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ABSTRACT This paper deals with the iterative learning control issue for multi-input multi-output singular
distributed parameter systems (SDPSs) with parabolic and hyperbolic type, which described by coupled
partial differential equations with singular matrix coefficients. Initially, applying the singular value decom-
position theory to SDPSs, an equivalent dynamic decomposition form is derived. Then, the estimation of
the relationship between the learning system substates and output tracking error are constructed in the
light of P-type update learning scheme under some assumptions. Moreover, two sufficient conditions are
presented to ensure that the tracking error is convergent in the sense ofL2 norm by employing the contracting
mapping principle as well as some basic differential inequalities. Finally, two numerical examples are shown
to demonstrate the validity of the developed theoretical results.

INDEX TERMS Distributed parameter systems, learning systems, intelligent control, singular value
decomposition, convergence.

I. INTRODUCTION
Singular Distributed Parameter Systems (SDPSs), which can
be governed by partial differential equations with singu-
lar matrices arise in front of partial derivatives, deriving
from the research of physical phenomena and industrial pro-
cesses, such as nanoelectronics, transmission lines in signal
propagation as well as atmospheric physics [1], [2]. The
real world has provided the profound actual background
for the research of SDPSs, involved in the fields of mathe-
matics, material engineering, chemical biology, economics
and so on [3]–[5]. SDPSs is also referred to as partial
differential-algebraic equations. This system with an infi-
nite dimensional state, distinguishing from the generalized
state space system, but also distinct from the general dis-
tributed parameter system [6]. SDPSswith two administrative
levels, one layer for the objective dynamic characteristics
which described by partial differential equations, another
layer is management characteristics of static properties which
described by algebraic equations, whereas the normal sys-
tem without static attribute. Not only will SDPSs unsta-
ble, but the system structure has changed also dramatically
under the interference of unknown factors, such as causing

the pulse behavior, this also makes the controller hard to
implement [7].

Iterative Learning Control (ILC) is an intelligent control
scheme that is suitable for the repetitive controlled system
achieving perfect tracking over a finite time interval. Its basic
idea is to utilize the former once or previous control informa-
tion to amend and update the control inputs of current times,
so repeatedly learning that the objective output will grad-
ually achieve the complete tracking of reference trajectory.
Although the convergent conditions of ILC are established
with the help of rigorous mathematical analysis, it does not
require a precise mathematical model [8]–[10]. Since the
concept of ILC is coined by Arimoto in 1984, it has become
a hotspot in the field of intelligent control. Not only ILC
achieves fruitful results in practical applications, such as limb
recovery robot [11], rapid thermal processing [12], semibatch
chemical reactors [13], urban traffic systems [14], multi-
agent systems [15], [16], but also employees into the theo-
retical analysis of various systems which contain switching
systems, stochastic systems, pulse and distributed parameter
systems (DPSs). However, there is no theoretical analysis of
ILC for SDPSs at present.
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In the past few years, the theoretical research of SDPSs
have attracted increasing attention to academics, and some
accomplishments have been presented in the literatures. Now,
the study of SDPSs mainly concentrate in two aspects. On the
one hand, the expression and characteristics of the solutions
are considered. For example, the paper [17] exhibits the
solution of coupled hyperbolic PDEs with singular matrix
coefficients in view of the Fourier approach. In [18] and [19],
the operator decomposition method and Empathy theory are
respectively introduced to discuss the solvability problem of
homogeneous constant SDPSs in Banach space. A boundary
value problem for linear SDPSs is considered in terms of
the separation of variables method and matrix pencil theory
in [4]. On the other hand is the study of its control prob-
lem, such as, the robust exponential stability for uncertain
SDPSs in the light of linear operator inequality is investigated
in [20]. Based on the generalized operator semigroup theory
and functional analysis method incorporated average dwell
time approach, the control synthesis of SDPSs which includ-
ing feedback stability and the well-posedness problem are
concerned in Hilbert space, and some sufficient conditions
are derived in [21]–[23]. The literature [24] studies sliding
mode control scheme for SDPSs with perturbation using
inherent function method. In [25], state feedback control
approach is proposed for SDPSs with parabolic-elliptic type
and the equivalent decomposition form is shown based on the
spectrum analysis. In a word, the control theory of SDPSs
combines singular systems theory with distributed parameter
systems theory [26]–[28]. The researches of ILC for singular
systems and DPSs are limited and only a little related results
are reported. Reference [29] designs P-type ILC updating
law in the frequency domain for linear inhomogeneous DPSs
with the help of Laplace transform. Eigenspectrum-Based
ILC scheme is considered for semi-linear DPSs and apply-
ing Galerkinąŕs approach with the eigenspectrum theoret-
ics to reduce model in [30]. The papers [31], [32] provide
the convergence conditions for uncertain linear DPSs with
closed-loop and opened-loop P-type algorithm by applying
contraction mapping principle respectively. Reference [33]
utilizes frobenius norm to address ILC tracking problem for
the fast subsystem of singular system canonical form with
impulse behavior and the requirement of impulse controllable
constraint. PD-type ILC law is presented for singular dis-
crete systems with the aid of singular value decomposition
transformation in [34]. However, to the best of the authors’
knowledge, there is no report about the ILC of MIMO SDPSs
with parabolic and hyperbolic type.

