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ABSTRACT The problem of jointly estimating carrier frequencies and their corresponding two-dimension
direction of arrivals (DOA) of band-limited source signals is considered in this paper for cognitive radio. The
main problem of estimating carrier frequencies spread over a wideband spectrum is the requirement of high
sampling rates. Thus, the Kalman filters are applied in the spatial domain instead of the temporal domain
in the proposed algorithm to relax hardware complexity. The proposed algorithm exploits both the azimuth
and elevation angles instead of a single DOA to increase the spatial capacity. Two approaches are proposed
using two different types of nonlinear Kalman filter: extended Kalman filter (EKF) and unscented Kalman
filter (UKF). Using simulations, the factors that affect the performance of both the filters are discussed.
Scaling the estimated parameters to the same range and the proper tuning and initialization of the filters
are crucial factors to prevent the filter divergence. Although UKF is supposed to have a better performance
than EKF, reducing the inter-element spacing of the employed arrays and the proper filter initialization can
make EKF approach the performance of UKF. On the other hand, UKF suffers from high processing time.
Overall, both filters are able to converge to the true values of the unknown parameters using a number
of relaxed analog-to-digital converters equal to the number of the array elements in the employed arrays.
However, the approaches can detect a number of source signals higher than one-third of the total number of
the array elements.

INDEX TERMS 2D-DOA estimation, cognitive radio, extended Kalman filter, spectrum sensing, unscented
Kalman filter.

I. INTRODUCTION
Recently, the problem of radio frequencies shortage has
grabbed the attention of researchers as radio devices have
increased tremendously. In the next few years, radio appli-
cations and devices are expected to exponentially grow due
to the growth of Internet of things (IoT) and machine to
machine (M2M) communication. In IoT, millions of edges
and radio devices are going to communicate on radio fre-
quencies, however the existing spectrum is limited and cannot
be expanded to embrace the rising demand. As a result, the
opportunistic spectrum access has been suggested to solve the
frequency band shortage. CR is one of the technologies that
implement opportunistic spectrum access [1]. CR is a radio
device that detects the frequency bands left unoccupied by
their licensed users. This process is called spectrum sensing.

Besides, while CR is transmitting on a particular frequency
band, it continues to sense the spectrum to check for the
presence of the licensed user and prevent the interference
with it. This way, the spectrum can be exploited wisely and
many CRs can share the limited resources. In the last decade,
many proposals for spectrum sensing have been presented in
the literature [2] and [3].

To increase the number of CRs that can share the unoccu-
pied frequency bands in the same area, multiantenna tech-
niques have been suggested to exploit the spatial domain.
Then, CR can detect the presence of the licensed users and
their transmitting directions. As a result, the spectral and
spatial domains can be exploited efficiently. The main chal-
lenge facing the problem of estimating both spectral and
spatial domains is the need to sample a wideband spectrum
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at Nyquist rates. Nyquist rates require a high-speed ADC
and generate a large number of samples to be processed.
Thus, many proposals have been presented at sub-Nyquist
sampling rates. In [4] and [5], the authors have proposed
new architectures that can sample a wideband spectrum at
sub-Nyquist rates with relaxed hardware requirements. Using
ESPRIT [6] and MUSIC [7] algorithms, the authors have
succeeded to estimate carrier frequencies and the corre-
sponding DOAs. In [8], the authors have refined the esti-
mated carrier frequencies and the corresponding DOAs using
2D-iterative grid refinement. In contrast, the authors in [9]
have executed sub-Nyquist sampling using a modulated
wideband converter (MWC) channel [10]. The authors have
then proposed two algorithms to detect carrier frequencies
and the corresponding DOAs. The first algorithm depends
on compressive sensing, which was exploited to reconstruct
the spectrum before estimating the desirable parameters. The
second one is based on parallel factor (PARAFAC) analysis
method [11]. A third algorithm, which depends on ESPRIT
algorithm, has been proposed in [12].

The problem of these proposals is the limitation on the
degrees of freedom; thus the number of detected sources
is limited to the number of array elements. Increasing the
degrees of freedom requires employing sparse antennas. So,
the authors in [13] have employed a 2D nested array to raise
the degrees of freedom. However, the proposal in [14] has
increased the degrees of freedom using severalMWCs at each
element in the antenna. Since there is no need to reconstruct
the whole spectrum to detect the existing carrier frequencies,
the authors in [15] have decided to detect carrier frequen-
cies and their corresponding DOAs from a reconstructed 2D
power spectrum. The 2D angular power spectrum has been
reconstructed from sub-Nyquist samples generated by multi-
coset samplers. Besides, the authors have compressed the
spatial measurements as well using a minimum redundancy
linear array to increase the degrees of freedom.

