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ABSTRACT The massive MIMO channel is characterized by non-stationarity and fast variation, thereby the
channel state information obtained by traditional methods will be outdated and the system performance will
be degraded. In this paper, we propose a channel prediction algorithm in massiveMIMO environments. First,
considering the channel characteristics, we propose a first-order Taylor expansion-based predictive channel
modeling method. Then, a channel prediction algorithm consisting of the estimation stage and prediction
stage is proposed and the interval of effective prediction (IEP) is derived. The performance of the proposed
algorithm is testified by numerical simulations. It is shown that, within the IEP, a reliable channel prediction
can be obtained with low computational complexity.

INDEX TERMS Massive MIMO, fast-varying, non-stationary, channel prediction, first-order Taylor
expansion.

I. INTRODUCTION
Massive multiple-input multiple-output (MIMO) technol-
ogy is well known for its numerous merits, such as high
spectrum and energy efficiency, large capacity, and sim-
ple transceiver design [1]–[3]. In the meantime, massive
MIMO faces challenges [4] including realistic system mod-
eling, high-dimensional channel estimation, heterogeneous
user scheduling, and so on. Especially, accurate channel state
information (CSI) serves as the priori knowledge for tech-
niques like precoding and coherent detection, thus, an effec-
tive channel estimation is of great importance for practical
applications of the massive MIMO technology [4], [5].

Traditionally, channel estimation is obtained in a time divi-
sion duplex (TDD) mode, where pilots are transmitted in the
uplink transmission and the estimated CSI is then feedback in
the reverse link [5], [6]. However, ultra-high bands including
themillimeter and terahertz have been considered for wireless
communications [7], [8]. In ultra-high bands, the channel
coherent time is significantly reduced and becomes shorter
than the pilot transmission time. As a result, the CSI acqui-
sition based on uplink estimation and downlink feedback
will provide outdated information, thus seriously degrade the
system performance. In this circumstance, reliable channel
prediction to forecast the channel variation is necessary.

Considering the channel prediction problem in massive
MIMO environments, channel modeling should be put in
the first place. Different from the traditional MIMO system
with normal-size antennas, massive MIMO has large-size
antenna arrays so that the distance between the transmitter
and receiver may be shorter than the Rayleigh distance, which
is defined as 2L2/λ, where L and λ are the antenna array
dimension and the carrier wavelength, respectively [9]. As a
result, the far field assumption [10] is not applicable and the
near field modeling [11] should be used instead. In addition,
due to the mobility of terminals together with limited but
changing physical scatters, non-stationarity is also envisioned
by the massive MIMO channel [9], [12].

Existing researches on channel prediction usually adopt the
autoregressive (AR) predictive modeling [13], [14] or deter-
ministic parameters based modeling [15]. Assuming a wide
sense stationary channel, ARmodeling based channel predic-
tion calculates the channel state through its previous states
and the temporal channel correlation has to be evaluated
through training [14], [16]. However, in the non-stationary
and fast-varying environment, the temporal correlation of
channel coefficients are difficult to be obtained and the AR
modeling based prediction is not applicable. Similarly, the
deterministic parameters based modeling is applied under
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the assumption of quasi-static channel, where the number
of propagation paths is invariant, thus is also not applicable.
Therefore, more effective prediction modeling is necessary.

In this paper, we focus on the channel prediction problem
in time-varying massive MIMO environments. Firstly, we
propose a channel modeling method for prediction based on
the first-order Taylor expansion (FIT). It is then verified that
the proposed FIT modeling has a relatively small residue
error. Next, a channel prediction algorithm consisting of
estimation stage (E-stage) and prediction stage (P-stage) is
proposed based on the FIT modeling. In addition, the interval
of effective prediction (IEP) is analyzed, it is found that the
IEP is inversely proportional to f 2max cos

2 θ , where fmax is
the maximum Doppler frequency and θ is the angel between
the waveform departure direction and the moving direction
of the mobile terminal. The effectiveness of the proposed
algorithm is verified by simulation results. It is shown that,
within IEP, a reliable channel prediction can be obtained, and
the computational complexity is only marginally increased
compared with the traditional channel estimation, especially
when the number of antennas is large.