In this paper, we are concerned with the problem of ILC
algorithm for two classes of MIMO singular parameter dis-
tributed systems which are parabolic and hyperbolic type,
reformulated into its equivalent dynamic decomposition form
by means of singular value decomposition theory. According
to the substate variables of equal decomposition, we estimate
the relationship between them and the output tracking error,
thereby two Lemmas are simultaneously given. Using a typ-
ical P-type learning law, the two convergence conditions for

SDPSs with parabolic and hyperbolic type are provided in
terms of some integral inequalities and contraction mapping
approach. Finally, two numerical simulations are performed
to illustrate the effectiveness of the proposed controller.

The paper has the following structure. In Section II, prob-
lem formulation and system description are first given under
some assumptions. We present the details for analysing the
convergence conditions of output tracking error for the repet-
itive MIMO SDPSs in Section III. In consequence, based
on the derivation in Section III, we focus on two numerical
simulations in Section IV. At last, Section V concludes the
paper and further discussions are shown.
Notations: The superscript ‘T′ denotes the matrix trans-

position; A > 0 (respectively, A < 0) denotes a
symmetric positive (respectively, negative) definite matrix.
Define V = (v1, v2, · · · , vn) is vector, then the Euclidean
norm of its is ‖V‖ =

√∑n
i=1 v

2
i . If define V is matrix,

‖V‖ =
√
λmax(V TV ) is its matrix norm, where λmax(·)

is the maximum eigenvalue of V . If Qi ∈ L2(�)
(i = 1, 2, · · · , n), we define Q = (Q1,Q2, · · · ,Qn) ∈

Rn
∩ L2(�), then‖Q‖L2 = {

∫
�
QT (x)Q(x)dx}

1
2 . For f (x, t) :

�×[0,T ]→ Rn, f (·, t) ∈ Rn
∩L2(�), ∀t ∈ [0,T ], its (L2, λ)

norm is defined as ‖f ‖2
(L2,λ)

= sup
06t6T

{‖f (·, t)‖2L2e
−λt
} and

∇ , ∂/∂x denotes a gradient operator.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION
Consider the followingMIMO singular distributed parameter
systemsE

∂αZ (ξ, t)
∂tα

= A
∂2Z (ξ, t)
∂ξ2

+ B(t)U (ξ, t),

Y (ξ, t) = H (t)Z (ξ, t)+ L(t)U (ξ, t),
(1)

where (ξ, t) ∈ �×[0,T ],� = [0, 1], ξ , t describe time coor-
dinates and space coordinates respectively. E ∈ Rn×n is sin-
gular constant matrix with rank(E) = r < n, Z (ξ, t) ∈ Rn,
U (ξ, t) ∈ Rm, Y (ξ, t) ∈ Rs denote system state, control input
and the output of system respectively, A ∈ Rn×n is diagonal
positive definite constant matrix, B(t) ∈ Rn×m, H (t) ∈ Rs×n,
L(t) ∈ Rs×m are time-varying bounded matrices. System
type index α = 1 or 2, the learning system (1) is turn into
SDPSs with parabolic type under index value α taking one
andwhen index valueα is equal to two, the system (1) become
hyperbolic SDPSs. The initial and boundary conditions of (1)
are given as,

Z (ξ, t) = 0,
∂Z (ξ, t)
∂υ

= 0, (ξ, t) ∈ ∂�× [0,T ], (2)

Z (ξ, 0) = ϕ(ξ ),
∂Z (ξ, t)
∂t
|t=0 = φ(ξ ), ξ ∈ �. (3)

where υ is the unit outward vector at the boundary ∂�.
Remark 1: The SDPSs (1) is a hyperbolic or parabolic

PDE-based system with singular matrix, which is used
to describe a wide family of problems in natural science
including the temperature distribution of composites and
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and non-loss transient response of coupled transmission lines,
etc. [4], [5].

Given a desired tracking target Yd (ξ, t), the control goal
is to find a desired control input Ud (ξ, t) such that when
k → ∞, the output of learning systems Yk (ξ, t) can track
the reference trajectory Yd (ξ, t) as follows,

Yd (ξ, t) = H (t)Zd (ξ, t)+ L(t)Ud (ξ, t).

where the repetitive iteration process satisfiedE
∂αZk (ξ, t)
∂tα

= A
∂2Zk (ξ, t)
∂ξ2

+ B(t)Uk (ξ, t),

Yk (ξ, t) = H (t)Zk (ξ, t)+ L(t)Uk (ξ, t),
(4)

where k denotes the iteration number.
Assumption 2: Singular distributed parameter systems

described by (1) are regular, impulse-free and direct trans-
mission matrix L(t) is row full rank.
Assumption 3: For a desired output Yd (ξ, t), there exists an

unique Ud (ξ, t) to meet the equations in the learning systems
described by (4).
Assumption 4: In an iterative process (4), we assume fol-

lowing boundary and initial condition

Zk (ξ, t) = 0,
∂Zk (ξ, t)
∂υ

= 0, (ξ, t) ∈ ∂�× [0,T ],

(5)

Zk (ξ, 0) = ϕ(ξ )=Zd (ξ, 0),
∂Zk (ξ, t)
∂t

|t=0=φ(ξ ), ξ ∈ �.