Furthermore, a more efficient scenario has addressed the
idea of investigating 2D-DOA instead of a single DOA,which
represents a single direction around CR. Then, a CR can share
the same carrier frequency and azimuth angle with a licensed
user, but they differ in the elevation angles. This, in turn,
increases the spatial capacity. The problem of jointly estimat-
ing 2D-DOA and carrier frequencies of primary users (PUs)
has been discussed in the literature. ESPRIT algorithm is
widely applied on this problem. In [16], the authors have
relied on ESPRIT algorithm to detect carrier frequencies from
sub-Nyquist samples of source signals that impinge on a
uniform circular array. Then, 2D-DOA can be estimated. The
authors in [17] have also implemented ESPRIT algorithm to
estimate 2D-DOA using an L-shaped array. However, carrier
frequencies have been estimated by singular value decompo-
sition technique (SVD). In [18], ESPRIT algorithm has been
extended to estimate both carrier frequencies and 2D-DOA.
In [19], another ESPRIT-based algorithm has been proposed
for estimating the carrier frequencies and their corresponding
2D-DOA of multi-band signals from the outputs of a uniform

rectangular array (URA). Moreover, the PARAFAC analysis
has been proposed for carrier frequency and 2D-DOA esti-
mation with a conformal array in [20] and [21]. In [22], the
authors have proposed iterative least square methods for both
frequency and 2D-DOA estimation problem.

In this paper, the problem of jointly estimating the carrier
frequencies and their corresponding azimuth and elevation
angles of uncorrelated band-limited source signals is consid-
ered. To the best of our knowledge, Kalman filter (KF) has
not been exploited in this problem before. KF is a recursive
algorithm that can estimate unknown parameters from a state
space model with noisy measurements [23], and the state
space model can be formulated in any domain. Since the
considered problem has to tackle the sampling of a wideband
spectrum, we propose investigating the spatial domain using
KF instead of relying on sub-Nyquist methods in the temporal
domain. Two L-shaped uniform arrays are employed in our
proposal to form the spatial state space model that KF would
follow to predict the desired unknown parameters. Thus, one
time sample at each array element is only required to identify
the time delay encountered by any source signal between any
two successive array elements. As a result, our proposal does
not have to sample a wideband spectrum at Nyquist or sub-
Nyquist rates leading to gaining an advantage over the other
methods in the literature in terms of hardware complexity.
In other words, there are not any restrictions on the sampling
rate, and hence the speed of the employed ADCs has no
restrictions as well. Furthermore, the required number of
the relaxed ADCs by sub-Nyquist methods is reduced to
the number of the employed array elements. On the other
hand, since our proposal relies on a uniform dense array,
it has limited degrees of freedom. The degrees of freedom
are found to be equal to one third of the employed array
elements. To implement our proposal, we have exploited two
different types of nonlinear Kalman filters, extended Kalman
filter (EKF) [23] and unscented Kalman filter (UKF) [24].
Since nonlinear KFs are sub-optimal estimators, they may
tend to converge to wrong values or even completely diverge.
The performance of the two algorithms is examined under
different conditions using simulations, and the factors that
can affect their performance are discussed.

The paper is organized as follows. Section II describes the
two L-shaped array model. Kalman filter and its different
types are then visited in Section III. Section IV declares a
detailed analysis of our proposal. Proposed spatial state space
model is first derived. Then, a detailed description of both
EKF-based and UKF-based approaches is presented. Simu-
lations with discussions are addressed in Section V. Finally,
Section VI derives final conclusions.

II. SYSTEM MODEL
Consider two L-shaped uniform arrays located in the
x-z plane and the y-z plane as shown in Figure 1. Each single
uniform linear array (ULA) in this structure has N elements
with an inter-element spacing of d . The element at the origin
is considered as a reference point. Suppose that L different
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FIGURE 1. Two L-shaped uniform array model.

band-limited signals from L different uncorrelated sources
are impinging on the two L-shaped arrays. Each source signal
is transmitted from a different direction on a different carrier
frequency. Then, the output of each element can be evaluated
as

rnx (t) =
L∑
l=1

ml(t)e
−j2π (n−1)d cosφl sin θl

λl + ηnx (t)

rny (t) =
L∑
l=1

ml(t)e
−j2π (n−1)d sinφl sin θl

λl + ηny (t)

rnz (t) =
L∑
l=1

ml(t)e
−j2π (n−1)d cos θl

λl + ηnz (t) (1)

where rnx (t), r
n
y (t) and r

n
z (t) are the outputs of the n

th element in
theULA located on x-axis, y-axis and z-axis respectively. The
signal ml(t), with l = 1, 2 . . . L, denotes the received source
signal at the reference point from the l th source. The sig-
nal ml(t) has a wavelength of λl and arrives from a direction
with an azimuth angle ofφl and an elevation angle of θl . Noise
signals ηnx (t), η

n
y (t) and ηnz (t) are assumed to be complex

Gaussian white noise with zero mean and variance of σ 2
n .

Since CRs are not allowed to have any prior information
about licensed users being detected, the problem considered
in this paper is a blind estimation problem. The CR has to
blindly estimate the carrier frequency and the corresponding
2D-DOA of the surrounding licensed users. For this problem,
we propose Kalman filter for estimating λl , φl and θl of each
licensed user.