The rest of the paper is organized as follows. Section II
introduces the system model. In Section III, we first present
the traditional AR prediction modeling, then the FIT mod-
eling is proposed. The channel prediction algorithm based
on the FIT modeling is proposed in Section IV. Numerical
results are then presented in Section V. Finally, the paper is
concluded in Section VI.

II. SYSTEM MODEL
A. SIGNAL REPRESENTATION
Considering a time-varying massive MIMO system, there
are MT and MR antennas at the transmitter and receiver,
respectively, where MR ≥ MT and uniform linear antenna
arrays (ULAs) are used for simplicity. During one transmis-
sion consisting of N time slots (N > MT ), the transmitter
sends anMT×N dimensional matrix of dataX, and thematrix
form of the base-band received signals is given as

Y = HX+ Z, (1)

where Y is an MR × N matrix of received signals, Z ∈
CMR×N is the matrix of independent and identically (i.i.d)
distributed additive noise, its elements follow the com-
plex Gaussian distribution with zero mean and variance σ 2

n .
H ∈ CMR×MT is the matrix of time-varying channel fading
coefficients.

B. NON-STATIONARY & TIME-VARYING
MASSIVE MIMO CHANNEL
In this paper, a three-dimension two-cylinder geometry-based
stochastic channel model (3D-GBSM) [9], [17] is employed,
as shown in Fig. 1. This channel model is selected since it
has been proved to have close agreements with 3GPP channel
measurements in terms of the statistical properties.

In Fig. 1, the transmitter represents the mobile sta-
tion (MS) moving at a velocity ⇀v, and the receiver denotes the

FIGURE 1. The 3D-GBSM model for massive MIMO channel.

immovable base station (BS). The scatters around the trans-
mitter and receiver are equivalently represented by the
scatters spreading on the surface of the two cylinders. In the
3D-GBSM, the channel coefficient is composed of the line-
of-sight (LOS) and non-line-of-sight (NLOS) components,
yielding a Rician distributed variable. Accordingly, the chan-
nel coefficient between the mth (m = 1, 2, · · · ,MT ) trans-
mitting antenna and the qth (q = 1, 2, · · · ,MR) receiving
antenna at moment t is given as

hmq(t) = hLOSmq (t)+
L∑
l=1

hlmq(t), (2)

where hLOSmq (t) is the channel fading on the LOS path, hlmq(t) is
the channel fading on the l th NLOS path, and L is the number
of the NLOS paths. Every NLOS path is represented by a
double-bounced propagation [9], [17], i.e. the transmission
will be reflected by the equivalent scatters around the trans-
mitter and receiver, denoted by a and b, respectively, as shown
in Fig. 1.

The LOS and NLOS fading coefficients can be given as

hLOSmq (t) =

√
K

K + 1
exp

{
j
(
ψ0 +

2π
λ
|⇀mq|

+ 2π fmaxt
〈⇀mq · ⇀v〉
|⇀mq| · |⇀v|

)}
, (3)

and

hlmq(t) =
√
Pl exp

{
j
[
ψ0 +

2π
λ

(
|⇀ma| + |⇀bq| + |ab|

)
+ 2π fmaxt

〈⇀ma · ⇀v〉

|⇀ma| · |
⇀
v |

]}
, (4)

respectively, where K is the Rician factor, j =
√
−1, ψ0

is the initial phase of the waveform, λ is the carrier wave-
length, and fmax denotes the maximum Doppler frequency.
Pl(l = 1, 2, · · · ,L) is the power of the l th NLOS path
where

∑L
l=1 Pl =

1
K+1 . |

⇀v| denotes the absolute velocity
of the transmitter. ⇀ma represents the propagation from the
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transmitting antenna to the equivalent scatter a. ab represents
the propagation from a to the equivalent scatter b, where the
random link |ab| >

∣∣∣⇀ab∣∣∣.⇀bq is the propagation from b to the
receiving antenna. Besides, 〈·〉 represents the inner product of
two vectors, and | · | denotes the vector module.

