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ABSTRACT Along with the adaptation of Internet of Things (IoT) to support various industrial applications,
the cooperation and coordination of smart things is a promising strategy for satisfying requirements that are
beyond the capacity of any single smart thing. To address this challenge, a two-tier IoT service framework is
proposed, where the functionalities provided by smart things are encapsulated into IoT services, which are
categorized into service classes. The service network is constructed by considering the invocation possibility
between service classes, and service class chains are generated using traditional Web service composition
techniques, where the functional specification of certain requirements is considered. Considering factors,
such as spatial and temporal-constraints, energy efficiency, and the configurability of IoT services, selecting
IoT services for the instantiation of service classes contained in chains is reduced to a multiobjective
and multiconstrained optimization problem. Heuristic algorithms, such as the genetic algorithm (GA), ant
colony optimization (ACO) and particle swarm optimization (PSO), are adopted to search for optimal IoT
service compositions. An experimental evaluation shows that PSO performs better than the GA and ACO
in searching for approximately optimal IoT service compositions and reduces the energy consumption, thus
prolonging the network lifetime.

INDEX TERMS IoT services, service composition, reconfiguration, energy efficiency.

I. INTRODUCTION
With the advent and rapid development of the Internet of
Things (IoT), smart things communicate with each other and
are interconnected via networks to facilitate their collabora-
tion and cooperation to support various industrial applica-
tions [1], [2]. As a special example of IoT, wireless sensor
networks (WSNs) have been applied in various domains
including military surveillance, industry applications, and
smart homes [3]–[5]. Smart things are usually heteroge-
neous and may vary to a large extent in their capacities.
Mostly, a single smart thing is weak, or at least not strong,
in terms of its functionalities and computational and storage
capacities and has limited energy, especially when the smart
thing is battery-powered. Therefore, a smart thing, such as
a (mobile) sensor node or a smart phone, can usually pro-
vide a limited number of functionalities. Considering the
limitations, including the capacity constraint and the reduc-
tion of energy consumption, the functionalities provided by

contiguous smart things should be composed, especially
when a relatively complex requirement must be fulfilled [6].
Because conflicts potentially exist between the functionali-
ties co-hosted by a certain smart thing, these functionalities
should be configurable as required, which indicates that they
should be turned on or switched off online with respect to
certain requirements after a certain time duration [7]. For
instance, a sensor node cannot sense humidity and chemical
gases (like NxOy) simultaneously, as certain chemical gases
may dissolve in water. On the other hand, a sensor node can
always sense humidity and temperature at the same time.
Moreover, when a sensor node is short of energy, a con-
tiguous sensor node with relatively abundant energy should
be adopted alternatively to provide a certain functionality
to balance the energy consumption of all sensor nodes and
prolong the network lifetime. Consequently, combining the
functionalities provided by smart things, while considering
their spatial and temporal constraints, the energy efficiency
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at the network level, and the configurability of their function-
alities, is a challenge to be addressed, especially when the
requirement is relatively complex, and hence is beyond the
capacity of any single smart thing.

By adopting machine-to-machine communication tech-
niques [8], Currently, most domain applications can be sup-
ported by integrating complemental functionalities provided
by smart things in industrial IoT environments [9]. In fact,
service discovery and composition are long-standing research
topics, and many techniques have been developed in the
Web/REST service domain [10], [11], whereas these tech-
niques take the functional and non-functional properties
of services as first-class citizens. Along with the develop-
ment of service-defined everything [12], [13], smart things
are represented in terms of IoT services [14], which cor-
respond to the set of their co-hosted functionalities [15].
Consequently, the cooperation and collaboration between
smart things are reduced to the composition of IoT ser-
vices [16]–[20]. To summarize, current techniques adopt
service-oriented architectures to support IoT service dis-
covery and composition, where the quality of services and
the middleware development are the main concerns. Note
that spatial and temporal- constraints, as well as the energy
efficiency, are generally not considered as essential ingre-
dients by the majority of current techniques. To mitigate
this problem, we have developed a service-oriented mecha-
nism for composing WSN services, which are encapsulated
from various functionalities provided by sensor nodes [15].
Specifically, a sensor node is assumed to provide a cer-
tain kind of functionality, which is represented as the cor-
responding WSN service. Spatial and temporal- constraints
are considered when the composition of WSN services is
instantiated, and the energy- efficiency is also an impor-
tant factor to consider for prolonging the network lifetime.
It is worth mentioning that a smart thing such as a sensor
node can usually host multiple services upon the relatively
powerful hardware device, which should be configurable,
considering potential conflicts between functionalities and
the balancing of energy consumption. To address this chal-
lenge, this article proposes an energy-efficient mechanism
for composing IoT services, where these services are con-
figurable on the co-hosting smart things when necessary.
The main contributions of this article are summarized as
follows:
• A two-tier IoT service framework is proposed, as shown
in Fig. 1, where the functionalities provided by
smart things are encapsulated into IoT services by
adopting, for example, the Devices Profile for Web
Services (DPWS) standard [21]. These IoT services
are categorized into service classes according to their
functionalities, while the configurability of these IoT
services is not considered when these services are
co-hosted by certain smart things. A service network
is constructed while considering the invocation possi-
bility between service classes, and service class chains
are generated using traditional Web service composition

FIGURE 1. Smart things (SmTi ), IoT services (sevj ), and service
classes (sck ), where a smart thing can co-host one or multiple IoT
services, and an IoT service corresponds to a certain service class
according to the functionality it can provide.

techniques, where the functional specification of certain
requirements is considered.

• Service classes chains are instantiated by discovering
appropriate IoT services for service classes in chains.
Spatial and temporal- constraints of IoT services inher-
ited from smart things, the balancing of energy con-
sumption, and the configurability of IoT services are the
constraints to be considered. The composition of IoT ser-
vices can be reduced to a multiobjective and multicon-
strained optimization problem, where optimal solutions
are derived by adopting heuristic methods, including the
genetic algorithm (GA), ant colony optimization (ACO),
and particle swarm optimization (PSO).