III. KALMAN FILTERS: AN OVERVIEW
KF is an algorithm that optimally estimates an unknown state
variable from a state space model based on noisy measure-
ments. First, KF algorithm predicts the posterior estimate of
the state variable from the previous estimate. Then, the pre-
dictions are adjusted according to observed measurements.
The two steps are repeated till the filter converges to the true
estimate of the state variable. KF is an optimal algorithm as
it depends on linear state space models. A linear state space
model can be generally described as a combination of process
space model and measurement space model as follows

xn+1 = Axn + wn

Yn = Hxn + un (2)

where xn+1 and xn denote posterior and prior estimate of
the state variable respectively. Matrices A and H repre-
sent transition matrix and observation matrix respectively.
However, wn and un respectively denote process noise
and measurements noise signals, which are assumed to be
Gaussian distributed with zeromean and covariancematrix of
Q andR respectively. The process noise covariance matrixQ
represents uncertainty in process space model. However, the
measurement noise covariance matrix R represents uncer-
tainty in observed measurements. While KF estimates the
state variable, it can estimate unknown parameters as well. As
a result, it is used intensively in estimation problems where
the unknown parameters are concatenated to the state vari-
able. Then, they can be estimated with it through iterations.

In many estimation problems, the state space model may
have a nonlinear process model and/or a nonlinear measure-
ment model. The nonlinear state space model has the form of

xn+1 = f (xn)+ wn

Yn = h(xn)+ un (3)

where f (.) and h(.) represent nonlinearity in the process and
measurement models respectively. For nonlinear state space
models, traditional KF fails to converge to the true values
and modifications to KF are required resulting in sub-optimal
performance. Two of the renowned nonlinear KFs are EKF
and UKF.

In EKF, nonlinear models are linearized about the esti-
mated trajectory. It relies on Taylor series to execute lin-
earization and the resultant is approximated to the first order
derivatives. The detailed EKF algorithm can be found in [23].
The linearization process results in significant errors in the
estimated state variable and these errors are accumulated
through iterations. On the other hand, the filter updates the
estimated state variable each iteration based on noisy mea-
surements. This, in turn, leads the estimated trajectory to
follow the noisy measurements. As a result, the filter may
converge to erroneous values or even completely diverge.
To enhance the performance of EKF, the filter should be
tuned and initialized properly. Tuning the filter means to
choose a proper estimate for Q and R matrices to wisely
build confidence in both process and measurement models
respectively. Furthermore, we propose wisely choosing the
parameters to be concatenated to the state variable instead
of directly choosing carrier frequencies, azimuth angles and
elevation angles themselves. In other words, the filter may
converge to true estimates and its performance approaches
the performance of traditional KF, if the unknown parameters
are scaled to the same range with a small variance relative to
a region where the model is relatively linear. In this range,
linearization errors can be reduced and the filter performance
can be enhanced. Simulations are presented to prove the
vital role of the proper initialization in enhancing the filter
performance.

In UKF, Gaussian-distributed state variable is captured
by a minimal set of sample points, called sigma points.
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These points are actually capturing both the mean and the
variance of the state variable. After sigma points are propa-
gated through the nonlinear filter, their outputs can be used
to perfectly recover the estimated Gaussian state variable.
In each iteration, the posterior estimates and covariance
matrix are evaluated as weighted mean and covariance of the
sigma point outputs. Through iterations, the filter tends to
converge to the true values of the state variable. UKF, like
EKF, needs to be properly tuned and initialized to enhance
the filter convergence. The complete algorithm of UKF is
proposed in [24]. In comparison to EKF, UKF is accurate to
the third order derivative. Besides, UKF, unlike EKF, does
not rely on evaluating partial derivatives. However, the com-
plexity of UKF is higher than the complexity of EKF as UKF
needs to calculate sigma points in each iteration.

IV. PROPOSED APPROACHES
In this section, we first derive the spatial state space from
Eq. (1). Then, the proposed EKF-based and UKF-based
approaches are presented in detail.

A. PROPOSED SPATIAL STATE SPACE
The main challenge of wideband spectrum sensing is to sam-
ple the signals at high Nyquist sampling rates, which require
sophisticated high-speed ADCs. Since the array geometry
provides an opportunity to exploit the spatial domain, we
propose forming a spatial state space instead of a temporal
state space to reduce the complexity associated with the latter.
The spatial state space is formed from the time delay that
each source signal encounters between any two successive
array elements. The time delay is expressed as a phase shift
between the different versions of the source signals arrive
the elements. Therefore, the l th source signal that reaches the
(n+1)th element in the three different ULAs Xn+1l , Y n+1l and
Zn+1l can be determined as

Xn+1l = e−j2πd
cosφl sin θl

λl Xnl

Y n+1l = e−j2πd
sinφl sin θl

λl Y nl

Zn+1l = e−j2πd
cos θl
λl Znl (4)

where Xnl , Y
n
l and Znl are the versions of the l th source signal

reaches the nth element. In matrix notation, Eq. (4) can be
reformulated as follows[
xn+12l−1
xn+12l

]

=

 cos
(
2πd

cosφl sin θl
λl

)
sin
(
2πd

cosφl sin θl
λl

)
− sin

(
2πd

cosφl sin θl
λl

)
cos

(
2πd

cosφl sin θl
λl

)


×

xn2l−1
xn2l

 (5)

where xn+12l−1 and xn+12l represent real and imaginary parts of
Xn+1l . Similarly,[
yn+12l−1
yn+12l

]

=

 cos
(
2πd

sinφl sin θl
λl

)
sin
(
2πd

sinφl sin θl
λl

)
− sin

(
2πd

sinφl sin θl
λl

)
cos

(
2πd

sinφl sin θl
λl

)