III. MODELING FOR CHANNEL VARIATION
In this section, we first introduce the traditional ARmodeling
for the time-varying channel and reveal that it is not appli-
cable in massive MIMO environments. Then we propose a
FIT modeling, which will be used in the proposed channel
prediction.

A. TRADITIONAL AR MODELING
For the time-varying but wide sense stationary channel coef-
ficients, an AR process can be used to represent their vari-
ation [16], [18]–[21]. Namely, the channel between the mth

transmitting antenna and the qth receiving antenna (hereafter,
the antenna indexes m and q are omitted for simplicity)
at moment t can be represented by its p previous
states [13], [21], given as

h(t) =
p∑

n=1

dp,n(t)h(t − j)+ wp(t), (5)

where p is the AR order. h(t − 1), h(t − 2), · · · , h(t − p)
are p previously obtained channel states, dp,n(t) represents
the slowly-changing AR coefficients whose computation
requires the knowledge of the time domain channel correla-
tion [13], and wp(t) is the residual error. Generally speaking,
a higher order AR model has a smaller residual error while
the computation of the AR coefficients will be more compli-
cated. Therefore, researchers usually adopt the first-order and
second-order AR models, i.e., AR(1) and AR(2), given as

h(t) = d1,1h(t − 1)+ w1(t), (6)

and

h(t) = d2,1h(t − 1)+ d2,2h(t − 2)+ w2(t), (7)

respectively. When considering the traditional MIMO chan-
nel in the stationary environment, AR coefficients can be
calculated by the temporal correlations of h(t). Specifically,
following the Jakes model, AR(1) and AR(2) coefficients are
obtained as [21]–[23]

d1,1 = J0(2π fmaxT ), (8)

and

d2,1 = 2rd cos(2π fmaxT ), d2,2 = r2d , (9)

respectively, where J0(·) denotes the zeroth order Bessel func-
tion, T represents the symbol duration, rd is the pole radius
corresponding to the steepness of the power spectrum peaks.

Note that fmax is usually not available. In addition, the cal-
culation of the correlation-dependant AR coefficients become
very difficult in the non-stationary environments. There-
fore, the AR modeling is not suitable for massive MIMO
environments.

B. PROPOSED FIT MODELING
Assume that h(t) is n-th order derivable, the Taylor expansion
of h(t) is given as

h(t) =
h(t0)
0!
+

1
1!
∂h(t0)
∂t

(t − t0)+ · · ·

+
1
n!
∂nh(t0)
∂nt

(t − t0)n + · · · , (10)

where t0 is in the adjacent region of moment t , and ∂nh(t0)/∂t
is the n-th order derivative. Since the high-order power func-
tion (t − t0)n approximates to zero when t → t0, (10) can be
simplified as a first-order Taylor expansion (FIT), given as

h(t) = h(t0)+
∂h(t0)
∂t

(t − t0)+ wFIT(t), (11)

where wFIT(t) is the residual error, given as

wFIT(t) =
1
2!
∂2h(t0)
∂2t

(t − t0)2 +
1
3!
∂3h(t0)
∂2t

(t − t0)3 + · · ·

+
1
n!
∂nh(t0)
∂2t

(t − t0)n + · · · . (12)

