B2,
and B3 frequencies.

FIGURE 10. Distributions of the baseline lengths of the combined five
frequencies through the proposed method, and the L1, L2, B1, B2,
B3 frequencies for the roof testing.

Because of the surrounding environment of the dam,
the available frequencies are always no more than three; thus,
we perform the experiment in an open space on the roof of the
New Main Building of Beihang University, Beijing, China.

The hardware used in the experiment is identical
to that on the dam. The observation epoch is 83,851
(approximately 23.3 h), and the measured baseline length is
approximately 23.2 m. The resulting baseline resolutions for
this test are compared in Fig.10.

Fig.11 illustrates that when the five frequencies are all in
good condition, the result combines of all five frequencies
in the majority of cases. All five frequencies baseline resolu-
tions are used in 81% of the case. The reasons for the failures
of each frequency resolution are shown in Table. 3.

Because the probability of failure for each frequency is
independent and some failures of different frequencies occur
at different times, a direct combination will result in the

FIGURE 11. Distributions of the baseline length and corresponding
number of frequencies used for the roof testing.

TABLE 3. Fault statistics of the GPS L1/L2 and BD B1/B2/B3 frequencies.

TABLE 4. Baseline resolution results of the roof testing after using the
autonomous detection and exclusion method.

failure probability of the positioning solution of the multi-
frequency multi-system positioning system is up to 5%. The
proposed method can detect and exclude software resolution
faults and hardware faults effectively. Via the autonomous
fault detection and exclusion, excluding the deviate position-
ing solutions can effectively avoid the faults in Table. 3, and
the final baseline resolution results are shown in Table. 4.
Via the autonomous fault detection and exclusion, the faults
in Table 3 can effectively be avoided by excluding the fre-
quency deviant position solution; the final baseline resolution
result is shown in Table 4.

VI. SUMMARY
We propose an autonomous fault detection and exclusion
algorithm. Using the high-accuracy carrier phase differen-
tial positioning model to resolve the baselines of different
systems and different frequencies, the correlation between
the systems and the frequencies can be effectively avoided.
Then the chi-square test for fault detection and the modified
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solution separation for fault exclusion are proposed. These
methods can detect and exclude the failure resolutions effec-
tively, regardless of whether the fault baseline resolution of
the frequency is caused by a software resolution fault or a
hardware fault. The results of experiments show that the pro-
posed method can effectively detect and exclude most of the
frequency positioning deviations caused by software resolu-
tion faults and hardware faults, and achieves high robustness
for the differential positioning system.
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