(6)

Remark 5: These assumptions of the SDPSs are accept-
able and reasonable from the perspectives of theoretical
analysis and practical industry process. Since under the
Assumption 2 that the SDPSs is regular, this require exist
a complex number s0 to meet det(s0E − A) 6= 0, then
the SDPSs described by (4) can be transformed into the
Kronecker-Weierstrass equivalent form with nonsingular
transformation matrices M and N [2], [20]. This require-
ment is also the general assumption in control theory of
singular system and SDPSs [22]–[25]. Due to the SDPSs is
without impulse, which indicates that the nilpotent matrix is
zero [2], [22], [25]. The above two requirements are impor-
tant condition for the stability of SDPSs. Owing to the desired
control input Ud (ξ, t) exists uniquely in Assumption 3,
the uniform convergence of the control sequence Uk (ξ, t) to
Ud (ξ, t) indicates that the output tracking errors will vanish.
From Assumption 4, it is well posed initial-boundary value
conditions for partial differential systems. Identical initial
condition is necessary for ILC scheme on account of most
industrial process often start at the same position.
Remark 6: The expression forms of the classical solu-

tion about second order hyperbolic SDPSs described by (1)
under α = 2 are presented based on the generalized inverse
of bounded linear operators in Hilbert space [1], [7]. The
constructive expression of the solution for parabolic SDPSs
are discussed by means of the separation principle and
generalized evolution operator in the literature [17], [22].

Those has provided the powerful support to the control syn-
thesis of SDPSs with parabolic and hyperbolic type.

In this paper, the control objective is to utilize ILC con-
troller to track the desired goal Yd (ξ, t) on the basic of mea-
surable output Yk (ξ, t), such that the output error converges to
zero when the iteration times tends to infinity. Thus, we will
design controller and analyse convergence in the next section.

III. CONVERGENCE ANALYSIS
In this section, some Lemmas and two sufficient conditions
for the output error of MIMO SDPSs with parabolic and
hyperbolic type to be convergent under the sense of L2 norm
are presented respectively.

The following Lemma 7 is derived from [35], which will
be useful part for the proof of the following lemmas and
theorems.
Lemma 7 [35]: Suppose Z (ξ ) ∈ C1[0, 1] be a vector

function and Z (0) = Z (1) = 0, then the following inequality
holds, ∫ 1

0
ZT(s)Z (s)ds 6

1
6

∫ 1

0
(
dZ (s)
ds

) T
dZ (s)
ds

ds. (7)

In view of singular value matrix theory and Assump-
tion 2 [2], there are existence with two nonsingular matrixes
M ∈ Rn×n, N ∈ Rn×n, such that

MEN =
[
Ir 0
0 0

]
, MAN =

[
A1 0
0 In−r

]
.

The learning systems (4) can be transformed into the equiv-
alent decomposition form and expressed as follow,

∂αZ1k (ξ, t)
∂tα

= A1
∂2Z1k (ξ, t)

∂ξ2
+ B1(t)Uk (ξ, t),

0 =
∂2Z2k (ξ, t)

∂ξ2
+ B2(t)Uk (ξ, t),

Yk (ξ, t) = H1(t)Z1k (ξ, t)+ H2(t)Z2k (ξ, t)
+L(t)Uk (ξ, t),

(8)

where N−1Zk (ξ, t) =
[
Z1k (ξ, t)
Z2k (ξ, t)

]
, MB(t) =

[
B1(t)
B2(t)

]
,

H (t)N =
[
H1(t) H2(t)

]
, B1(t) ∈ Rr×m, B2(t) ∈ R(n−r)×m,

H1(t) ∈ Rs×r ,H2(t) ∈ Rs×n−r are time-varying bounded
matrices. A1 ∈ Rr×r is diagonal positive definite constant
matrix. Z1k (ξ, t) ∈ Rr and Z2k (ξ, t) ∈ R(n−r) denote the two
substates of learning systems (4).

In this paper, the following P-type update learning con-
troller is employed,

Uk+1(ξ, t) = Uk (ξ, t)+ 0(t)ek (ξ, t), (9)

where 0(t) is the learning gain matrix to be determined.
In order to facilitate better lead to the convergence con-

dition of tracking error, we first estimate the relationship
between output error and learning system substate variables.

For convenience, we introduce the following new marks,

Ūk (ξ, t) , Uk+1(ξ, t)− Uk (ξ, t) (10)

Z̄ik (ξ, t) , Zik+1(ξ, t)− Zik (ξ, t), i = 1, 2. (11)
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Lemma 8: Consider the SDPSs learning process described
by (4) under Assumptions 2∼4. and P-type learning law, then
the estimation of Z2k (ξ, t) holds as follows,

‖Z̄2k (·, t)‖2L2 6 ‖B2(t)0(t)‖
2
‖ek (·, t)‖2L2 .

Proof: According to the second formula of systems (8)
and subtracting the k times iterative process by the k+1 times
process, then the following gives

∂2(Z2k+1(ξ, t)−Z2k (ξ, t))
∂ξ2

=−B2(t)(Uk+1(ξ, t)− Uk (ξ, t)).

By (10) and (11), we get

∂2Z̄2k (ξ, t)
∂ξ2

= −B2(t)Ūk (ξ, t). (12)

Two sides of (12) left multiply by (Z2k+1(ξ, t)− Z2k (ξ, t)
)T
,

and integrating about ξ on �, we can obtain∫
�

Z̄T2k (ξ, t)
∂2Z̄2k (ξ, t)

∂ξ2
dξ =−

∫
�

Z̄T2k (ξ, t)B2(t)Ūk (ξ, t)dξ.