In the following, the residual error of FIT modeling is
compared with that of AR(1) and AR(2) modeling. Amassive
MIMO system with MT = 10 and MR = 64 is considered.
The antennas at both the transmitter and receiver are sepa-
rated by half wavelength. The distance between the transmit-
ter and receiver is D = 200m. The radii of the cylinders on
both transmitter and receiver sides are Rr = Rt = 25m. The
heights of the antenna arrays are ht = 1.5m and hr = 32m,
respectively. The initial phase ψ0 is a random variable with
uniform distribution over [0, 2π ). The velocity of the MS is
|
⇀
v | = 3m/s and the sampling period is Ts = 66.7µs. The
equivalent scatters are uniformly distributed on the surfaces
of the two cylinders with a density of 0.1/m2. The normalized
mean square error (NMSE) is used to evaluate the accuracy
of channel modeling, given as

NMSE(t) =
E
{
|w (t)|2

}
E
{
|h(t)|2

} (13)

where E{·} means the expectation, w (t) represents w1 (t),
w2 (t) andwFIT (t) for AR(1), AR(2) and FITmodeling meth-
ods, respectively. The simulation results are shown in Fig. 2.

It can be seen from Fig. 2 that the FIT modeling and
the AR(2) modeling have the similar NMSE performance
while the AR(1) modeling has a significant error. Note that,
as aforementioned, the coefficients of AR(2) modeling is
difficult to be obtained in practice. Thus we use the FIT
modeling to predict the time-varying channel coefficients in
massive MIMO environments.

IV. PROPOSED CHANNEL PREDICTION
In this section, we propose a channel prediction algorithm
based on the FIT model. Assume that the first-order deriva-
tive ∂h(t)/∂t remains unchanged during a time internal,
which is called the internal of effective prediction (IEP).
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FIGURE 2. The NMSE of the proposed FIT modeling and AR(1)/AR(2)
modeling.

FIGURE 3. Structure of the transmitting sequence.

Within the IEP, the proposed channel prediction consists of
two stages: E-stage and P-stage, as shown in Fig. 3. The trans-
mitting sequence consists of pilot and data signals, where
the N × Np-length pilot is adopted to produce Np estimated
channel states. Then, the estimated information will be used
for channel prediction within the IEP. In the following, the
channel estimation and prediction will be presented in detail,
then the IEP will be analyzed.

A. CHANNEL ESTIMATION AND PREDICTION
Given (1), for the N -length pilot sequence X(t), where
t = t0, t1, · · · , tNp−1, the channel estimation can be obtained
by a least square (LS) estimator, given as

ĤLS (t) = Y(t)× pinv(X(t)), (14)

where pinv(·) denotes the pseudo-inverse operation. Note
that, the LS estimator is selected for its simplicity. How-
ever, it can be straight forward replaced by the minimum
mean square error (MMSE) estimator or any other channel
estimators.

Denoting ĥLS(t) as an element of ĤLS(t), according to the
FIT model in (11), the prediction of h(t) can be realized
by determining h(t0) and ∂h(t0)/∂t . Let h(t0) = a0 and
∂h(t0)/∂t = a1 for simplicity, the predicted channel coef-
ficient at moment t is given as

h̃(t) = a0 + a1(t − t0). (15)

Given ĥLS(t0), ĥLS(t1), · · · , ĥLS(tNp−1), a0 and a1 can be
obtained by solving the minimization problem as

〈
â0, â1

〉
= argmin

a0,a1∈R

Np−1∑
i=0

∥∥ĥLS(ti)− h̃(ti)∥∥2. (16)

Employing the linear regression method [24], the problem
in (16) is transformed into solving the linear equations,
given as

Np−1∑
i=0

1
Np−1∑
i=0

gi

Np−1∑
i=0

gi
Np−1∑
i=0

g2i


â0
â1

 =


Np−1∑
i=0

ĥLS(ti)

Np−1∑
i=0

giĥLS(ti)

 , (17)

where gi = ti − t0, and the solution to (17) is

â1 =

Np
Np−1∑
i=0

giĥLS(ti)−
Np−1∑
i=0

gi
Np−1∑
i=0

ĥLS(ti)

Np
Np−1∑
i=0

g2i −

(
Np−1∑
i=0

g2i

)2 , (18)

and

â0 =

Np−1∑
i=0

ĥLS(ti)− â1
Np−1∑
i=0

gi

Np
. (19)

Substituting (18) and (19) into (15), we have

h̃(t) =

Np−1∑
i=0

ĥLS(ti)− â1
Np−1∑
i=0

gi

Np

+

Np
Np−1∑
i=0

giĥLS(ti)−
Np−1∑
i=0

gi
Np−1∑
i=0

ĥLS(ti)

Np
Np−1∑
i=0

g2i −

(
Np−1∑
i=0

g2i

)2 (t − t0).

