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ABSTRACT Internet of Things (IoT), which is the inter-networking of a wide variety of physical devices,
is widely used in our daily life. The exponential increase in the number of diverse devices has resulted
in a significant increase in the volume, variety, velocity, and veracity of data (i.e., big data). These data
present a large requirement on modern storage systems both for capacity and scale, and energy cost has
become a critical problem. For storage clusters, much research effort has been invested in alleviating this
problem by providing suitable resource capacity (i.e., on-demand providing). However, it is challenging
to match the offered resource capacity with the real system workloads, thus resulting in a violation of
service level agreement. By considering a storage cluster as a queueing system, this paper proposes a QoS-
oriented capacity provisioning mechanism. Based on workload features, the mechanism models the pattern
of current workloads as a suitable queueing model. In accordance with the model, our mechanism can well
forecast the actual resource capacity demand without violating the service level agreement, and then offer the
required resource capacity in terms of the real workloads. Experimental results demonstrate that the proposed
mechanism significantly reduces the energy consumption of a typical storage cluster, while meeting the QoS
requirements. It also significantly outperforms two classic and two state-of-the-art capacity provisioning
mechanisms.

INDEX TERMS IoT, energy efficient, energy saving, storage cluster, capacity demand estimation, capacity
provisioning, QoS, SLA.

I. INTRODUCTION
With the popularity of Information Technologies (ITs)
in all walks of life, the next generation of computing
and networking will involve a wide variety of devices.
Anagnostopoulos et al. [1] point out that with the rapid
advances in ITs such as global interconnection of hetero-
geneous information systems, tremendous structured and
unstructured data have been generated from a wide range
and multiple data sources. The global interconnection pro-
motes the popularization of Internet of Things (IoT), and
these tremendous data present a large requirement on modern
storage systems both for capacity and scale. Thus, a rapid
increase in the power consumption of modern storage sys-
tems is incurred. The energy consumption have become a
critical problem for the operation of storage systems. For
example, in 2013, an estimated up to 91 billion kilowatt-hours

of electricity for a total cost of $12 billion are consumed
by the data centers and computing clusters in US, and the
electricity consumption is projected to increase to roughly
140 billion kilowatt-hours annually by 2020 [2], [3]. To this
end, many researches have been proposed to balance the
performance and power overhead in storage clusters. Among
these researches, cutting down the power consumption of
IT devices by converting the ones which are not actively
working into a low power state is an effective method [4]. The
reason behind this is that the available capacity of a system is
normally much larger than the average demand of workloads,
in order to handle the bursty workloads and achieve a good
Quality of Service (QoS). As a result, significant energy is
consumed by many servers which work at low utilization [5].

To save the energy cost of the superfluous resources, lots of
research efforts have been invested with the idea of providing
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resource capacity on demand. Most studies try to gear system
capacity by considering one or a few isolated workload fea-
tures [6], such as arrival rate of requests or system utilization.
This is because the required capacity for real workloads nor-
mally increase as the average arrival rate of requests grows.
In addition, system utilization partly reflects whether the
offered capacity match real workloads.

However, the required capacity for real workloads is
depend on various workload features such as coefficient of
variation (CoV) for service time, service rate, and inter-arrival
time of requests [7]. Only considering a few features or con-
sidering inappropriate features makes the capacity provision
less valid for real workloads. Therefore, Gandhi et al. [6]
present a capacity provisioning policy which considers both
the arrival rate and the service time of workloads. This paper
demonstrates that various workload features should be simul-
taneously considered when offering resource capacity for real
system workloads. For example, even the average arrival rate
of requests is maintained unchanged, due to the non-uniform
inter-arrival time, the required capacity of a system for real
workloads vary a lot as time goes by.

According to the above discussion, this paper proposes
a capacity provisioning mechanism which simultaneously
considers multiple workload features rather than one or a
few isolated workload features, when offering the required
resources for real workloads. This mechanism leverages mul-
tiple queueing models to model different workload patterns.
Furthermore, based on the multiple workload features, the
mechanism selects a suitable queueing model to represent the
pattern of current workloads. Experimental results demon-
strate that the proposed mechanism significantly reduces the
energy consumption of a typical storage cluster, while meet-
ing theQoS requirement. Themain contributions of this paper
are summarized as follows:

1) The correlations betweenworkload features and system
performance are analyzed to reveal that it’s inappropri-
ate to evaluate system performance by only considering
one or a few isolated workload features. Multiple work-
load features should be considered simultaneously to
provide required resource capacity for real workloads.