(13)

The left hand side of equation (13), we can use part integral
with respect to ξ to address it as follows,∫

�

Z̄T
2k (ξ, t)

∂2Z̄2k (ξ, t)
∂ξ2

dξ

= Z̄T
2k (ξ, t)

∂Z̄2k (ξ, t)
∂ξ

∣∣∣∣
∂�

−

∫
�

(
∂Z̄2k (ξ, t)

∂ξ
)T
∂Z̄2k (ξ, t)

∂ξ
dξ. (14)

In view of initial boundary conditions (5), we deduce that

Z̄2k (ξ, t) = Z2k+1(ξ, t)− Z2k (ξ, t) = 0, (ξ, t) ∈ ∂�× [0,T ],

so, replacing it into formula (14), we have∫
�

Z̄T
2k (ξ, t)

∂2Z̄2k (ξ, t)
∂ξ2

dξ = −‖
∂Z̄2k (·, t)
∂ξ

‖
2
L2 . (15)

Substituting (15) into formula (13), we obtain

‖
∂Z̄2k (·, t)
∂ξ

‖
2
L2 =

∫
�

Z̄ T
2k (ξ, t)B2(t)Ūk (ξ, t)dξ. (16)

Due to space variable ξ meet boundary conditions (6) and we
use Lemma 7 and by (14), the following gives,

‖Z̄2k (·, t)‖2L2 6
1
6
‖
∂Z̄2k (·, t)
∂ξ

‖
2
L2

6
1
6

∫
�

Z̄T
2k (ξ, t)B2(t)Ūk (ξ, t)dξ. (17)

Applying Hölder inequality and P-type learning law (9) into
the right hand side of (17), we have

‖Z̄2k (·, t)‖2L2 6
1
12
‖B2(t)0(t)‖2‖ek (·, s)‖2L2

+
1
12
‖Z̄2k (·, t)‖2L2 . (18)

Rearranging the inequality (18), we can obtain that,

‖Z̄2k (·, t)‖2L2 6
1
11
‖B2(t)0(t)‖2‖ek (·, s)‖2L2

6 ‖B2(t)0(t)‖2‖ek (·, s)‖2L2 . (19)

The proof of Lemma 8 is end.
Through Lemma 8, we can discover that substate compo-

nent in SDPSs (4) all have certain restraint relations with the
tracking error which has provided the convenience for the
next theorem proposed. Next, we will carry on the thorough
analysis to convergence conditions for MIMO SDPSs with
parabolic and hyperbolic type.
Theorem 9:Consider the P-type learning law (9) employed

to the repetitive MIMO SDPSs (1) with parabolic type under
α = 1, and meeting Assumptions 2∼4. If for all t ∈ [0,T ],
the gain matrix 0(t) satisfies

‖I − L(t)0(t)‖2 + ‖H (t)‖2‖B2(t)0(t)‖2 6 ρ1,

2ρ1 ∈ [0, 1),

then the L2 norm of output error converge to zero for all
t ∈ [0,T ] as k →∞, i.e.,

lim
k→∞
‖ek (·, t)‖L2 = 0, ∀ t ∈ [0,T ].

Proof: According to the P-type learning law (9) and the
output equation of systems (4), then the following gives

ek+1(ξ, t) = ek (ξ, t)− Yk+1(ξ, t)+ Yk (ξ, t)

= ek (ξ, t)− L(t)
(
Uk+1(ξ, t)− Uk (ξ, t)

)
−H (t)(Zk+1(ξ, t)− Zk (ξ, t))

= (I − L(t)0(t))ek (ξ, t)− H (t)Z̄k (ξ, t). (20)

Introducing the following new marks

ẽk (ξ, t) , (I − L(t)0(t))ek (ξ, t),

H̃k (ξ, t) , −H (t)Z̄k (ξ, t).

Then, left multiply (20) by eTk+1(ξ, t), we have

eTk+1(ξ, t)ek+1(ξ, t)

= (ẽk (ξ, t)+ H̃k (ξ, t))T(ẽk (ξ, t)+ H̃k (ξ, t))

6 2(ẽTk (ξ, t)ẽk (ξ, t)+ H̃
T
k (ξ, t)H̃k (ξ, t))

6 2(‖ẽk (ξ, t)‖2 + ‖H̃k (ξ, t)‖2)

6 2ρ‖ek (ξ, t)‖2 + 2h(‖Z̄1k (ξ, t)‖2 + ‖Z̄2k (ξ, t)‖2), (21)

where introducing the following marks

ρ = max
06t6T

{‖I − L(t)0(t)‖2}, h = max
06t6T

{‖H (t)‖2}.

Integrating both side of (21) about ξ on �, it meets

‖ek+1(·, t)‖2L2 6 2ρ‖ek (·, t)‖2L2 + 2h‖Z̄1k (·, t)‖2L2

+ 2h‖Z̄2k (·, t)‖2L2 . (22)
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From the first equation of systems (8) by k + 1 times and
k times learning process, we can obtain

∂
(
Z1k+1(ξ, t)− Z1k (ξ, t)

)
∂t

= A1
∂2
(
Z1k+1(ξ, t)− Z1k (ξ, t)

)
∂ξ2

+B1(t)(Uk+1(ξ, t)− Uk (ξ, t)).