(20)

In summary, the main steps to realize the proposed
FIT model based channel prediction (FIT-CP) are listed in
Algorithm 1.

Algorithm 1 FIT-CP Algorithm
Require: Y(ti), X(ti), ti = t0, t1, · · · , tNp−1
Ensure: H̃(tn), tn = tNp , tNp+1, · · ·

Channel Estimation:
1: for ti = t0, t1, · · · , tNp−1
2: Obtain the LS channel estimation ĥLS(ti) following (14);
3: end for

Channel Prediction:
4: Obtain â0, â1 following (18), (19);
5: Predict the channel coefficients h̃(tn) following (20);
6: return H̃(tn);
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B. ANALYSIS ON THE INTERVAL OF
EFFECTIVE PREDICTION
As aforementioned, the proposed FIT modeling has a small
NMSE within the IEP, where ∂h(t)/∂t varies little and can be
regarded as a constant. In this subsection, the length of the
IEP is analyzed.

According to (2), ∂h(t)/∂t is given as

∂h(t)
∂t
=
∂hLOS(t)
∂t

+

L∑
l=1

∂hl(t)
∂t

. (21)

It is clear that (21) consists of the LOS and NLOS derivatives.
Taking the LOS derivative as an example, it is calculated as

∂hLOS(t)
∂t

= 2π j

√
K

K + 1

(
1
λ

∂|⇀mq|
∂t
+ fmax

〈⇀mq · ⇀v〉
|⇀mq| · |⇀v|

)

× exp
{
j
[
φ0 +

2π
λ
|⇀mq|+2π fmaxt

〈⇀mq · ⇀v〉
|⇀mq| · |⇀v|

]}
.

(22)

For mathematical convenience, the logarithmic form of (22)
is used, given as

ln
(
∂hLOS(t)
∂t

)
= ln

(
2π j

√
K

K + 1

)

+ ln
(
1
λ

∂|⇀mq|
∂t
+ fmax

〈⇀mq · ⇀v〉
|⇀mq| · |⇀v|

)

+ j
[
φ0 +

2π
λ
|⇀mq| + 2π fmaxt

〈⇀mq · ⇀v〉
|⇀mq| · |⇀v|

]
.

(23)

The variation of ln
(
∂hLOS(t)/∂t

)
during time interval 1t is

1 ln
(
∂hLOS(t)
∂t

)
= ln

(
∂hLOS(t +1t)

∂t

)
−ln

(
∂hLOS(t)
∂t

)
.

(24)

Substituting (23) into (24) and then get the absolute value
of (24), we have (the detailed derivation can be found in the
Appendix) ∣∣∣∣1 ln

(
∂hLOS(t)
∂t

)∣∣∣∣ ≈ β01t, (25)

where

β0 =

{
2π
λ
|⇀v| + 2π fmax

〈⇀mq · ⇀v〉
|⇀mq| · |⇀v|

}
. (26)

Theorem 1: If ln x − ln y = ε and y 6= 0, then

x − y = (eε − 1)y. (27)

Proof: If ln x − ln y = ε, we can get

eln x−ln y =
x
y
= eε, (28)

therefore x − y = (eε − 1)y.

According to (26) and Theorem 1, we can get the variation
of ∂h(t)/∂t during the time interval 1t , given as

∂hLOS(t+1t)
∂t

−
∂hLOS(t)
∂t

=
[
exp (β01t)−1

]∂hLOS(t)
∂t

.