Extensive evaluations are conducted to evaluate the
accuracy and effectiveness of the IoT service composition
technique developed in this article. The results show that
approximately optimal IoT service compositions can be
derived and that PSO performs better than the GA and ACO
regarding the fitness and energy consumption.

The rest of this article is organized as follows. Section II
introduces related concepts and the energy model. Section III
presents the mechanism for service class chains recommen-
dation. Section IV develops the instantiation technique for
supporting IoT service composition. Section V shows the
result of our experimental evaluation. Section VI discusses
and compares relevant techniques. Finally Section VII con-
cludes this work.

II. PRELIMINARIES
This section defines certain concepts and introduces the
energy model, all of which are used in the following sections.

A. CONCEPT DEFINITION
A smart thing should co-support one or several function-
alities, which are represented in terms of IoT services.
Generally:
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Definition 1 (Smart Thing): A smart thing SmTi is a tuple
(id, nm, sevlist , eng, spt, tpr), where:
• id is the unique identifier of SmTi.
• nm is the name of SmTi.
• sevlist is the set of IoT services co-hosted by SmTi.
• eng is the remaining energy of SmTi.
• spt is the spatial constraint of SmTi.
• tpr is the temporal constraint of SmTi.
Note that spt is defined by the geographical location and

communication radius of SmTi. tpr is the time duration during
which SmTi is active.
Definition 2 (IoT Service): An IoT service sevm is a tuple

(nm, dsc, op, SmT ), where:
• nm is the name of sevm.
• dsc is the text description of sevm.
• op is an operation of sevsn.
• SmT is the smart thing hosting sevm.
Intuitively, smart things can support certain types of IoT

services, although they are different regarding their spa-
tial and temporal- constraints, and their remaining energy.
To facilitate our two-tier service framework, the concept of
service class is defined to specify IoT services with a certain
functionality:
Definition 3 (Service Class): A service class sevcl for a

certain IoT service sevm is a tuple (nm, dsc, op), where nm,
dsc, and op are the same as those specified for sevm.

A service class should be instantiated by the appropri-
ate IoT service during the service composition procedure.
Service classes are chained before the instantiation of service
classes, and this procedure is conducted by leveraging the
service network:
Definition 4 (Service Network): A service network sn is a

tuple (sc, lnk, ivp), which is represented in terms of a directed
graph, where:
• sc is the set of service classes, corresponding to the
vertexes contained in sn.

• lnk is the set of invocation possibility relationships
between service classes corresponding to the directed
edges contained in sn.

• ivp is the set of invocation possibilities between service
classes, corresponding to the weights specified on the
edges contained in sn.

As presented in our previous work [22], the construction
of a service network is mainly carried out to compute the
invocation possibility between service classes and to prune
the links that suggest a relatively low invocation possibility.
The invocation possibility is computed by aggregating the
semantic similarity of the name, the text description, and
the operation of a certain pair of service classes. We refer
the reader to [22] for the algorithm. Given an invocation
possibility value between 0 and 1 for two service classes,
the larger the value is, the higher the possibility is for the
invocation between these service classes. When this value
is smaller than a prespecified threshold, which means that
it is hardly possible for an invocation to occurred between

the given service classes, the corresponding link is pruned.
Consequently, a service network is constructed and repre-
sented in terms of a weighted directed graph, in which the
vertexes are service classes and the weights on the directed
edges represent the invocation possibilities.

A sample service network is shown in Fig. 2, which
includes 14 sample service classes (denoted as scj, where
j ∈ {1, 14}) that are also presented in Table 3. The threshold
is set to 0.511 according to the experiments in this article, and
101 directed edges are reserved in this figure. Note that this
threshold can be changed to another appropriate value when
necessary according to the certain domain requirements. The
thickness of the directed edges reflects the value of the invo-
cation possibility such that the thicker the directed edges are,
the larger the invocation possibility is.

FIGURE 2. Sample service network with 14 service classes, where scj
represent service classes and j ∈ {1, 14}.

B. ENERGY MODEL
Since sensor nodes can be regarded as the most common
smart things, we adjust the first-order radiomodel [23], which
is the often adopted in the WSN domain, to calculate the
energy consumption of smart things. Table 1 presents the
parameters of this model. Specifically, ETx(k, d) represents
the energy consumed when transmitting k bits within a dis-
tance d, while ERx(k) represents the energy consumed when
receiving a k bit packet, the formulae are as follows:

ETx(k,d) = Eelec × k+ εamp × k× dn (1)

ERx(k) = Eelec × k (2)

where Eelec is the energy consumption constant of
the transmission and receiver electronics and εamp is the
energy consumption constant of the transmission amplifier.
Therefore, the energy consumed when transmitting a packet
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TABLE 1. Parameters in the energy model.

of k bits from a smart thing SmTi to one of its neighboring
smart things SmTj, denoted as Eij(k), is calculated as follows:

Eij(k) = ETx(k,d)+ ERx(k) (3)

The cost of transmitting a packet from a smart thing to
a neighboring smart thing or to a sink node (denoted as
SN ) is different, as an SN is assumed to have unlimited
energy. Therefore, an SN has no energy constraint, and the
cost of receiving packets is not considered in this model.
Consequently, Eij(k) is as follows:

Eij(k) =

{
Eelec × k+ εamp × k× dn if j is SN
2× Eelec + εamp × k× dn otherwise

(4)

where the parameter d represents the distance between the
smart things SmTi and SmTj (or SN ). Assume that the energy
needed to transmit a packet from SmTi to SmTj is the same
as that needed to transmit a message from SmTj to SmTi. The
parameter n is the attenuation index of transmission, which
is influenced by the surrounding environments. Generally,
if smart things in the IoT network are barrier-free when
forwarding packets, n is set to 2. Otherwise, n is set to a value
between 3 to 5.