2) Based on considering multiple workload features with
the help of queueing theory, multiple queueing models
are used to model different workload patterns. For the
energy efficiency of storage clusters, we present an
Energy-efficient and QoS-oriented capacity Periodical
provisioning mechanism (EQP), which can select a
suitable queueing model to represent the pattern of
current workloads. Thus, by analyzing the model under
a specific mean waiting time SLA, EQP can obtain a
good forecast for capacity demand and then provide a
suitable capacity for real workloads.

3) Extensive experiments over real-world traces are per-
formed to evaluate our mechanism against other two
classic and two state-of-the-art mechanisms.

The remainder of the paper is organized as follows. Related
work is introduced in Section II. Section III presents a

motivational observation and the theoretical support.
In Section IV, the detail implementation of EQP mechanism
is described. Section V introduces the experiment environ-
ment. The experimental results and corresponding analysis
are presented in Section VI. Finally, conclusions and the
possible future work of this paper are provided in Section VII.

II. RELATED WORK
Clusters, which consist of loosely coupled nodes (or called
servers) connected via fast networks [8], are often deployed
in data centers to achieve high throughput and reliability.
Dramatically increased energy cost for clusters have steered
energy saving by using dynamic node scaling (or called
dynamic capacity provisioning). According to the method
used in providing capacity for real workloads, related
researches can be classified into two categories. One is capac-
ity provisioning with reactive methods, and the other one is
capacity provisioning with predictive methods.

For reactive methods, some indicators are used to indicate
whether a node is required for service. According to this
indication, a reactive method gears the number of nodes
to match real workloads. Specifically, if nodes are over-
provisioned, it turns some of them to a low power state
for energy saving; if the provided nodes are insufficient, it
resumes some other nodes form low power state for ser-
vice. Chase et al. [9] use the utilization, request queue
length and request throughput for each service as the indi-
cators. They estimate resource demands based on continu-
ous observations of these indicators. If these indictors indi-
cate that the capacity of a cluster is over-provisioned, they
concentrate workloads on a subset servers of the cluster,
and reduce the energy consumption of the cluster by turn-
ing idle servers off. Meisner et al. [10] design an energy-
conservation approach—PowerNap, to build a multi-service
system which is energy efficient. The PowerNap can rapidly
transition a server between a high-performance active state
and a minimal-power nap state. In PowerNap, the indicator is
the arrival of a request. When a request arrives at a nap server,
the server is woken up by it’s Network Interface Card (NIC)
to serve this request, and after the server finishes all work on
it, it is transitioned to the nap state again. Huang et al. [11]
present a power-efficient scheme for erasure-coded storage
clusters. In the scheme, nodes are divided into active ones
and low-power ones, and data redundancies are maintained
in active nodes. To conserve energy, writes to the low-power
nodes are deferred. The buffer size of a node is used as
the indicator in this scheme. To indicate whether capacity is
enough, one lower bound and one upper bound are set for the
buffer size of nodes. When the amount of data produced by
writes are beyond the upper bound, the capacity is considered
to be insufficient. In this case, they activate all the low-
power nodes, and data writes to these nodes are synchro-
nized. However, the scheme may causes undesirable energy
waste, for the reason that when only a few data writes exceed
the upper bound, all the low-power nodes have to be acti-
vated. Entrialgo et al. [12] propose two algorithms to realize
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self-scaling in server clusters with the purpose of energy
conservation. The two algorithm can scale the server capacity
dynamically, by leveraging two utilization thresholds which
are an upper limit and a lower limit. When the utilization of
a cluster is above the upper limit, one of the algorithms turns
on an off node; while, when the utilization is lower than the
lower limit, the other algorithm offloads the most efficient
service node and then turns it off. But their algorithms have
two drawbacks. One is that when workloads sharply go up
by a factor of 2 or even more, turning on one node at a
time is not enough; and the other one is that sometimes
utilization is not a good indicator for system performance
(Section III-A).