(29)

Substituting (22) into (29), the absolute value of the variation
in (29) can be obtained as∣∣∣∣∂hLOS(t +1t)∂t

−
∂hLOS(t)
∂t

∣∣∣∣
=

∣∣∣∣∣[ exp(β01t)−1]2π j
√

K
K+1

(
1
λ

∂|⇀mq|
∂t
+fmax

〈⇀mq · ⇀v〉
|⇀mq|·|⇀v|

)∣∣∣∣∣ .
(30)

In the practical system, a threshold value δLOS can be used,
namely, (22) is regarded as a constant when the variation of
∂h(t)/∂t is smaller than δLOS. Thus the length of IEP, denoted
by TIEP, is determined as∣∣∣∣∂hLOS(t + TIEP)∂t

−
∂hLOS(t)
∂t

∣∣∣∣ = δLOS (31)

Substituting (30) into (31), we have

TIEP=
1
β0

ln

1+ δLOS

2π
√

K
K+1

(
1
λ
∂|⇀mq|
∂t + fmax

〈⇀mq·⇀v〉
|
⇀mq|·|⇀v|

)
. (32)

A closed-form expression of TIEP can then be obtained by
substituting (26) into (32), given as

TIEP = ln

1+ δLOS

2π
√

K
K+1

(
1
λ
∂|⇀mq|
∂t + fmax

〈⇀mq·⇀v〉
|
⇀mq|·|⇀v|

)


×

(
2π
λ
|⇀v| + 2π fmax

〈⇀mq · ⇀v〉
|⇀mq| · |⇀v|

)−1
. (33)

For simplicity, we define

cos θ =
〈⇀mq · ⇀v〉
|⇀mq| · |⇀v|

, (34)

where θ is the angle between the departure direction⇀mq and
the moving direction ⇀v. Then, (33) can be simplified and we
have

TIEP ∝
δLOS

f 2max cos2 θ
. (35)

Now it is cleat that TIEP is inversely proportional to
f 2max cos

2 θ .
The analysis on the NLOS component is similar to the LOS

component, and the derivation is omitted for brevity.
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V. NUMERICAL RESULTS
In this section, Monte Carlo simulations are carried out to
testify the performance of the proposed channel prediction
approach (referred to as FIT-CP). The traditional channel esti-
mation without prediction [25] (referred to as traditional CE)
and channel estimation based on interpolation (referred to as
interpolation-based CE) are also simulated for comparison.
Some representative simulation results are presented in terms
of the prediction accuracy, the predictive trends and the com-
putational complexity.

A. PREDICTION ACCURACY
To evaluate the accuracy of the proposed channel predictor,
we use the MSE as an indicator, given as

MSE = E

 1
Nm

Np+Nm−1∑
t=Np

∥∥∥h̃(t)− h(t)∥∥∥2
 . (36)

where Nm is the prediction length, Nm + Np ≤ TIEP.
Firstly, the MSE performance of the proposed FIT-CP is

calculated as a function of the pilot ratio which is defined as
ρ = Np/(Np+Nm), and the results are shown in Fig. 4, where
the signal to noise power ratio (SNR) is set as 10 dB.

FIGURE 4. MSE versus pilot ratio.

It is observed that the MSE performance of the proposed
FIT-CP algorithm improves as the pilot ratio increases. This
is natural since that when longer pilot sequence is used, the
estimation of a0 and a1 in (18) and (19) is more accurate, thus
the channel prediction error is reduced. It is also observed
that the MSE performance of the proposed FIT-CP is sig-
nificantly better than the interpolation-based CE, while they
both outperform the traditional CE. Therefore, the proposed
channel prediction algorithm is effective in reducing the CSI
acquisition error.

Then, the effect of the SNR on channel prediction is
evaluated, and the results are shown in Fig. 5, where the
pilot ratio is set as ρ = 0.15. By increasing the SNR, an
MSE of 10−2 can be obtained by the proposed FIT-CP when

FIGURE 5. The MSE versus SNR.