III. SERVICE CLASS CHAINS RECOMMENDATION
Leveraging the service network constructed in the previous
section, we introduce the service class chains generation and
recommendation. Regarding the technical details, we refer
the reader to our previous work [22] for the algorithms.
Generally, end- users may not be domain experts, and the
requirement of certain applications can hardly be specified
in a very clear and precise fashion. In fact, this is quite
common, especially when the task to be solved is relatively
vague in the initial stage. On the other hand, end- users can
describe their requirement in plain text regarding the initial
and ending states (denoted as staini and staend respectively),
and possibly the input and output parameters of staini and
staend . In this setting, by calculating the similarity of service
classes contained in the service network with respect to staini
(or staend ) via the consideration of their plain-text description
and input and output parameters, candidate service classes for
staini (or staend ) can be determined and ranked. Without loss

of generality, service class sevini (or sevend ) with the largest
similarity is selected as the initial (or ending) state.

After determining the service classes of the initial state
and ending state, candidate service class chains should be
retrieved from the service network using the depth-first graph
search algorithm with a prespecified limitation on depth [22].
In this article, the depth (denoted as deptlmt ) is set to 5, and
deptlmt can be changed to another appropriate value accord-
ing to the requirements.

When several service class chains are retrieved, these
chains are ranked according to the average weight specified
on the links. Specifically, the average weight is computed
using the following parameters: (i) the sum of weights on all
direct links, (ii) the length of the service class chain. Without
loss of generality, the service class chain with the largest
weight on average should be selected as the most appropriate
candidate.

For instance, assume that the initial and ending states are
described in plain- text as follows:
• The initial state: ‘‘Gathers data from multiple sen-
sor nodes in a wireless sensor network, which may
include temperature, humidity, wind direction, wind
power, ambient smog, light, accelerometer, and other
sensors commonly used for monitoring fire alarm, and
so on. Public reports to generate the accurate location
of the fire in the firehouse.’’

• The ending state: ‘‘According to the gathered data from
corresponding sensors, such as temperature, humidity,
ambient smog, wind direction, wind power, light sen-
sors and so on, to generate the current fire region and
forecasts of fire spreading in the following time dura-
tion. Properly identify the incident, raise the occupant
alarm, and then notify emergency response professionals
timely.’’

By calculating the similarity between the above descrip-
tion and the text description of service classes as presented
in Table 3, sc4 and sc10 are determined as the initial state and
the ending state, respectively. Candidate service class chains
are derived from the service network as shown in Fig. 2. These
five chains are listed below,where the sequence represents the
invocation order between service classes.
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• The first candidate service class chain, the length of
which is 5:
1) sc4: Light sensing service
2) sc9: Ambient smog sensing service
3) sc1: Ambient temperature sensing service
4) sc3: Relative humidity sensing service
5) sc10: Wind direction sensing service

The weight on average is 0.610681398.
• . . .

• The third candidate service class chain, the length of
which is 4:
1) sc4: Light sensing service
2) sc1: Ambient temperature sensing service
3) sc2: Temperature sensing service
4) sc10: Wind direction sensing service

The weight on average is 0.591111399.
• . . .

• The fifth candidate service classes chain, the length of
which is 5:
1) sc4: Light sensing service
2) sc2: Temperature sensing service
3) sc1: Ambient temperature sensing service
4) sc5: Pressure sensing service
5) sc10: Wind direction sensing service

The weight on average is 0.559457158.
When candidate service class chains (denoted asCHN ) are

generated, the service classes in these chains should be instan-
tiated by discovering and selecting appropriate IoT services,
this IoT service composition procedure is presented in the
following section.

IV. IoT SERVICE COMPOSITION
This section presents our IoT service composition mech-
anism, which discovers and selects IoT services for the
instantiation of service classes in chains, where spatial and
temporal- constraints, potential conflicts between IoT ser-
vices co-hosted by certain smart things, and the energy effi-
ciency are the main concerns.

A. IoT SERVICE CONSTRAINTS
1) SPATIAL AND TEMPORAL CONSTRAINTS
Smart things can usually work well under certain spatial
and temporal constraints. Intuitively, the spatial- constraint
of a certain smart thing SmTi is specified according to the
physical location and the communication radius and can be
represented as follows:

spt(SmTi) = (pSmTi , rSmTi ) (5)

where pSmTi is the geographical location of the smart thing
SmTi, which is represented by its latitude and longitude,
while rSmTi is the communication radius, which represents
the maximum transmission distance of SmTi. Note that a user
requirement rq has the spatial- constraint as well, which can
be specified as follows:

spt(rq) = (prq, rrq) (6)

Therefore, the spatial relevancy between rq and SmTi is
computed as follows:

spt(rq, SmTi) = (spt(SmTi) ∩ spt(rq))÷ spt(rq) (7)

where spt(rq, SmTi) represents the degree of overlap
between spt(SmTi) and spt(rq). We do not consider smart
things that are beyond the scope of the requirement.

The temporal- constraint is specified in a similar fashion.
The user requirement rq usually needs to be carried out within
a certain time duration tpr(rq). Similarly, an IoT service
hosted by a smart thing SmTi is not operated within all time
duration to reduce the energy consumption, and it should be
available only for the prespecified time duration tpr(SmTi).
Consequently, the temporal relevancy for rq and SmTi is
computed as follows:

tpr(rq, SmTi) = (tpr(SmTi) ∩ tpr(rq))÷ tpr(rq) (8)

Intuitively, tpr(rq, SmTi) represents the common time dura-
tion for the user requirement and the smart thing, which
indicates that the smart thing can provide these time durations
to support the user requirement.

2) CONFLICTS BETWEEN IoT SERVICES
A smart thing can usually host multiple IoT services, which
should be configurable when these IoT services functionally
conflict with each other. For a service class chain, we should
consider whether there is a delay between two consecutive
service classes (scm and scm+1, 0 ≤ m ≤ k , where k
represents the number of service classes) when these two
IoT services are instantiated in the same smart thing. That is,
when the previous IoT service is completed, can the smart
thing start the next service immediately without any halt.
Taking this factor into account, the priority coefficient is
proposed in the selection of instantiating every single service
class. For each service class in chains, we build a set of
aggregated alternative smart things, which contains certain
functionalities, and calculate the priority coefficient for each
smart thing in the aggregation. Considering two consecutive
IoT services that are co-hosted in the same smart thing and
have conflicting functionalities, there are certain influences
on energy consumption in the service network. Energy con-
sumption occurs during the delay time of two consecutive
IoT services. However, no data packets are transmitted and
received when IoT services function in the same smart thing.