Predictive methods predict the situation of coming work-
loads, and then determine whether the provided capacity
would match the coming workloads. If current provided
capacity would be insufficient for the coming workloads,
they provide more service nodes; while, if current capac-
ity would be over-provisioned, they decrease the number
of service nodes for energy saving. Krioukov et al. [13]
achieve an energy-saving cluster through a power-aware
cluster manager—NapSAC. In the energy-saving cluster, the
request arrival rate is predicted with the assume that the
proportions of static and dynamic requests in the workloads
are more or less constant over time. NapSAC will put some
servers to a low-power sleep state when the arrival rate of
the incoming requests would decrease. Conversely, if the
arrival rate would increase, NapSAC will awaken some sleep
servers for service. Vakilinia et al. [14] propose a platform for
workload prediction and Virtual Machine (VM) placement in
cloud computing Data Centers (DCs). Although it’s not phys-
ical servers in the platform, the platform still can be regarded
as a cluster which consists of several VMs. In the platform,
an estimation module is introduced to predict the arrival rate
of the new incoming workloads. The predicted arrival rate
is then used to indicate how to distribute the workloads of
VMs among the servers with the purpose of power consump-
tion minimization. Gandhi et al. [6] point out that it’s not
advisable to provide resource capacity for real workloads by
only considering one workload feature as many researchers
did. So AutoScale, which uses the product of request arrival
rate and service time to indicate the density of workloads, is
proposed by them to manage capacity for clusters. AutoScale
always predicts that the coming workloads may increase and
result in capacity insufficient. Therefore, if current capacity
is over-provisioned, current workloads are concentrated onto
a small number of service nodes by using an index-packing
routing scheme, and the other (unneeded) service nodes are
not turned off immediately, they sit in the idle state before a
fixed ‘‘time out’’ duration. However, to meet a response time
SLA that a 95 percentile goal of 400 ms, they define the max
capacity of a server as 60 requests per second according to
their measurement. But because the corresponding capacity
of a server suitable for a SLA vary as the workloads features
change, the provided capacity may not well match the real
workloads.

There are also some other ways to save cluster energy
cost, such as energy-aware workload scheduling [15], [16]
and thermal management [17], [18]. But these ways are not
concerned in this paper, so we do not discuss them here.

III. MOTIVATION AND THEORETICAL SUPPORT
A. MOTIVATIONAL OBSERVATION OF SYSTEM BEHAVIOUR
As described above, many researches provide resource capac-
ity with a few workload features. However, the required
capacity for real workloads depend on various workload
features, and some features can not well reflect whether the
offered capacity match real workloads. So the reality is that
their methods make the capacity provision less valid for
real workloads. We give out an observation in our study to
demonstrate this reality, and then provide heuristic analyses
on this observation.

In one of our simulation experiments, we simulate a typical
storage cluster, and the service node in the cluster can only
handle one request at a time. A network file system trace—
deasna2, whose request arrival rate is on average 475 per
second (Section V-B), is replayed on this cluster. In the exper-
iment, the mean service time of requests is about 2 millisec-
onds. Thus, if the inter-arrival time of requests is uniform, a
service node is capable of handling 1/0.002 = 500 requests
per second. So, if only considering the request arrival rate,
providing one service node in the cluster is enough. However,
to avoid the negative effects incurred by the fluctuation of
request arrival rate and service time, two service nodes are
provided in practice.

To analyze the system behaviour of the cluster, we define
resident requests as the received requests who haven’t been
finished in the cluster. Therefor, the more the resident
requests are, the poorer the QoS of the cluster is. So, in order
to observe whether workloads is out of the capacity of the two
service nodes, the number of resident requests is recorded as
time goes by.

Figure 1 shows the number of resident requests in a
time length of one hour. As shown, at the period from the
1300-th second to the 1500-th second, the number rises
sharply. In order to explore why the spikes are generated

FIGURE 1. Number of resident requests.
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in Figure 1, we divide a time period of one hour into equal
durations with the same time length of 300 seconds. So the
period from the 1300-th second to the 1500-th second is the
fifth duration. First, to verify whether the spikes are caused
by the fluctuation of request arrival rate, we give out the
mean arrival rate of requests and the mean number of resident
requests (calculated at the end of every duration) for each
duration in Figure 2. As shown, the mean arrival rate does not
fluctuate sharply, but the mean number of resident requests
reaches up to 3429 at the fifth duration. Therefore, the spikes
can not be considered as the result of the fluctuation of request
arrival rate.