SNR = 6 dB, where an error floor of MSE ≈ 0.15 exists
for the interpolation-based CE. It should be noted that, the
interpolation-based CE actually gives delayed CSI since it
has to be carried out after the LS channel estimation in the
next pilot transmission. Therefore, the proposed FIT-CP is
superior in terms of both the accuracy and timeliness.

FIGURE 6. Prediction trends of the proposed FIT-CP in a short period.

B. PREDICTIVE TRENDS
To illustrate the predictive trends of the proposed FIT-CP,
we change the channel variation by varying the speed of
the MS. The short-time results are shown in Fig. 6, where
|⇀v| = 3km/h is used, so that fmaxT = 0.0013. The long
time results are shown in Fig. 7, where |⇀v| = 10 km/h and
fmaxT = 0.0043.
It can be observed that, when the channel coefficient

is monotonically increasing/decreasing in a short time, the
proposed FIT-CP can trace the channel variation smoothly
and yield a reliable channel prediction. However, when the
channel coefficient undergoes significant fluctuations dur-
ing a long period of time, the predicted channel coefficient
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FIGURE 7. Prediction trends of the proposed FIT-CP in a long period.

vibrates with flutter interference. Note that, it is also indi-
cated by (35) that TIEP reduces dramatically as the velocity
increases, therefore, more sophisticated signal processing
techniques should be employed to improve the prediction per-
formance. E.g., the joint channel prediction and data detec-
tion can be a solution, where the detected data can be used
as an extension of the pilot signal, thus the pilot ratio is
equivalently increased and an improved prediction accuracy
can be obtained.

C. COMPUTATIONAL COMPLEXITY
Last but not least, the computational complexity of the pro-
posed channel predictor is evaluated. Note that, the proposed
channel prediction consists of E-stage and P-stage, thus its
computational complexity can be obtained as the sum com-
plexity of these two stages.

Taking the number of complex multiplications as the
measurement, and assuming that N = MT , the computa-
tional complexity of the E-stage is dominated by the pseudo
matrix inversion ofX(t), which takesO

(
2M3

T + 2M2
T +MT

)
complex multiplications [26], [27]. Thus, the computational
complexity of one LS channel estimation is

CLS = O
(
2M3

T + (2+MR)M2
T +MT

)
. (37)

For the P-stage, the computation complexity is dominated
by the calculation of â0 and â1 using the linear regression
method, given as

CLR = O
(
(2Np + Nm)MRMT

)
. (38)

Therefore, the computational complexity of the proposed
FIT-CP is

CFIT-CP = NpCLS + CLR. (39)

Substituting (37) and (38) into (39), we have

CFIT-CP = O
(
NP
(
2M3

T + (2+MR)M2
T +MT

)
(40)

+
(
2Np + Nm

)
MRMT

)

FIGURE 8. Computational complexity of the proposed channel predictor.

For comparison, the computation complexity of the tradi-
tional CE is evaluated, given as

CTraditional CE

= O
(
(1.5Np+0.5)M3

T+((0.5+MR)Np+1.5)M2
T +MT

)
.

(41)

According to (40) and (41), the computation complexities
of the proposed FIT-CP and the traditional CE are plotted
in Fig. 8, where Np = 8 and Nm = 32. It is shown that,
only marginal complexity increase is required by the pro-
posed channel predictor compared to the traditional channel
estimator. In addition, this additional complexity becomes
negligible as the number of the antennas increases. Thus, the
proposed channel predictor is computationally efficient.