×

[
yn2l−1
yn2l

]
(6)

and [
zn+12l−1
zn+12l

]

=

 cos
(
2πd

cos θl
λl

)
sin
(
2πd

cos θl
λl

)
− sin

(
2πd

cos θl
λl

)
cos

(
2πd

cos θl
λl

)


×

[
zn2l−1
zn2l

]
(7)

The state variable xs ∈ R6L×1 is then formed at any
element as a concatenation of the real and imaginary values
in the three ULAs as follows

xs = [x1, x2 . . . x2L−1, x2L , y1, y2 . . .

y2L−1, y2L , z1, z2, . . . z2L−1, z2L]T (8)

Since Kalman filters are considered to predict unknown
parameters, these parameters should be concatenated to the
state variable. Then in each iteration of the kalman filtering,
the parameters are estimated as well as the posterior esti-
mate of the state variable. The parameters to be estimated
in our problem are carrier frequency, azimuth and elevation
angles of the L sources. These parameters are not going to
be concatenated to the state variable directly as they vary
over different wide ranges and may force EKF to diverge. So,
we propose selecting related parameters that share the same
range to speed up the filter convergence and boost the filter
performance. The parameters are selected to be

al =
cosφl sin θl

λl
, bl =

sinφl sin θl
λl

cl =
cos θl
λl

(9)

where l = 1, 2 . . . L. By estimating these parameters using
Kalman filter, φl , θl and λl can be evaluated for each source.
Moreover, the inter-element spacing d is set to a fraction of
the minimum wavelength. Reducing d as possible can result
in expanding the sinusoidal model in Eq. (5) - (7) regarding
to the unknown parameters. This, in turn, leads the filter to
search through a region where the model is relatively linear.
Under this scenario, both EKF and UKF can overcome their
sub-optimal performance and converge to more precise val-
ues. Using simulation in Section V, an enhanced performance
is proven while decreasing d .
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Now, the state variable becomes xs ∈ R9L×1 and the
process model of the spatial state space model can be defined

xn+1s =


αx 0 0 0 0 0
0 αy 0 0 0 0
0 0 αz 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

 xns (10)

where I ∈ RL×L is the identity matrix. The submatrices αx ,
αy and αz ∈ R2L×2L are defined as

αx =

αx1 0 0

0
. . . 0

0 0 αxL

, αy =

αy1 0 0

0
. . . 0

0 0 αyL

,
αz =

αz1 0 0

0
. . . 0

0 0 αzL

 (11)

where

αxl =

 cos
(
2πd

cosφl sin θl
λl

)
sin
(
2πd

cosφl sin θl
λl

)
−sin

(
2πd

cosφl sin θl
λl

)
cos

(
2πd

cosφl sin θl
λl

)


αyl =


cos

(
2πd

sinφl sin θl
λl

)
sin
(
2πd

sinφl sin θl
λl

)
−sin

(
2πd

sinφl sin θl
λl

)
cos

(
2πd

sinφl sin θl
λl

)


αzl =


cos

(
2πd

cos θl
λl

)
sin
(
2πd

cos θl
λl

)
− sin

(
2πd

cos θl
λl

)
cos

(
2πd

cos θl
λl

)
 (12)

with l = 1, 2, . . .L.
However, the measurement model of the spatial state space

represents the measured output at the nth element in all
arrays. The measured output at the nth element is expected
to be the sum of all incident source signals on this element.
It is, however, exposed to measurement errors and hence the
measurement model can be declared in matrix notation as

Yn = [Y nx,re Y
n
x,im Y

n
y,re Y

n
y,im Y

n
z,re Y

n
z,im]

T

=


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 . . . 1 0 . . . 0 0 0 . . . 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

 xns + un (13)

where Y nx,re, Y
n
y,re and Y

n
z,re are the real parts of the n

th element
outputs in the x-array, y-array and z-array respectively. The
remaining terms Y nx,im, Y

n
y,im and Y nz,im are the imaginary parts

of these outputs respectively. The vector un represents the
measurement noise signals which has zero-mean and covari-
ance matrix R.

The spatial state model is now formulated and it obviously
contains a nonlinear process model as in Eq. (3) and a linear
measurement model as in Eq. (2). Thus, sub-optimal EKF and
UKF are proposed for the nonlinearity of this problem.While
applying these filters to the proposed state model, the process
noise covariance matrixQ is set to zero giving full trust in the
proposed process model.

B. PROPOSED EXTENDED KALMAN FILTER-BASED
APPROACH
In the first approach, we propose EKF algorithm, described
in [23], for estimating the state variable xs from the for-
mulated state space model. First, EKF is initialized with an
initial estimate x̂0 and initial covariance matrix P0. The initial
estimate x̂0 is preferable to be selected close to themean value
of the state variable to speed up the convergence to the true
values. Moreover, the matrix P0 should be carefully selected
as it may be set to a low value that is enough to force the filter
to fully trust the posterior estimates and neglect the effect of
measurements.