By brief marks, we have

∂(Z̄1k (ξ, t))
∂t

= A1
∂2Z̄1k (ξ, t)

∂ξ2
+ B1(t)Ūk (ξ, t). (23)

Two sides of (23) multiplied (Z1k+1(ξ, t) − Z1k (ξ, t)
)T
, we

can get that

1
2

∂[Z̄T
1k (ξ, t)Z̄1k (ξ, t)]

∂t
= Z̄T

1k (ξ, t)A1
∂2Z̄1k (ξ, t)

∂ξ2

+ Z̄T
1k (ξ, t)B1(t)Ūk (ξ, t). (24)

Integrating the both sides of (24) with respect to ξ over �,
it satisfies

d
dt

(
‖Z̄1k (·, t)‖2L2

)
= 2

∫
�

Z̄T
1k (ξ, t)A1

∂2Z̄1k (ξ, t)
∂ξ2

dξ

+ 2
∫
�

Z̄T
1k (ξ, t)B1(t)Ūk (ξ, t)dξ

, I1 + I2. (25)

We will address Ii(i = 1, 2) in the following. Tackling I1
in the light of Green formula, then following meets that

I1 = 2
∫
�

Z̄T
1k (ξ, t)A1

∂2Z̄1k (ξ, t)
∂ξ2

dξ

= 2
r∑
i=1

r∑
j=1

∫
�

Z̄T
1ki(ξ, t)A1ij

∂2Z̄1kj(ξ, t)
∂ξ2

dξ

= 2
r∑
i=1

r∑
j=1

∫
∂�

Z̄T
1kj(ξ, t)A1ij

∂Z̄1ki(ξ, t)
∂ν

dS

− 2
r∑
i=1

r∑
j=1

∫
�

∇Z̄T
1kj(ξ, t)A1ij∇Z̄1kj(ξ, t)dξ

, I11 + I12. (26)

For I11 with the help of boundary condition (6), we can obtain

∂Z̄1k (ξ, t)
∂ν

=
∂Z1k+1(ξ, t)

∂ν
−
∂Z1k (ξ, t)

∂ν
= 0.

So it deduces I11 = 0. Then we deal with I12,

I12 = −2
r∑
i=1

r∑
j=1

∫
�

∇Z̄T
1kj(ξ, t)A1ij∇Z̄1kj(ξ, t)dξ

= −2
r∑
i=1

∫
�

∇Z̄T
1ki(ξ, t)A1ii∇Z̄1ki(ξ, t)dξ.

6 −2λmin(A1)
r∑
i=1

∫
�

∇Z̄T
1k (ξ, t)∇Z̄1k (ξ, t)dξ

6 −2λmin(A1)‖∇Z̄1k (·, t)‖2L2 .

Because A1 > 0, then I12 6 0 by combining (26), thus we
have

I1 = I11 + I12 6 0. (27)

For I2, using Hölder inequality, we can find

I2 = 2
∫
�

Z̄T
1k (ξ, t)B1(t)Ūk (ξ, t) dξ

6 λ max
06t6T

(BT1 (t)B1(t))‖Ūk (·, t)‖
2
L2 + ‖Z̄1k (·, t)‖

2
L2 . (28)

Thus, according to the result of formulas (25)∼(28), the
following gives

d
dt

(
‖Z̄1k (·, t)‖2L2

)
6 λ max

06t6T
(BT1 (t)B1(t))‖Ūk (·, t)‖

2
L2

+‖Z̄1k (·, t)‖2L2

6 ‖Z̄1k (·, t)‖2L2 + g‖Ūk (·, t)‖
2
L2 , (29)

where g = λ max
06t6T

(BT1 (t)B1(t)).

For inequality (29) integrating about t , and using
Bellman-Gronwall inequality, we have

‖Z̄1k (·, t)‖2L2 6 g
∫ t

0
e(t−s)‖Ūk (·, s)‖2L2ds

+ et‖Z̄1k (·, 0)‖2L2 . (30)

On the other hand, according to the iterative learning con-
trol law (8), we can obtain

‖Uk+1(·, t)− Uk (·, t)‖2L2 6 c‖ek (·, t)‖2L2 , (31)

where c = λ max
06t6T

(0(t)T0(t)).

Substituting (31) into (30), we have

‖Z̄1k (·, t)‖2L2 6 gc
∫ t

0
e(t−s)‖ek (·, s)‖2L2ds

+ et‖Z̄1k (·, 0)‖2L2 . (32)

Because of the conditions of initial value (6), we can get

‖Z̄1k (·, t)‖2L2 6 gc
∫ t

0
e(t−s)‖ek (·, s)‖2L2ds. (33)

Now, we return to error convergence. Replacing (33) and
Lemma 8 into (22), we can have that

‖ek+1(·, t)‖2L2

6 2ρ‖ek (·, t)‖2L2 + 2h‖Z̄1k (·, t)‖2L2

+ 2h‖Z̄2k (·, t)‖2L2 ,

6 2ρ‖ek (·, t)‖2+2hgc
∫ t

0
e(t−s)‖ek (·, s)‖2L2ds

+ 2hbγ ‖ek (·, t)‖2L2 , (34)

where bγ = max
06t6T

‖B2(t)0(t)‖2.
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Taking both side of formula (34) multiplied by e−λt where
sufficiently large constant λ > 1, it satisfies that

‖ek+1(·, t)‖2L2e
−λt

6 2hgc
∫ t

0
e−(λ−1)(t−s)e−λs‖ek (·, s)‖2L2ds

+ 2ρ‖ek (·, t)‖2e−λt + 2hbγ ‖ek (·, t)‖2L2e
−λt . (35)

By the definition of (L2, λ) norm, it becomes

‖ek+1‖2(L2,λ) 6 2ρ‖ek‖2(L2,λ) + 2hbγ ‖ek‖2(L2,λ)