Given two constant IoT services, the delay time in a
certain smart thing SmTi is denoted as delay(SmTi.sevm,
SmTi.sevm+1), and the priority coefficient of a certain smart
thing for a certain IoT service (denoted as pri(SmTi.sevm)) is
computed as follows:

pri(SmTi.SmTm)

=


Einv(SmTi.sevm)
ETR + Est ∗ delay(SmTi.sevm, SmTi.sevm+1)

ETR
∗Einv(SmTi.sevm)

(9)
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where ETR is the sum of ETx(k,d) and ERx(k). The first
equation represents the situation where sevm has no conflict
with the previous IoT service. The second one indicates that
the next IoT service selection needs to take the previous one
into account and checks whether the two IoT services have
a delay time if they are co-hosted by the same smart thing.
Each time an IoT service is selected, the coefficient of priority
is calculated for the next IoT service in the alternative smart
things aggregation.

3) ENERGY CONSTRAINTS
To prolong the network lifetime, IoT services should be
configured properly, considering the load- balancing of smart
things and avoiding the excessive consumption of any smart
thing. Generally, IoT services supported by smart things with
relatively large amounts of remaining energy (denoted as
reg(SmTi)) should be chosen for the instantiation of cer-
tain service classes (denoted as Ecst (SmTi.sevm)). Therefore,
the energy consumption for a certain IoT service adopted in
the service composition is computed as follows:

Ecst (SmTi.sevm) = Einv(SmTi.sevm) ∗ t(SmTi.sevm) (10)

where t(SmTi.sevm) is the invocation time for a certain IoT
service hosted by a certain smart thing.

The total energy consumption of a certain smart thing
containing all the IoT services is computed as follows:

Ecst (SmTi) = 6
ns(SmTi)
m=1 Ecst (SmTi.sevm) (11)

where ns(SmTi) is the number of IoT services that a certain
smart thing SmTi can configure.

To avoid the over-consumption of energy for any smart
thing, we should try to prevent a smart thing with rela-
tively low remaining energy from completing an IoT service
requiring a relatively large amount of energy consumption.
Therefore, an energy- consumption ratio is proposed, which
is computed as follows:

ecr(SmTi.sevm) = Einv(SmTi.sevm)÷ reg(SmTi) (12)

To estimate the usability of smart things, the following
threshold is proposed:

thrd = 6nh(sevm)
i=1

Einv(SmTi.sevm)
reg(SmTi)

÷ nh(sevm) (13)

where nh(sevm) is the number of smart things that can be
chosen to support a certain IoT service sevm. thrd is the aver-
age energy- consumption ratio for all smart things. A load-
balancing factor (denoted as lbf ) leveraging ecr(SmTi.sevm)
and thrd is defined to examine whether a certain IoT ser-
vice hosted on a certain smart thing is optimal, where
lbf (SmTi.sevm) is calculated as follows:

lbf(SmTi.sevm) =
ecr(SmTi.sevm)

thrd
(14)

When the value of lbf is relatively large, the energy con-
sumption required to complete an IoT service has a signifi-
cant proportion with respect to the residual energy of a certain

smart thing. Therefore, the IoT service supported by a certain
smart thing should be less than that of its rivals to balance the
energy consumption of the whole network.

B. ENERGY CONSUMPTION OF IoT SERVICE
COMPOSITION
The energy in an IoT services network is not infinite. To pro-
long the lifetime of a network, the energy consumption
required to compose these service classes should be as low
as possible. For a service class chain chn= sc1→ sc2→ sc3
→ . . .→ sck , assuming that sevm is an instance in the service
class scm, the composition of IoT services is instantiated as
cp(chn) = sev1 → sev2 → sev3 → . . .→ sevk . The energy
consumption for a certain composition cp(chn) includes the
following parts [24]:
• The energy consumption required to activate the instan-
tiation of IoT services in the service class chain cp(chn)
is computed as follows:

Einv(cp(chn)) = 6Ecst (SmTi) (15)

In fact, this is the total energy consumption for all smart
things that invoke all the IoT services in cp(chn).

• The energy consumption for the standby-state in the
whole cp(chn) is computed as follows:

Est (cp(chn)) = 6delay(SmTi.sevm, SmTi.sevm+1) ∗ Etd
(16)

Note that the selection procedure has two consecutive
service restrictions. Specifically, when finishing the first
IoT service and waiting to launch the next one, the smart
thing that is selected operates in the standby- stage, this
process also consumes energy. Therefore, Est (cp(chn))
represents the total energy consumption for the whole
chain in this case.

• The energy consumed to transmit and receive data pack-
ets in the cp(chn) is computed as follows:

ETR(cp(chn)) = (leg(chn)− timesa − 1)

∗(ETx(k,d)+ ERx(k)) (17)

where leg(chn) is the length of the service class chain
contained in chn. timesa is the amount of time needed for
two consecutive services hosted on the same smart thing.
When there are no packets that need to be transmitted
between two smart things, ETx(k, d) and ERx(k) are
set to 0. This situation occurs when two consecutive
services are deployed on the same smart thing or the
IoT service sevm is the last one in the service chain.
Note that the first IoT service sevi in chn only needs
to transmit a data packet, and the last IoT service sevk
only needs to receive a data packet. Therefore, the total
energy consumption for a certain service composition
cp(chn) is calculated as follows:

E(cp(chn)) = Einv(cp(chn))+ Est (cp(chn))

+ETR(cp(chn)) (18)
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C. IoT SERVICE COMPOSITION
Given a service class chain chn = sc1 → sc2 → sc3 → . . .

→ sck , each scm should be instantiated by a certain IoT
service while taking the constraints into account. This process
can be formulated as a multiobjective and multiconstrained
optimization problem as follows.
• Input Parameters:

1) CHN : the set of service class chains chn con-
structed and recommended in Section III.

2) spt(rq): the spatial constraint of a user requirement
rq.

3) spt(SmTi): the spatial constraint of a certain smart
thing SmTi.