Then, EKF goes through several iterations and each iter-
ation consists of two steps: prediction step that follows the
process model and updating step that follows the measure-
ment model as shown in Algorithm 1. In each prediction step,
the nonlinear process model must be linearized around the

Algorithm 1 EKF-Based Proposed Algorithm
0: Intialization:

x̂0 = E[xs]

P0 = E[(xs − x̂0)(xs − x̂0)T ]

1: loop
Prediction Step:

Fn =
∂f (xn−1s )

∂xn−1s

∣∣∣
xn−1s =x̂n−1

x̂−n = f (x̂n−1)

P−n = FnPn−1FTn

Updating Step:

Kn = P−n HT (R+H P−n HT )−1

x̂n = x̂−n +Kn (Yn −H x̂−n )

Pn = P−n −Kn H P−n

if convergence:
for each source:

φl = tan−1
(bl
al

)
θl = tan−1

(bl
cl

)
λl =

cos θl
cl

break loop
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prior estimates. Then, the approximated resultant to the first
order derivatives is calculated as a Jacobian matrix Fn

Fn =
∂f (xn−1s )

∂xn−1s

∣∣∣
xn−1s =x̂n−1

=


f1 0 0 f4 0 0
0 f2 0 0 f5 0
0 0 f3 0 0 f6
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I


(14)

where I ∈ RL×L is the identity matrix. The matrices
f1, f2, f3, f4, f5 and f6 are defined as follows

f1 =


. . . 0 0
0 β1l 0

0 0
. . .

, l = 1, 2, . . .L (15)

where

β1l =


∂xn2l−1
∂xn−12l−1

∂xn2l−1
∂xn−12l

∂xn2l
∂xn−12l−1

∂xn2l
∂xn−12l


xn−1s =x̂n−1

=

 cos
(
2πdân−1l

)
sin
(
2πdân−1l

)
− sin

(
2πdân−1l

)
cos

(
2πdân−1l

) (16)

Similarly, the remaining matrices f2, f3, f4, f5 and f6 are diag-
onal and their diagonals have the elements β2l , β3l , β4l , β5l
and β6l respectively. In the same manner, they are evaluated
as

β2l =

 cos
(
2πdb̂n−1l

)
sin
(
2πdb̂n−1l

)
− sin

(
2πdb̂n−1l

)
cos

(
2πdb̂n−1l

)
β3l =

 cos
(
2πdĉn−1l

)
sin
(
2πdĉn−1l

)
− sin

(
2πdĉn−1l

)
cos

(
2πdĉn−1l

)
β4l = 2πd

− sin
(
2πdân−1l

)
cos

(
2πdân−1l

)
− cos

(
2πdân−1l

)
− sin

(
2πdân−1l

)
×

[
x̂n−12l−1
x̂n−12l

]

β5l = 2πd

− sin
(
2πdb̂n−1l

)
cos

(
2πdb̂n−1l

)
− cos

(
2πdb̂n−1l

)
− sin

(
2πdb̂n−1l

)
×

[
ŷn−12l−1
ŷn−12l

]

β6l = 2πd

− sin
(
2πdĉn−1l

)
cos

(
2πdĉn−1l

)
− cos

(
2πdĉn−1l

)
− sin

(
2πdĉn−1l

)
×

[
ẑn−12l−1
ẑn−12l

]
(17)

After performing linearization by evaluating Jacobian
matrix Fn, the posterior estimate x̂−n and covariance
matrix P−n are predicted from their prior values x̂n−1 and
Pn−1 respectively. The predicted estimates are then updated
depending on the filter gain Kn and observation matrix H as
shown in Algorithm 1. The filter then goes through several
iterations of prediction and updating, till it finally tends to
converge. The filter converges to the true values of al , bl and
cl since the estimated parameters have a small variance com-
pared to a region where the model is relatively linear. This, in
turn, forces EKF to approach the performance of traditional
linear KF. The unknown carrier frequencies and 2D-DOA
angles are finally calculated from the estimated al , bl and cl .

C. PROPOSED UNSCENTED KALMAN
FILTER-BASED APPROACH
The second approach proposes UKF algorithm, described
in [24], for the considered estimation problem. The complete
algorithm is described in Algorithm 2. First, the initial esti-
mate x̂a0 and covariancematrixPa0 are initialized properly. The
initial estimate x̂a0 is a concatenation of the initial estimate of
the state variable x̂0 and the initial estimate of measurement
noise. This, in turn, leads the initial covariance matrix Pa0
to gather both the covariance matrix of the state variable
P0 = E[(xs − x̂0)(xs − x̂0)T ] and the measurement noise
covariance matrix Pυ (equivalent to R in EKF).

Then, the filter rotates in several iterations till the filter
converges to the true values. In each iteration, sigma points
χai,n−1, with i = 0, 1 . . . 18L, are selected to perfectly capture
the mean and variance of the state variable. Since a state
variable of dimension M needs 2M+1 sigma points, the state
variable xs needs 18L+1 sigma points. These sigma points
are evaluated as shown in Algorithm 2 by determining the ith

row of
(√

(6L +3)Pn−1
)
i
using Cholesky decomposition.

The parameter 3 is a scaling parameter which equals to
α2(6L + κ)− 6L where α denotes the spread of sigma points
around x̂n and κ is a secondary scaling parameter (usually
equals to 0).