+
2hgc
λ− 1

‖ek‖(L2,λ)

6 (2ρ + 2hbγ +
2hgc
λ− 1

)‖ek‖2(L2,λ). (36)

In view of convergent conditions in Theorem 9, we have
2ρ + 2hbγ 6 2ρ1 < 1, so we can find a λ which sufficiently
large to meet the condition

2ρ + 2hbγ +
2hgc
λ− 1

< 1. (37)

By the formula (36) and (37), it satisfies

lim
k→∞
‖ek‖2(L2,λ) = 0, ∀t ∈ [0,T ]. (38)

Finally, in view of the following inequality

‖ek (·, t)‖2L2 = (‖ek (·, t)‖2L2e
−λt )eλt 6 ‖ek‖2(L2,λ)e

λT . (39)

Thus, we obtain

lim
k→∞
‖ek (·, t)‖L2 = 0, ∀t ∈ [0,T ]. (40)

This is conclusion of the Theorem 9.
Remark 10: On the one hand, compare with the conver-

gence condition of general distributed parameter systems
in paper [30]–[32], we can observe that convergence con-
dition in Theorem 9 are more than the second item. This
is determined by the levels of the SDPSs which have two
administrative levels. On the other hand, compare with the
general singular system, for instance, the iterative conver-
gence condition of literature [33], [34], we discover the result
is consistent and all concern with transformed system matrix
under the equivalent dynamic decomposition.
Theorem 11: Consider the P-type learning law (9) applied

to the repetitive hyperbolic singular distributed parameter
systems (1) under take index value i = 2 and meeting
Assumptions 2∼4. If for all t ∈ [0,T ], the gain matrix 0(t)
satisfies

‖I − L(t)0(t)‖2 + ‖H (t)‖2‖B2(t)0(t)‖2 6 ρ2,

2ρ2 ∈ [0, 1),

then the L2 norm of output error converge to zero for all
t ∈ [0,T ] as k →∞, i.e.,

lim
k→∞
‖ek (·, t)‖L2 = 0,∀ t ∈ [0,T ].

Proof: The same decomposition form as (8), it also can
turn into the following

∂2Z1k (ξ, t)
∂t2

= A1
∂2Z1k (ξ, t)

∂ξ2
+ B1(t)Uk (ξ, t),

0 =
∂2Z2k (ξ, t)

∂ξ2
+ B2(t)Uk (ξ, t),

Yk (ξ, t) = H1(t)Z1k (ξ, t)+ H2(t)Z2k (ξ, t)
+L(t)Uk (ξ, t),

(41)

According to the definition of Z̄1k (ξ, t) by first equation
in (41), we can obtain that

∂2Z̄1k (ξ, t)
∂t2

= A1
∂2Z̄1k (ξ, t)

∂ξ2
+ B1(t)Ūk (ξ, t). (42)

Taking ( ∂Z̄1k (ξ,t)
∂t )T left multiply by (42), we can get

(
∂Z̄1k (ξ, t)

∂t
) T
∂2Z̄1k (ξ, t)

∂t2
= (

∂Z̄1k (ξ, t)
∂t

) TA1
∂2Z̄1k (ξ, t)

∂ξ2

+ (
∂Z̄1k (ξ, t)

∂t
)TB1(t)Ūk (ξ, t).

(43)

In the two hand side of (43), we multiply constant two and
integral above ξ on �, then the following gives

2
∫ 1

0
(
∂Z̄1k (ξ, t)

∂t
) T
∂2Z̄1k (ξ, t)

∂t2
dξ

= 2
∫ 1

0
(
∂Z̄1k (ξ, t)

∂t
) TA1

∂2Z̄1k (ξ, t)
∂ξ2

dξ

+ 2
∫ 1

0
(
∂Z̄1k (ξ, t)

∂t
)TB1(t)Ūk (ξ, t)dξ.

, I1 + I2.

Introducing new mark ˙̄Z1k (ξ, t) ,
∂Z̄1k (ξ,t)

∂t , it meets

2
∫ 1

0
(
∂Z̄1k (ξ, t)

∂t
)T
∂2Z̄1k (ξ, t)

∂t2
dξ =

d(‖ ˙̄Z1k (·, t)‖2L2 )

dt
. (44)

Dealing with I1 by Green formula, we can have that

I1 = 2
∫
�

(
∂Z̄1k (ξ, t)

∂t
)TA1

∂2Z̄1k (ξ, t)
∂ξ2

dξ

= 2
r∑
i=1

r∑
j=1

∫
�

(
∂Z̄1ki(ξ, t)

∂t
) TA1ij(

∂2Z̄1kj(ξ, t)
∂ξ2

)dξ

= 2
r∑
i=1

r∑
j=1

∫
∂�

(
∂Z̄1ki(ξ, t)

∂t
) TA1ij

∂Z̄1kj(ξ, t)
∂ν

dS

− 2
r∑
i=1

r∑
j=1

∫
�

∇
˙̄Z
T
1ki(ξ, t)A1ij∇Z̄1kj(ξ, t)dξ.
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According to the boundary condition (6), the follows can be
given

I1 = −2
r∑
i=1

∫
�

∇
˙̄Z
T
1ki(ξ, t)A1ii∇Z̄1ki(ξ, t)dξ

6 −λmin(A1)
d(‖∇Z̄1k(·, t)‖2L2 )

dt
. (45)

For I2 on the basis of learning law (9) and Hölder inequality,
we can find

I2 = 2
∫
�

(
∂Z̄1k (ξ, t)

∂t
) TB1(t)Ūk (ξ, t)dξ

= 2
∫
�

(
∂Z̄1k (ξ, t)

∂t
) TB1(t)0(t)ek (ξ, t)dξ

= b0‖ek (·, t)‖2L2 + ‖
˙̄Z1k (·, t)‖2L2 . (46)

where b0 = max
06t6T

‖B1(t)0(t)‖2.