4) tpr(rq): the temporal constraint of a user require-
ment rq.

5) tpr(SmTi): the temporal constraint of a certain
smart thing SmTi.

6) ETx(k,d): the energy consumed when transmitting
a k bit packet within a distance d.

7) ERx(k): the energy consumed when receiving a k
bit packet.

8) Eij(k): the energy consumed when transmitting a k
bit packet from a smart thing SmTi to a neighboring
smart thing SmTj.

9) Einv(SmTi.sevm): the energy consumed when acti-
vating an instantiation of an IoT service sevm in a
smart thing SmTi.

10) Est (SmTi): the energy consumption of stand-by
time per unit in a smart thing SmTi.

11) delay(SmTi.sevm,SmTi.sevm+1): for two contigu-
ous IoT services sevm and sevm+1, the time of delay
in a certain smart thing SmTi.

12) t(SmTi.sevm): the invocation time for a certain IoT
service sevm configured in a certain smart thing
SmTi.

13) ns(SmTi): the number of IoT services that a certain
smart thing SmTi can configure.

14) nh(sevm): the number of smart things that can be
chosen for a certain IoT service sevm.

15) reg(SmTi): the residual energy of a certain smart
thing SmTi.

• Output Parameters:
1) cp(chn): the optimal composition of IoT services

in the CHN.
• Multiobjective Functions:

1) Minimize:
f1 = E(cp(chn))
f2 = α ∗ pri(cp(chn))+ β ∗ lbf(cp(chn))

2) Maximize:
f3 = ϕ ∗ spt(cp(chn))+ δ ∗ tpr(cp(chn))

where ϕ, δ, α and β are positive constant factors, and
ϕ + δ = 1, α + β = 1.
Thus:
1) pri(cp(chn)) =

∑
pri(SmTi.sevm)÷ leg(chn)

2) lbf(cp(chn)) =
∑
lbf (SmTi.sevm)÷ leg(chn)

• Constraints:
1) reg(SmTi) ≥ Ecst (SmTi)

• Fitness Function:

fit(cp(chn))

= w1 ∗ f1 + w2 ∗ f2 − w3 ∗ f3
= w1 ∗ E(cp(chn))+ w2 ∗ (α ∗ pri(cp(chn))+ β

∗ lbf(cp(chn)))− w3 ∗ (ϕ ∗ spt(cp(chn))

+ δ ∗ tpr(cp(chn)))

where w1, w2 and w3 are positive constant factors repre-
senting the importance of the functions f1, f2 and f3, respec-
tively, and w1 +w2 +w3 = 1. The fitness function measures
whether the IoT service class chain composition cp(chn) can
satisfy the objective functions and constraint functions afore-
mentioned, the smaller the value of the fitness function is,
the better the composition is.

D. OPTIMIZATION ALGORITHM IN
IoT SERVICE COMPOSITION
To solve the multiobjective and multiconstrained optimiza-
tion problem, three optimization algorithms, including the
genetic algorithm (GA), ant colony optimization (ACO), and
particle swarm optimization (PSO), are adopted, their proce-
dures are presented below:

1) GENETIC ALGORITHM
The GA is a heuristic algorithm used to search for the opti-
mal solution by simulating the natural evolutionary process,
it includes four steps: inheritance, selection, mutation and
crossover.

In this article, a chromosome represents a service class
chain, and the aggregation of service class chains CHN com-
prises a population (denoted as pi), where i ranges from 1 to
the size of the CHN. The genes represent service classes
in chains, and the fitness function of chromosomes repre-
sents the individual fitness value of the population. We cal-
culate the fitness function value via the method presented
in Section IV-C, the smaller the fitness function value of
cp(chn) is, the better the cp(chn) is in the population.
The procedure of selecting the optimal individual and elim-

inating the inferior individuals is called selection. For each
population, the fitness function values are calculated for all
the chromosomes, and only a proportion of the population
is selected to be carried over into the next generation. The
next generation is generated via the combination of crossover
andmutation.Crossover occurs for two chromosomes chosen
in a population, selecting a position as a crossover point
and exchanging the genes of those separated from the point
while obtaining two new chromosomes in the next generation.
Mutation is a random change in a gene sequence. It randomly
chooses a gene from the chromosome and alters the gene.
The crossover and mutation probabilities are set according
to specific examples. These processes aim to obtain the most
appropriate IoT service composition in the CHN.
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Algorithm 1 IoT Service Composition via GA
Require:

- MAX_GEN : the maximum number of generations.
- CHN : the aggregation of service class chains.

Ensure:
- an approximately optimal chromosome.

1: while looptime < MAX_GEN do
2: choose the chromosome that has the minimum fitness

value in the current generation and add it to the new
generation.

3: for i < |CHN | − 1 do
4: select chromosomes randomly via roulette wheel

selection, a chromosome that has a smaller fitness
function value is more likely to be chosen.

5: end for
6: for i < |CHN | − 1 do
7: apply the crossover and mutation methods to evolve

chromosomes for the next generation.
8: end for
9: find an approximately optimal chromosome.
10: end while

Algorithm 1 is the procedure carried out when using the
genetic algorithm. Specifically, after generating the initial
population, the fitness function values are computed for all
chromosomes, and the chromosomes with the minimum val-
ues are reserved for the next generation (line 2). Roulette
wheel selection is adopted to obtain the remaining chromo-
somes (line 4), and all new chromosomes are put into the
new generation. Thereafter, two chromosomes in the new
generation are chosen to implement the crossover operation
to obtain two new chromosomes and replace the old chromo-
somes (line 7). In addition, the method of mutation is also
applied for chromosomes selected randomly to obtain new
chromosomes (line 7). These procedures are iterated until the
maximum number of generations has been reached or an opti-
mal fitness function value has been derived. Consequently,
the chromosome with the minimum fitness function value is
chosen as the candidate.