After selecting the sigma points, the filter executes predic-
tion step in which the sigma points are propagated through
the nonlinear process model, and the resultant is used to
predict the posterior estimate x̂−n . The posterior estimate x̂−n
and covariance matrix P−n are evaluated as weighted mean
and covariance matrix of the resultant. The employed weights
are defines as

w(m)
0 =

3

6L +3

w(c)
0 =

3

6L +3
+ (1− α2 + β)

w(m)
i = w(c)

i =
1

2(6L +3)
i = 1, 2, . . . 18L (18)

where β represents the state variable distribution (β = 2 for
Gaussian distribution).

Then, the filter executes updating step where the pos-
terior estimate and covariance matrix are corrected by
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Algorithm 2 UKF-Based Proposed Algorithm
0: Intialization:

x̂a0 = [x̂T0 0]T

Pa0 =
[
P0 0
0 Pυ

]
1: loop

Selecting Sigma Points:

χa0,n−1 = x̂an−1
χai,n−1 = x̂an−1 +

(√
(6L +3)Pn−1

)
i

i = 1, 2 . . . 6L
χai,n−1 = x̂an−1 −

(√
(6L +3)Pn−1

)
i

i = 6L + 1, . . . 12L

Prediction Step:

χxi,n|n−1 = f (χxi,n−1)

x̂−n =
12L∑
i=0

w(m)
i χxi,n|n−1

P−n =
12L∑
i=0

w(c)
i

(
χxi,n|n−1 − x̂−n

)(
χxi,n|n−1 − x̂−n

)T
Updating Step:

9 i,n|n−1 = H χxi,n|n−1 + χ
n
i,n|n−1

ŷ−n =
12L∑
i=0

w(m)
i 9 i,n|n−1

Pỹnỹn =
12L∑
i=0

w(c)
i

(
9 i,n|n−1 − ŷ−n

)(
9 i,n|n−1 − ŷ−n

)T
Px̃nỹn =

12L∑
i=0

w(c)
i

(
χxi,n|n−1 − x̂−n

)(
9 i,n|n−1 − ŷ−n

)T
Kn = Px̃nỹn P

−1
ỹnỹn

x̂n = x̂−n +Kn (Yn − ŷ−n )
Pn = P−n −Kn Pỹnỹn K

T
n

if convergence:
for each source:

φl = tan−1
(bl
al

)
θl = tan−1

(al
cl

)
λl =

cos θl
cl

break loop

the measurements. They are updated based on the difference
between the predicted observations y−n and the actual mea-
surements Yn. The predicted observations are evaluated as
a weighted mean of the resultant of the measurement model

after the sigma points are propagated through it. The complete
algorithm used in prediction and updating steps are shown in
Algorithm 2. The filter keeps going in iterations of selecting
the sigma points, prediction and updating, till it converges
to the true values. Finally, the carrier frequencies, azimuth
angles and elevation angles are evaluated.

UKF tends to have a better performance than EKF,
as UKF is accurate to the third order derivatives. Further-
more, UKF, unlike EKF, is a derivative-free filter. However,
it requires calculating sigma points using Cholesky decom-
position in every iteration. This leads UKF to have higher
processing time.

V. RESULTS AND DISCUSSIONS
Numerical simulations of the proposed approaches are pre-
sented in this section. We first present the simulation model,
and then we discuss the results. Finally, a comparison among
our proposal and the proposals in [13] and [19] is presented.

A. SIMULATION MODEL
For simulations, each ULA on each axis has 150 elements
(N = 150) with an inter-element spacing of one-fourth of
the minimumwavelength. Twelve different source signals are
impinging on the arrays. The source signals are traveling from
different angles and are carried on different carrier frequen-
cies. The normalized carrier frequencies of the source signals
are {0.463, 0.217, 0.294, 0.716, 0.607, 0.861, 354, 0.119,
0.67, 0.294, 0.52, 0.4} respectively. The azimuth angles of
the sources in degrees are {30, 47, 93, 52, 127, 173, 60, 205,
146, 26, 237, 100} and the elevation angles in degrees are
{5, 84, 23, 37, 53, 127, 94, 151, 89, 163, 77, 41} respectively.
The signal-to-noise ratio (SNR) is selected to be 5dB

The initial estimates in both EKF and UKF are set to values
that are close to the mean value of the state variable. Thus,
all elements in the initial estimate vector x̂o are set to 0.03.
For simplicity, we assign all the elements to the same values,
however they can randomly and differently be chosen around
the mean value of xs. The initial covariance matrix P0 is
also set to a proper value which prevents the filter from fully
trust the estimates and ignoring the observations. Thus, we
initialize it with its true value. Then, the filters are tuned
carefully to guarantee the filter convergence. So, we properly
set the matrices R and Pυ in EKF and UKF respectively.

B. SIMULATION RESULTS
Under this scenario, Monte-Carlo simulations have been exe-
cuted with both EKF and UKF for 500 snapshots. Both filters
succeeded in detecting carrier frequency and 2D-DOA of all
source signals. The root mean square error (RMSE) in the
estimated parameters is shown in Figure 2a. Although EKF
and UKF are sub-optimal estimators, they successfully detect
the different sources with RMSE in all the estimated param-
eters close to 10−1. The reason is that the estimated values
are located in the same range and the initial estimates are set
to the center of that range. These factors helped the filters
to converge to the true values. However, both EKF and UKF
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FIGURE 2. RMSE in the estimated azimuth, elevation and normalized wavelength at different initial
estimates. (a) Initial estimate = 0.03. (b) Initial estimate = 0.7.