FIGURE 2. Resident VS arrival rate.

FIGURE 3. Mean service time.

Then, to verify whether the spikes are caused by the fluc-
tuation of service time, we give out the mean service time
of requests for each duration in Figure 3. As shown, the
mean service time of requests also does not fluctuate sharply.
Moreover, with a mean service time of 2 milliseconds, a node
is capable of handling 1/0.002 = 500 requests per second if
the inter-arrival time is uniform. But as shown in Figure 2,
although the mean arrival rate of requests is lower than 500
in most durations, there are many spikes which mean that the
available capacity is not enough.

Further, we tested the the inter-arrival time of requests
in the experiment, and find that the inter-arrival time in the
fifth duration become very short. It is precisely because of

the short inter-arrival time, the available resource capacity
cannot catch up with the arrival requests, and this is the
main reason causes the spikes in Figure 1. Therefore, various
workload features should be simultaneously considered, so
as to provide a suitable resource capacity for workloads.
In addition, some isolated workload features such as arrival
rate and utilization can not always well reflect the system
performance.

B. QUEUING THEORY
A traditional storage cluster can be considered as a queuing
system which queues requests according to their arrival time
and serves them in a First Come First Serve (FCFS) way. For
each node in the storage cluster, arrival requests are added to
a First In First Out (FIFO) queue. Therefore, the system can
be considered as multiple single-server queues. As Figure 4
shows, requests are dispatched to each single server, and this
is often done by a manager node. In general, a manager node
dispatches requests to service nodes in an uniform way. The
uniform way means that if the arrival rate of requests to the
system is λ, the arrival rate for each service node is λ/n in
which n represents the total number of service nodes.

FIGURE 4. Multiple single-server queues.

Queuing theory provides us with the theoretical support
for understanding the behaviors of queueing systems through
workload features. We do not discuss the derivations and
proofs of the conclusions related to queueing theory here, and
the detail of them can be found in [19]. For each service node,
it can be modeled as a single-server queue. According to the
features of served workloads, there are mainly four queueing
models which can be used to model a single-server queue.
The queueing models can be described and classified with
Kendall’s notation [20] which uses three factors written as
the form of A/S/c to represent a queueing model. In that
form, A refers to the distribution of inter-arrival time, S the
distribution of service time and c the number of service nodes.
Two common distributions are referred in this paper:
M: Poisson process (or called random) arrival process. /

Exponential service time.
G: General (means arbitrary) distribution.
Generally, request arrivals are seen as a Poisson process

and request service time is regarded as an exponential distri-
bution [19], namely, M/M/1 queueing model. However, to
be more accurate, general distribution is used when Poisson
process cannot well match the real request arrivals. Conse-
quently, four queueing models—M/M/1, M/G/1, G/M/1
and G/G/1 are involved in this paper. For a storage cluster,
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the QoS of it can be regarded as the mean time that requests
spend in the cluster (Tr ). Tr contains two elements, one
is mean waiting time (Tw) and the other is mean service
time (Ts). Ts can be obtained by continuous observations, and
for a data request it is a fixed value (data size/read speed).
Thus, the optimal metric for the QoS of a cluster is Tw.
With notations shown in Table 1, for each model, we summa-
rize formulas for calculating Tw in Table 2. These formulas
are obtained (or derived) from the studies of Stallings [7],
Bhat [19], and Kingman [21].

TABLE 1. Notations for queueing models.

TABLE 2. Formulas for calculating mean waiting time.

IV. IMPLEMENTATION OF EQP
In this section, we first give out the overview of EQP, and
point out the key issues in it. Then, the solutions for these
issues are described respectively.

A. OVERVIEW OF EQP
EQP is aware of the status of each service node in a storage
cluster. As shown in Figure 5, there are four steps in the

FIGURE 5. Flow chart of EQP.

implementation flow chart of EQP. In accordance with the
orders labeled in the figure, the implementation of EQP is as
follows:

¬ For each service node, the samples which are some
observed values of past workloads (requests) are used
to estimate the required features (parameters) for the
coming workloads of it.

 According to the estimated features, a queueing model
is selected to represent the pattern of the coming work-
loads in a service node.