2) ANT COLONY OPTIMIZATION
ACO is an optimization algorithm inspired by ants for looking
for food. The main steps involve selecting the next service
vertexes and updating the pheromone matrix. Regarding the
selection procedure, ants are scheduled to choose a service
randomly as the starting service vertex and then move from
one service to another. A pheromone matrix is constructed
to contain the pheromone value between every two services.
For every service chain that has been selected, the pheromone
matrix is updated with the fitness function value of the service
chain for any two continuous services. In the following proce-
dure, for the service vertices, the larger the pheromone value
is, the larger the possibility that a service is selected by the
ants.

Algorithm 2 Service Composition via ACO
Require:

- MAX_GEN : the maximum number of iterations.
- NUM : the number of ants.
- Ns: the number of IoT services.
- CHN : the aggregation of service class chains.

Ensure:
- an approximately optimal service chain.

1: for looptime < Ns do
2: set initial pheromone matrix.
3: end for
4: for looptime < MAX_GEN do
5: for i < NUM do
6: choose a starting service vertex randomly.
7: for j < |CHN | do
8: choose the following service vertexes according

to the pheromone matrix.
9: end for
10: update the pheromone matrix with the value of the

fitness function.
11: end for
12: find an approximately optimal service chain.
13: end for

Algorithm 2 presents the general service composition
procedure involving ant colony optimization. First, we set
the initial value for the pheromone and form a matrix Ns
(line 2). Then, a starting vertex is chosen randomly, as the
pheromone value is the same at this moment (line 6). Regard-
ing subsequent vertexes, the previous vertex is chosen in the
pheromone matrix according to the row or the column vertex,
and the next vertex is selected via roulette wheel selection in
terms of the pheromone (line 8). Whenever an ant finishes the
path selection, the pheromone matrix is updated by adopting
the last fitness value (line 10). Finally, a service route that has
the minimum fitness function value is found. This procedure
iterates until the iteration threshold is reached.

3) PARTICLE SWARM OPTIMIZATION
PSO is one of the evolutionary algorithms inspired by the bird
flock-prey behavior. In PSO, the solution to each optimization
problem is a bird in the search space, and a solution is called
a particle. All particles have a fitness value determined by
the optimized function, and they follow the current optimal
particle to search for the best solution.

In our context, each service class chain chn corresponds
to a particle pi, and pi is the number of particles i defined
as pi = (pi1, pi2, . . . , pij, . . . ), where pij is a certain service
in the service class scj in chn. The particle position changes
when a service sevi is substituted with another service in chn.
cp(chn) corresponds to an instantiated service of a certain
particle. There are two values that require special attention:
(i) gbest: the most appropriate position for all particles in the
swarm at present, and (ii) pbest: themost appropriate position
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TABLE 2. Parameters settings in the experiments.

that has been found. The particles update their speeds and new
locations according to the following formulas:

v(t+1) = w ∗ v(t)+ c1 ∗ r1 ∗ (pbest(t)− x(t))

+ c2 ∗ r2 ∗ (gbest(t)− x(t)) (19)

x(t+1) = x(t)+ v(t+1) (20)

where w is the inertia weight, v(t) is the speed of the
particles at present, c1 and c2 are coefficients that are pos-
itive constant variables, r1 and r2 are random variables
between 0 and 1.

Algorithm 3 Service Composition via PSO
Require:

- MAX_GEN : the maximum number of iterations.
- NUM : the number of particles.
- CHN : the aggregation of service class chains.

Ensure:
- an approximately optimal service chain.

1: for looptime < MAX_GEN do
2: for looptime < NUM do
3: initialize particles.
4: end for
5: for looptime < |CHN | do
6: calculate fitness function value.
7: if the fitness function value is less than pBest then
8: set the current fitness value as the new pBest.
9: end if
10: end for
11: choose the particle with the minimum fitness value of

all the particles as gBest.
12: if the fitness function value is less than gBest then
13: set the current fitness value as the new gBest.
14: end if
15: for looptime < NUM do
16: calculate particle velocity according to formulas 19.

17: update particle position according to formulas 20.
18: end for
19: find an approximately optimal service chain.
20: end for

Algorithm 3 shows the general service composition pro-
cedure involving particle swarm optimization. We initialize

TABLE 3. Sample for service classes specified at
https://developer.android.com/guide/topics/sensors/sensors_overview.
html.

particles to set values for the start position and initial velocity
(line 3). The fitness function values are calculated for all
particles (line 6), and they are compared with pbest. If a
fitness value is less than pbest, the fitness value is selected
as the new pbest (line 8). Then, the particle that has the
minimum fitness value is compared with gBest, and gBest is
updated accordingly (line 13). The position and velocity are
updated according to formulas 19 and 20 (line 16 and line 17).
This procedure terminates when the maximum number of
iterations has been reached.

V. IMPLEMENTATION AND EVALUATION
The prototype has been implemented using a Java program,
and experiments have been conducted on a desktop with an
Intel i7-6700 CPU at 3.4GHz, 8-GB of memory and a 64-bit
Windows 7 system. The experiment settings and evaluation
results are presented in the following.

A. EXPERIMENT SETTINGS
The parameter settings for our experiments are presented
in Table 2. Our experiments are set in a region with 30 smart
things that co-host 400 IoT services. The geographical range
is 500m × 500m, in which smart things are deployed with
a skewness degree of 40%. Generally, a skewness degree
(denoted sd) represents the distribution of unevenness for
the distribution of smart things, and is computed using the
following rule: sd = (dn−sd)÷N, where (i) dn is the number
of smart things in dense subregions, (ii) sn is the number of
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FIGURE 3. Sample IoT service compositions generated by applying GA, ACO, and PSO, respectively.

smart things in sparse subregions, and (iii) N is the sum of
dn and sn [25]. As mentioned in Section II-A, we construct
14 service classes. Their specific information was presented
in our previous work [15]. Here, we only list each one’s iden-
tification and name as shown in Table 3. As shown in Fig. 2,
the service network is constructed as a weighted directed
graph, where the links, the weight of which is smaller than
0.511 (the prespecified threshold thrdip), are pruned.