FIGURE 3. Estimated carrier frequencies and their corresponding 2D-DOA. (a) Initial estimate = 0.03.
(b) Initial estimate = 0.7.

showed a degraded performance when the initial estimates
were set to 0.7. In this case, RMSE deteriorated markedly as
shown in Figure 2b. To explicitly declare those findings, the
estimated carrier frequency and 2D-DOA in the two cases are

shown in Figure 3. In Figure 3a, the estimated parameters are
obviously close to the actual values when the initial estimate
is 0.03. However, when the initial estimate was set to 0.7,
EKF converged to erroneous values which are far apart from
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FIGURE 4. RMSE in the estimated azimuth, elevation and normalized wavelength with initial estimates of 0.7
and different inter-element spacing. (a) RMSE in Azimuth. (b) RMSE in Elevation. (c) RMSE in N. Wavelength.

the true values and UKF converged to the true values with
massive errors as shown in Figure 3b. This proves that initial
estimates play a crucial role in the filter convergence and
may lead the filter to completely diverge if they are not set
properly. Another thing can be found in Figure 2. When
the initial estimate is 0.7, UKF outperforms EKF. That is
expected, as UKF is accurate to the third derivativewhile EKF
is accurate to the first derivative. However, EKF outperforms
UKF when the initial estimate is 0.03. This indicates that
the filter operates over a relatively linear model where the
linearization error is massively reduced. This also reflects the
vital role of initial estimates.

The inter-element spacing of the array can enhance the
performance of EKF and UKF. As reducing the inter-element
spacing expands the process model relating to the estimated
parameters al , bl and cl . Expanding a nonlinear model can
produce relatively linear characteristics over the region where
those parameters are defined. This is proven by the improved
performance accomplished by reducing the inter-element
spacing. A new experiment has been executed with an initial
estimate of 0.7 to show the effect of the inter-element spacing
in a worse case. For different inter-element spacing values,
simulations have been carried out and the results are shown
in Figure 4. When the inter-element spacing is reduced to
one-tenth of the minimum wavelength, the performance of
both EKF and UKF is enhanced and the RMSE is reduced.
Moreover, EKF performance starts to approach UKF perfor-
mance and the gab between their performances is tremen-
dously diminished. This indicates that the linearization error

has been reduced and the process model tends to be rela-
tively linear. Reducing the inter-element spacing, however,
produces mutual coupling in the array elements.

Another experiment has been carried out to find out the
effect of the number of source signals. The simulations have
been repeated for 5, 12 and 24 source signals with inter-
element spacing of λmin/10 and initial estimate of 0.03. The
filters were still able to detect all the carrier frequencies with
their corresponding elevation and azimuth angles as shown in
Figure 5. The filters can continue to detect a larger number
of sources up to the degrees of freedom of two L-shaped
uniform arrays. The degrees of freedom are limited to the
number of array elements in one axis. Thus, the maximum
number of source signals that can be detected with this system
is 149. Since the detection of PUs is a blind estimation
problem in CR, the CRs have no prior information about the
number of existing sources. In this case, the filters are set
to detect 149 different source signals and finally detect the
actual number of the sources, as the remaining signals would
be zero. As depicted in Figure 5, our approaches can detect
azimuth angles up to 300◦. As two L-shaped uniform arrays
provide the ability to detect a range of azimuth angles of 360◦

and a range of elevation angles of 180◦. In Figure 5c, There
are many pairs that share the same frequency or the same
elevation, but the two filters were able to distinguish between
them since they differ in the other parameters.

From simulations, we found that EKF consumes time
20 times lower than the time consumed by UKF to detect
5 different sources. When the number of source signals
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FIGURE 5. Estimated carrier frequencies and their corresponding 2D-DOA for different number of sources. (a) L = 5. (b) L = 12. (c) L = 24.

FIGURE 6. RMSE in the estimated carrier frequencies and their corresponding 2D-DOA at different
SNRs. (a) SNR = 1dB. (b) SNR = 13dB.

is raised to 12, the ratio between the time consumed
by UKF and EKF roughly becomes 40. Again, this ratio
becomes around 70, when the number of sources becomes 24.
Although UKF is a derivative-free, it consumes much time
in selecting sigma points. Since the number of sigma points
depends on the number of source signals, the time consumed
by UKF to calculate and process these sigma points increases
rapidly with the increase in the number of sources.

A further experiment has been carried out to examine
our proposal at different levels of SNRs. Thus, we have
repeated the simulations with an initial estimate of 0.03 and

inter-element spacing of one-tenth of the minimum wave-
length. The SNR level was set to 1dB and 13dB respectively,
and RMSE in the estimated parameters was evaluated at
each level. The results are gathered in Figure 6. At each
SNR level, the filters should be tuned again to handle the new
level of uncertainty in the measurements. The filter tuning
is a trial-and-error process, where we keep on changing the
matrix R till the filter converges. Therefore, the resultant
RMSE follows both the SNR level and the quality of tuning as
well. In overall, Figure 6 shows an improvement in the filter
performance with the increase in SNR. EKF still follows the
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same behavior as in Figure 3a and outperforms UKF because
of selecting the initial estimate around zero and the small
inter-element spacing.