VI. CONCLUSION
In this paper, the time-varying massive MIMO channel has
been considered and a channel prediction algorithm has been
proposed. Firstly, considering the non-stationary and fast-
varying properties, FIT channel modeling has been proposed.
Then, based on the FIT, the channel prediction approach is
proposed, which consists of the E-stage and P-stage. The
performance of the proposed channel predictor is testified by
simulation results. It has been shown that, a reliable channel
prediction can be obtained with low computational complex-
ity. It has also been shown that, in a long period of time with
the presence of high mobility, the proposed channel predictor
may suffer from flutter interference, and more sophisticated
signal processing techniques, such as the joint channel pre-
diction and data detection, should be considered as subjects
for the future research.

APPENDIX
This appendix presents the derivation of (25). According
to (23), ln

(
∂hLOS(t)/∂t

)
consists of three independent
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components, given as

ln
(
∂hLOS(t)
∂t

)
= ln

(
2π j

√
K

K + 1

)
︸ ︷︷ ︸

1©

+ ln
(
1
λ

∂|⇀mq|
∂t
+ fmax

〈⇀mq · ⇀v〉
|⇀mq| · |⇀v|

)
︸ ︷︷ ︸

2©

+ j
[
φ0 +

2π
λ
|⇀mq| + 2π fmaxt

〈⇀mq · ⇀v〉
|⇀mq| · |⇀v|

]
︸ ︷︷ ︸

3©

.

(A-1)

It is clear that component 1© is a constant. In the following,
components 2© and 3© will be analyzed, respectively.

Denoting the initial coordinates of the transmitter and
receiver as (x0, y0, z0) and (x1, y1, z1), respectively. The
velocity of transmitter is ⇀v = (vx , vy, vz) and |⇀v| =√
v2x + v2y + v2z . Therefore,

⇀mq =
(
x0 − x1 + vx1t, y0 − y1 + vy1t, z0 − z1 + vz1t

)
,

(A-2)

and

〈⇀mq · ⇀v〉 = vx(x0 − x1 + vx1t)+ vy(y0 − y1 + vy1t)

+ vz(z0 − z1 + vz1t). (A-3)

According to (A-2) and (A-3), the derivative ∂|⇀mq|/∂t is
rewritten as

∂ |⇀mq|
∂t
=
〈⇀mq · ⇀v〉
|⇀mq|

. (A-4)

Substituting (34) into (A-4), it is clear that ∂|⇀mq|/∂t = cos θ .
Therefore, the component 2© can be rewritten as

ln
(
1
λ

∂|⇀mq|
∂t
+ fmax

〈⇀mq · ⇀v〉
|⇀mq| · |⇀v|

)
= ln

[(
fmax +

|⇀v|
λ

)
cos θ

]
.

(A-5)

Assuming that the transmitting antenna moves to a new
location m′ at time t + 1t , and

〈
⇀m′q · ⇀v

〉
/
(
|
⇀m′q| · |⇀v|

)
=

cos θ ′. Since |⇀mm′| � D, cos θ ≈ cos θ ′. Thus, the compo-
nent 2© can be treated as a constant. Therefore, the variation
of ln

(
∂hLOS(t +1t)/∂t

)
is determined by component 3©,

given as

ln
(
∂hLOS(t +1t)

∂t

)
− ln

(
∂hLOS(t)
∂t

)
= j

{
2π
λ
(|⇀m′q| − |⇀mq|)+2π fmax1t

〈⇀mq · ⇀v〉
|⇀mq|·|⇀v|

}
. (A-6)

Since |⇀m′q| − |⇀mq| ≤ |⇀m′m|, (A-6) is approximated as

ln
(
∂hLOS(t +1t)

∂t

)
− ln

(
∂hLOS(t)
∂t

)
≈ j

{
2π
λ
|
⇀m′m| + 2π fmax1t

〈⇀mq · ⇀v〉
|⇀mq| · |⇀v|

}
. (A-7)

Substituting |⇀m′m| = |⇀v|1t into (A-7), we have

β0 =

{
2π
λ
|⇀v| + 2π fmax

〈⇀mq · ⇀v〉
|⇀mq| · |⇀v|

}
. (A-8)

Therefore, the derivation of (25) is completed.
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