Generally, a smart thing can co-host one or multiple IoT
services, and IoT services with a certain kind of functionality
can be hosted by multiple smart things. Without loss of
generality, smart things are set to have the same amount of
initial energy. The spatial constraint of a certain smart thing is
set according to the geographical location and the communi-
cation radius, and the temporal constraint is set to contiguous
time slots, where a time slot represents a 2-hour time duration
in the 24-hour format. The conflict constraint for a certain
IoT service in a certain smart thing is set in terms of the IoT
services of continuity. The selection of IoT services is carried
out according to the energy consumed when activating an
instantiation of the IoT service and the proportion of energy
consumed during the delay time and instantiation of the IoT
service. The energy constraint is specified by the ratio of
residual energy for smart things to the energy consumed for
an IoT service in the smart things.

The parameters for the GA are set as follows: (i) the
possibility of crossover pc = 0.8, and (ii) the possibility
of mutation pm = 0.1. Crossover is an operation that is
mostly used when generating new generations. On the other
hand, mutation is to be applied randomly. The parameters for
PSO are set as follows: (i) the acceleration coefficient for
the velocity of particles c1 is set to 2, (ii) the acceleration
coefficient for the position of particles c2 is set to 2, and
(iii) the inertia weight factor w is set to 0.5, which shows

the impact of previous values of particle velocities on the
current values. The parameters for ACO are set as follows:
(i) the pheromone volatilization factor rho is set to 0.05. The
number of iterations for algorithms is set to 50, and it can be
adjusted according to the particular experimental situation.
The parameters for the fitness function are set as follows:
w1 = 0.2, w2 = 0.3, w3 = 0.5, α = 0.4, β = 0.6,
ϕ = 0.5, and δ = 0.5. Note that these parameters can be set
to other appropriate values depending on the requirements of
the particular domain application.

B. EVALUATION RESULTS
A sample of starting and ending states is shown in Section III.
The geographical region in which a user is interested in
is specified by the red circle shown in Fig. 3, where the
black solid points represent the positions of smart things
on which the IoT services are hosted. These smart things
and the corresponding IoT services are not considered for
the service composition when they cannot satisfy the tem-
poral and spatial constraints of certain requirements. The
GA, ACO, and PSO are applied to generate IoT service
compositions.

As shown in Fig. 3, the recommended IoT service composi-
tion generated using theGA is cp(chnga) = sev134(SmT21)→
sev207(SmT2) → sev131(SmT11) → sev136(SmT17) →
sev84(SmT5). Correspondingly, the service class chain is
chnga = sc4 → sc1 → sc6 → sc7 → sc10,
where the weight on average for cp(chnga) is 0.475560817.
The recommended service composition generated via ACO
is cp(chnaco) = sev161(SmT27) → sev295(SmT6) →
sev83(SmT4) → sev274(SmT6) → sev96(SmT9). Corre-
spondingly, the service class chain is chnaco = sc4 →
sc2 → sc1 → sc3 → sc10, where the weight on aver-
age for cp(chnaco) is 0.501535008. A sample IoT service
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composition generated via PSO is cp(chnpso) = sev338
(SmT16) → sev32(SmT28) → sev350(SmT10) →

sev60(SmT1)→ sev188(SmT25). Correspondingly, the service
class chain is chnpso = sc4 → sc3 → sc1 → sc6 → sc10,
where the weight on average for cp(chnpso) is 0.520225996.
These results show that PSO can generate an optimal IoT
service composition in comparison with the GA and ACO.
However, the difference is not much and is mainly caused by
the contingency and randomness of these algorithms.

Fig. 4 shows fitness values for the GA, ACO, and PSO for
30 contiguous time slots. These values are used as the criteria
for measuring the optimum of the corresponding IoT service
compositions. This figure shows that the fitness values for
PSO increase gradually and almost linearly, with a slope
of approximately -0.6. The fitness values for the GA and
ACO exhibit a slight ascending trend, but their contingency
is larger. This fact indicates that under the current parameter
settings, PSO should yield an appropriate IoT service compo-
sition in most situations. Actually, as the number of iterations
increases, more and more energy is consumed by the smart
things, and the proportion of energy consumed to instantiate
a service as well as the residual energy is increased, which
contributes to the increase in fitness values.

FIGURE 4. The fitness value for the GA, ACO and PSO when the
algorithms are executed in 30 contiguous time slots.

Fig. 5 shows the minimum residual energy of smart things
for 30 contiguous time slots. This figure shows that the
curve for PSO is smoother and that the minimum residual
energy for the GA and ACO decreases quickly. The initial
energy of smart things is set to the same amount used in
our experiment. The network lifetime is set to the time slots
during which the first smart thing exhausts its energy. In this
setting, a smart thing, with excessive energy consumption
should not be selected to support a certain IoT service when
a neighboring smart thing can provide the same IoT service
and is relatively abundant in energy. This strategy is beneficial
for balancing the energy consumption of smart things, thus
prolonging the network lifetime. This figure shows that PSO
outperforms the GA and ACO in preserving the minimum
residual energy for smart things when selecting appropriate
IoT services for instantiating service classes in chains.

FIGURE 5. The minimum residual energy of smart things when the
algorithms are executed in 30 contiguous time slots.

FIGURE 6. The variance of the residual energy of smart things when the
algorithms are executed in 30 contiguous time slots.

Fig. 6 shows the variance of the residual energy of smart
things for 30 contiguous time slots when the GA, ACO
and PSO are adopted. Generally, this variance indicates the
balancing of the energy consumption of smart things. The
larger the value is, the more uneven the energy consumption
of smart things is. This figure shows that PSO outperforms
the GA and ACO in improving the balancing of the energy
consumption, thus leading to a longer network lifetime.

VI. RELATED WORKS AND COMPARISON
Service composition techniques are well- developed and
widely adopted for supporting relatively complex domain
applications, where the requirement is beyond the capacity
of any single smart thing. Generally, traditional techniques
compose services in a certain order to achieve a certain
goal [26]. Leveraging the semantic similarity ofWeb services
for the construction of a service network, which represents
the invocation possibilities between operations contained in
Web services, a graph searching technique is adopted to
discover service chains with respect to the determined initial
and ending states. Note that the service composition tech-
nique proposed in [22] is adopted in this article to gener-
ate candidate service class chains. However, this technique
mainly concentrates on the discovery and recommendation of
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appropriate service chains, while the relationship between
services and sensing devices is not explored. The technique
proposed in [27] is used to search for the compositions of
IoT services in this article. A set of fundamental control-
flow patterns was analyzed in the context of stateless com-
positions of REST services to support the composition of
Web and REST services, while the characteristics of IoT
services, including the spatial and temporal- constraints and
the energy-awareness, are not explored extensively.