C. COMPARATIVE STUDY
References [13] and [19] are considered for the sake of com-
parison. In [13], the authors have proposed a new architecture
with a 2D nested array to implement sub-Nyquist sampling.
The 2D nested array consists of two rectangular arrays: a
sparse rectangular array and a dense one. To achieve sub-
Nyquist rate, each element in the dense array is followed by
a single ADC that samples the signals at sub-Nyquist rate.
However, each element in the sparse array is followed by
two paths: a direct path with an ADC and a delayed path
with another ADC. Then, a proposed algorithm is executed
to obtain the carrier frequency and a single DOA for each
source. In [19], the authors have exploited a standard URA
for detecting both the carrier frequency and the corresponding
2D-DOA of each source. Then, the authors have proposed
adding a number of delay channels after a single array ele-
ment of the employed URA. Each delay channel has been
provided with an ADC. Then, the authors have exploited the
spatial and time delays to detect the unknown parameters
using ESPRIT algorithm. In contrast, our proposal does not
rely on this large number of ADCs as the processing is
executed spatially.

Table 1 shows the differences among our proposal,
Kumar et al. [13], [19]. Kumar et al. [19] can detect a number
of source signals higher than the number of array elements
if the number of the employed delay channels exceeds 4.
However, the simulations in [19] have proven that the higher
the number of delay channels, the higher the performance
would be accomplished. Thus, the number of delay chan-
nels would be twice or triple the number of array elements.
In this context, the degrees of freedom of Kumar et al. [19]
increase exponentially with the increase in the number of
the employed array elements. Under these circumstances, it
outperforms our proposal and Kumar et al. [13]. Although the

latter has degrees of freedom that also increase exponentially,
they rise at a slower rate than the degrees of freedom of
Kumar et al. [19]. That is predictable since Kumar et al. [19],
unlike the others, has no constraints on detecting a number
of source signals higher than the number of the employed
array elements. However, Kumar et al. [13] needed at least
5 array elements to start detecting source signals. Besides,
it started to detect a number of source signals higher than the
number of the employed array elements when the number of
array elements exceeded 13. Our proposal, however, started
to detect signals with 4 array elements, and its degrees of free-
dom increase linearly with the increase of the array elements.
Besides, its degrees of freedom are restricted to one-third of
the total number of the employed array elements. Overall, our
proposal has the lowest degrees of freedom among the three
methods as it does not rely on sparsity on any domain.

On the other hand, our proposal has employed a lower num-
ber of ADCs as there are no restrictions on the sampling rate.
Since both Kumar et al. [13] and Kumar et al. [19] operate
at sub-Nyquist rates to sample a wideband spectrum, their
implementations require a large number of relaxed ADCs.
The number of ADCs required for Kumar et al. [13] is around
1.5 times the number of array elements. Kumar et al. [19]
required a number of ADCs equal to the total number of the
employed array elements and delay channels together. As a
result, the number of ADCs may be 3 or 4 times the number
of array elements, which can be considered as the price that
has been paid for the high degrees of freedoms. However, our
proposal exploits the spatial domain instead of the temporal
domain to get rid of the need to sample the signals at Nyquist
rates, and hence it only requires a number of ADCs equal
to the number of the employed array elements without any
restrictions on the speed of the ADCs. So the number of
ADCs required for our proposal is always lower than the
number required by Kumar et al. [13] and Kumar et al. [19]
for the same number of array elements.

Moreover, both our proposal and Kumar et al. [19] detect
two angles for each source signal instead of a single angle

TABLE 1. Comparison among our proposed approaches, Kumar et al. [19] and Kumar et al. [13].
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as in Kumar et al. [13]. This gives them another advantage
as it increases the spatial capacity. As many CRs can share
two parameters with PUs at the same time without interfering
them as they differ in the third parameter.

VI. CONCLUSIONS
In this paper, EKF and UKF are proposed for the problem of
estimating carrier frequencies and 2D-DOA of uncorrelated
band-limited source signals. Exploiting two different angles
in the space increases the spatial capacity of CR. The main
challenge of wideband sensing is the need to high Nyquist
rates and high hardware requirements. In order to decrease
hardware complexity, KF is applied in the spatial domain
where the incident signal on one array element is predicted
from its version impinges on the previous array element.
As a result, the proposed algorithm does not require complex
hardware to performNyquist or sub-Nyquist rates. Since EKF
and UKF are sub-optimal filters, they may converge to sub-
optimal values or even diverge. To overcome this problem,
the parameters to be estimated are scaled to the same range
with small variance, and the filters should be properly ini-
tialized. Simulations have proven the vital effect of the initial
estimates and inter-element spacing on the performance of the
filters. The smaller the inter-element spacing, the higher the
performance is. Since the proposal depends on two L-shaped
uniform arrays, it has limited degrees of freedom restricted to
the number of array elements. However, it has the availability
to detect source signals from all directions in the space.
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