So combining (43) and (45)∼(46), then the following can
induce

d(‖ ˙̄Z1k(·, t)‖2L2 )

dt
6 −λmin(A1)

d‖∇Z̄1k(·, t)‖2L2

d t
+‖
˙̄Z1k (·, t)‖2L2 + b0‖ek (·, t)‖

2
L2 . (47)

It equals to the following,

d(‖ ˙̄Z1k(·, t)‖2L2 + λmin(A1)‖∇Z̄1k(·, t)‖2L2 )

dt
6 ‖ ˙̄Z1k (·, t)‖2L2 + b0‖ek (·, t)‖

2
L2 .

Because A1 > 0, for all t ∈ [0,T ], so

d(‖ ˙̄Z1k(·, t)‖2L2 + λmin(A1)‖∇Z̄1k(·, t)‖2L2 )

dt
6 ‖ ˙̄Z1k (·, t)‖2L2 + b0‖ek (·, t)‖

2
L2

6 ‖ ˙̄Z1k (·, t)‖2L2 + λmin(A1)‖∇Z̄1k (·, t)‖2L2

+ b0‖ek (·, t)‖2L2 . (48)

In view of the Bellman-Gronwall inequality and initial con-
dition (6), we have

‖
˙̄Z1k (·, t)‖2L2 + λmin(A1)‖∇Z̄1k (·, t)‖2L2

6 (‖ ˙̄Z1k (·, 0)‖2L2 + λmin(A1)‖∇Z̄1k (·, 0)‖2L2 )e
t

+ b0

∫ t

0
e(t−s)‖ek (·, s)‖2L2ds

6 b0

∫ t

0
e(t−s)‖ek (·, s)‖2L2ds. (49)

On the basis of Lemma 7, we get

‖Z̄1k (·, t)‖2L2 6
1
6
‖∇Z̄1k (·, t)‖2L2 . (50)

Therefore, by combining (49) and (50), we easily obtain

‖Z̄1k (·, t)‖2L2 6
b0

6λmin(A1)

∫ t

0
e(t−s)‖ek (·, s)‖2L2ds. (51)

Multiplying both sides of (51) by e−λt where sufficiently
large constant λ > 1, then the following meets

‖Z̄1k (·, t)‖2L2e
−λt

6
b0

6λmin(A1)

∫ t

0
e−(λ−1)(t−s)‖ek (·, s)‖2L2e

−λsds

6
b0

6λmin(A1)
‖ek‖2(L2,λ)

∫ t

0
e−(λ−1)(t−s)ds

6
b0

6λmin(A1)(λ− 1)
‖ek‖2(L2,λ). (52)

On the other hand, according to the estimation of error (22),
we have

‖ek+1‖2(L2,λ)

6 2ρ‖ek‖2(L2,λ) + 2h(‖Z̄1k‖2(L2,λ) + ‖Z̄2k‖
2
(L2,λ)),

6 (2ρ + 2hbγ +
hb0

3λmin(A1)(λ− 1)
)‖ek‖2(L2,λ). (53)

Because 2ρ + 2hbγ 6 2ρ2 < 1, so we can find λ which is
big enough to meet the condition

2ρ + 2hbγ +
hb0

3λmin(A1)(λ− 1)
< 1. (54)

Combining (53) and (54), the following satisfies

lim
k→∞
‖ek‖2(L2,λ) = 0. (55)

Finally, the rest of proof is same as (39), we can obtain

lim
k→∞
‖ek (·, t)‖L2 = 0, ∀t ∈ [0,T ]. (56)

This completes the proof of Theorem 11.

IV. NUMERICAL SIMULATIONS
In order to show the effectiveness of the proposed P-type
learning scheme for MIMO SDPSs in this paper, two specific
numerical examples are given as followsE

∂αZ (ξ, t)
∂tα

= A
∂2Z (ξ, t)
∂ξ2

+ B(t)U (ξ, t),

Y (ξ, t) = H (t)Z (ξ, t)+ L(t)U (ξ, t),

where

E =

 0.2 0 0
0 0.5 0
0 0 0

, A =

 0.1 0 0
0 0.4 0
0 0 0.5

,
B(t) =

 0.3 0.2e−3t

0.2 0.1
0 0.3

, L(t) =
[
1.03e−0.9t 0

0 0.8

]
,

H (t) =
[
0.8t 0.2 0.6
0.3 0.1e−1.5t 0.4

]
.

In this example, Z (ξ, t) ∈ R3,U (ξ, t) ∈ R2,

Y (ξ, t) ∈ R2 and we choose spatial variable ξ ∈ [0, 1] as well
as time variable t ∈ [0, 1]. The desired reference trajectory is
selected as follows

Yd (ξ, t) =
[
Y1d (ξ, t)
Y2d (ξ, t)

]
=

[
−3sin(6ξ )sin(2π t)
2sin(3πξ )(1− e−2t )

]
.
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The P-type ILC controller is setted as

Uk+1(ξ, t) = Uk (ξ, t)+ 0(t)ek (ξ, t),

and we take gain matrix as 0(t) =
[
0.98 0.02e−0.6t

0 1.12

]
.