Service-oriented IoTs have been developed to support IoT
service compositions. Service-Oriented Architecture (SOA)
is a flexible architectural pattern used for system integration,
and SOA-based IoT focuses on designing and developing
IoT devices as services. Therefore, these IoT devices can be
connected and composed via service composition techniques.
This strategy facilitates the collaboration and cooperation
of IoT devices. Cheng et al. [28] propose a situation-aware
IoT service coordination platform based on the event-driven
service-oriented architecture paradigm, which integrates the
advantages of SOA effectively to support the coordination
of IoT services. Ko et al. [18] propose the service-oriented
IoT, as well as a user-centric IoT-based service framework.
Generally, this framework integrates services that utilize IoT
resources in an urban computing environment. The require-
ments of certain users can be fulfilled in terms of composing
IoT services. During the service composition, the social, spa-
tial, and temporal aspects in the environment are considered
as constraints.

As a key pillar of IoT, in recent years, WSN sensor
nodes or other intelligent equipment have been encapsulated
in terms of services to facilitate the functional integration
and collaboration of these devices. Shah et al. [29] propose a
service-oriented system for WSNs, which is capable of prac-
ticing service configuration under various geo-spatial and
resource constraints. A service has a spatial relevance with
a certain region, which is overlapped by the region of interest
prescribed by the requirement. The configuration mecha-
nism should reconfigure the service according to the require-
ment. The impact of the geo-spatial and cost constraints of
sensor services is considered, whereas temporal constraints,
energy efficiency and conflict constraints, which are the main
concerns of our technique, are not considered. Generally,
this technique complements our technique, as it provides
a more appropriate approach to WSN service composition.
Zhou et al. [15] propose a three-tier serviced-oriented frame-
work, where each sensor node is encapsulated as a WSN
service, which is classified into a service class according
to its functionality. Service classes are chained to fulfill the
requirement, and the instantiation of service compositions
should consider spatial and temporal constraints, and energy-
efficiency. As the foundation of the technique developed in
this article, IoT smart things are encapsulated and represented
as the aggregation of IoT services, and each smart thing
contains multiple IoT services. Therefore, in the process of
instantiating service compositions, the conflict constraints
and load-balanced energy consumption of smart things are

also the constraints to be considered. To balance the dis-
parity between the high-level requirements and the low-
level equipment in an IoT environment, different middle-
ware architectures have been proposed in WSN and IoT in
recent years [16]. Issarny et al. [30], the authors explore the
mechanism for adopting the service-oriented architecture to
address challenges posed by the IoT for the development of
distributed applications. The evolution of the supporting mid-
dleware solutions, including the probabilistic protocols used
to address the scale, the cross-paradigm interaction used to
address the heterogeneity, and streaming-based interactions
used to support the inherent sensing functionality, have been
discussed.

The service-oriented paradigm has been applied in a vari-
ety of IoT contexts. In [17], trust management for support-
ing service composition applications in a SOA-based IoT
system is proposed. Heterogeneous IoT devices in physical
networks are virtually connected via social networks. Direct
and indirect trusts are dynamically combined to minimize
the convergence time and trust estimation bias to perform
opportunistic services. Formulating the service distribution
problem in IoT-cloud networks mathematically, a minimum
cost mixed-cast flow problem is proposed in [20], which
can be efficiently solved via linear programming. A flexible
mathematical model was introduced for IoT-cloud networks.
This model characterizes the capacity, efficiency, and reliabil-
ity of sensing, computing, and transmission resources across
end devices, access, and cloud layers. A generic IoT service
is characterized, and it encodes the relationship between
service functions that must be delivered to users. A smart
IoT communication system manager design, which is used
as a low-cost irrigation controller, is proposed in [31]. This
work presents the design and development of a multimedia
platform for precision agriculture and integrates an intelligent
IoT irrigation system based on a mesh network. The aerial
mapping sensor included in AR Drones with HD cameras
is used to monitor an area used to grow crops. In [32],
an architecture that supports Web objects based on energy-
efficient for smart home IoT services is proposed, which
minimizes the energy consumption while satisfying user liv-
ing comfort. Generally, the integration of IoT devices is
mostly achieved via the service-oriented mechanism, where
spatial and temporal- constraints, energy efficiency, and the
configurability of IoT services should be considered as main
concerns.

VII. CONCLUSIONS
Along with the wide adaptation of IoT in various indus-
trial applications, the integration of IoT smart things for
facilitating the cooperation and coordination of these smart
things is a challenge, especially when the requirement to be
achieved is beyond the capacity of any single smart thing.
In this setting, service-oriented IoT is proposed, where the
functionalities provided by smart things are encapsulated
into IoT services, which are composed into value-added ser-
vices when necessary. Intuitively, a smart thing can co-host
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multiple IoT services with different functionalities. On the
other hand, a certain functionality, which can be represented
by a service class, can be supported by one or multiple smart
things. To address the challenge of IoT service composi-
tion, service class chains are generated with respect to the
requirement by adopting traditional Web service composition
techniques. Considering the factors, including spatial and
temporal- constraints, energy efficiency, and the configurabil-
ity of IoT services, IoT service selection for the instantiation
of service classes contained in chains is reduced to a multiob-
jective and multiconstrained optimization problem. Heuristic
algorithms, such as the genetic algorithm (GA), ant colony
optimization (ACO) and particle swarm optimization (PSO),
are adopted to search for optimal IoT service compositions.
The experimental evaluation mainly considers the fitness,
minimum residual energy of smart things, and the variance
of residual energy in smart things. The results show that
PSO performs better than the GA and ACO in searching for
approximately optimal IoT service compositions and reduces
and balances the energy consumption, thus prolonging the
network lifetime.
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