In this numerical simulation, the iterative initial value con-
ditions are setted as

Zik (ξ, 0) = 0, i = 1, 2, k = 1, 2, · · · ,

and the boundary conditions are

Zik (0, t) = Zik (1, t) = 0, i = 1, 2, k = 1, 2, · · · .

There exists two nonsingular transform matrices

M =

 5 0 0
0 2 0
0 0 2

, N =
 1 0 0
0 1 0
0 0 1


such that

MEN =
[
I2 0
0 0

]
, MAN =

[
A1 0
0 1

]
,

where I2 =
[
1 0
0 1

]
, A1 =

[
0.5 0
0 0.8

]
.

Then, the equivalent decomposition form are obtained as
follows

∂αZ1k (ξ, t)
∂tα

= A1
∂2Z1k (ξ, t)

∂ξ2
+ B1(t)Uk (ξ, t),

0 =
∂2Z2k (ξ, t)

∂ξ2
+ B2(t)Uk (ξ, t),

Yk (ξ, t) = H1(t)Z1k (ξ, t)+ H2(t)Z2k (ξ, t)
+L(t)Uk (ξ, t),

(57)

where B1(t) =
[
1.5 e−3t

0.4 0.2

]
, B2(t) =

[
0 0.6

]
,

H1(t) =
[
0.8t 0.2
0.3 0.1e−1.5t

]
, H2(t) =

[
0.6
0.4

]
.

Calculating the convergent condition by utilizing the above
parameters, then the following indicates

‖I − L(t)0(t)‖2 + ‖H (t)‖2‖B2(t)0(t)‖2 < 0.5,

which satisfies the convergent condition of Theorem 9 and
Theorem 11.
Example 12 (The Simulation of Parabolic SDPSs (α = 1):
Initially, the initial control input is set to zero and we

assign the initial-boundary value conditions at first iteration.
Meanwhile, the discretization model of SDPSs through
employing forward difference form is derived. Output state
can be obtained by the control input and discrete system
model. Then, using P-type learning law to calculate the next
control input subsequently. Finally, repeating the previous
steps until the tracking errors reach the setting precision.
The result of parabolic type are shown in the Fig.1∼Fig.6
and Fig.9.

FIGURE 1. Desired surface Y1d (ξ, t) for SDPSs.

FIGURE 2. Desired surface Y2d (ξ, t) for SDPSs.

FIGURE 3. Actual output surface Y1k (ξ, t) for SDPSs.

Example 13 (The Simulation of Hyperbolic SDPSs
(α = 2):
In this example, we consider hyperbolic SDPSs described

by (57), then we should provide boundary conditions that
both the initial state profiles are ϕ1(ξ ) = 0.02ξ, ϕ2(ξ ) =
0.01 sin ξ, ϕ3(ξ ) = 0.03 sinπξ and φ1(ξ ) = φ2(ξ ) =
φ3(ξ ) = 0, the input value of the controller at the beginning
of learning process are set to be zero. The rest are the same as
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FIGURE 4. Actual output surface Y2k (ξ, t) for SDPSs.

FIGURE 5. Error surface e1k (ξ, t) in parabolic SDPSs.

FIGURE 6. Error surface e2k (ξ, t) in parabolic SDPSs.

those in parabolic SDPSs. This simulation results have been
presented in Fig.7∼Fig.8 and Fig.10.

Fig.1 and Fig.2 depict two given output target surface
respectively. Fig.3 as well as Fig.4 show the actual tracking
surface at the 16th iteration. Comparing Fig.1 with Fig.3,
we can discover that objectives are utterly close to actual
surface. The Fig.9 denotes that two tracking error value
are almost approach to zero after nine iterations. As shown

FIGURE 7. Error surface e1k (ξ, t) in hyperbolic SDPSs.

FIGURE 8. Error surface e2k (ξ, t) in hyperbolic SDPSs.

FIGURE 9. Max error-iterative number curve in parabolic SDPSs.

in Fig.5∼Fig.6, the maximum absolute error of Y1(ξ, t) and
Y2(ξ, t) with high accuracy are 1.3345×10−6, 2.3253×10−9

in sixteen iterations respectively. As shown in Fig.7∼Fig.8,
the maximum absolute error of Y1(ξ, t) and Y2(ξ, t) with
high accuracy are 1.5534 × 10−6, 2.5982 × 10−7 in six-
teen iterations respectively. This simulation results confirm
the effectiveness of P-type ILC law on the basis of Fig.9
and Fig.10.
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FIGURE 10. Max error-iterative number curve in hyperbolic SDPSs.

V. CONCLUSION
For two classes of MIMO SDPSs, whose dynamics are
described by partial differential equations and executing in
the repeatable environment, a P-type ILC controller is uti-
lized to track the given desired goal. The control object is
to ensure the convergence of output tracking error under the
sense of L2 norm. Meanwhile, two lemmas are proposed to
make the foreshadowing for the later theorem. The sufficient
conditions and rigorous proof for MIMO SDPSs are given
in terms of the equivalent dynamic decomposition form as
well as some differential inequalities. At last, two numerical
examples are given to show the effectiveness of theoretical
results in the light of forward difference form. Research on
SDPSs with parabolic and hyperbolic type also provide a
reference for our further study on the ILC of SDPSs with
external perturbation or the drifting initial value in learning
process.
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