® By analyzing the selected queueing model for a service
node, the theoretical value of the resource capacity
which match the coming workloads in this node is
calculated.

¯ On the basis of all the theoretical values for all service
nodes, EQP gears the resource capacity of the cluster
to a proper value.

For these steps, four key issues must be solved. The first
one is how to take samples from workloads and estimate
parameters from these samples. The second one is how to
choose the proper queueing model for the coming workloads.
The third one is how to estimate the required capacity. The
last one is how to relieve the degrading effects on the system
performance caused by bursty workloads. Next, with the QoS
requirement of maintaining the mean waiting time of requests
no larger than an expected value E(Tw), the solutions are
detailed in the following subsections.

B. SAMPLING AND PARAMETER ESTIMATION
We divide time into periods with equal length, and capacity
adjustment only can be performed at the end of each period.
That’s why our mechanism is so called periodical provision-
ing. For energy saving, the time length of a period must be
long enough to avoid frequently resume a low-power node.
The reason is that the energy spend on resuming a low-power
node is a big budget. If a low-power node is resumed, only
when the energy it spends on the low-power state (contains
the energy spend on resuming) is lower than that it spends
on the active state with the same duration, the energy can be
saved. Namely, Pl · tp + Pr ·1T < Pa(tp +1T ) where Pa is
the power of a node when it is active, tp is the time length of
a period,1T is the time needed to resume a low-power node,
Pl is the power of a node when it is in the low-power state
and Pr is the power of a node when it is being resumed. For
specified hardware, the parameters are fixed values except tp,
therefore we can figure out the least value of tp. Consulting
the system parameters measured by Zhang et al. [22] and
the researches [23], [24], 30 seconds are set as the length
of a period. At the end of each period, the corresponding
workload features such as arrival rate, arrival time and service
time are taken as a sample. With some of the latest samples,
the required parameters are estimated, thus the selection of
samples is crucial to make a good estimation.

Considering changes in user request patterns [25], we use
a Linear Growth and Return to One (LGRO) way to select
samples. Initially, the sample of last one period is used to
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estimate the parameters of coming requests. Next, every time
if the gap between real Tw and E(Tw) is in a tolerable range
(that is within [(1− δ)Tw, (1+ δ)Tw] where δ is an adjustable
factor), the number of samples used for estimation grows
linearly (adds one); otherwise, the number returns to one. In
addition, the weight of a sample is set to i∑n

k=1 k
where i is

the order of the sample and n is the total number of samples
used for estimation. The intuition behind this is that when
workload pattern changed, the past samples which represent
the former pattern should be discarded, and newer samples
should have a higher weight.

To illustrate LGRO, we use an example to show the sample
selection for estimating λ. In this example, for simplicity,
we assume that the distribution of inter-arrival time is even.
As shown in Figure 6, the horizontal axes labeled ‘‘Period’’
shows the start of each period with a numerical tick, and
the request arrival rate for each period is calculated at the
end of this period (that is the beginning of next period). The
upper graph shows the samples selected for estimation at the
beginning of each period. For example, the samples used for
estimating the λ for the 3-th period is p1 and p2. Here, the
label p1 represents the sample taken from the 1-th period, and
it’s similar for other labels. Also, the labels can represent the
corresponding period. The lower graph shows the real arrival
rate for each period.

FIGURE 6. Illustration of LGRO.

Next, we explain the detail of this illustration. As time goes
by:

1) At the beginning, the arrival rate of requests is
432 (per second) and this is used as the sample for
period 2 (abbreviate p2), so the estimated λ for p2 is
432. The estimated λ for p2 is close to the real λ for p2.
So, with this estimated value, resource capacity can be
well provided for p2 with the even distribution of inter-
arrival time. As a result, the real Tw for p2 will close to
the expected value E(Tw).

2) Now, the gap between the real Tw for p2 and E(Tw) is
in the tolerable range. Therefore, when it comes to the
3-th period, the number of samples used for estimation
adds one. Thus, the samples p1 and p2 are used for the
3-th period, and the estimated λ for p3 is 1

1+2 · 432 +
2

1+2 · 465 = 454.

3) For the same reason, the number of samples used for
the 4-th period adds one, so the samples p1, p2 and p3
are used for p4. As a consequence, the estimated λ for
p4 is 1

1+2+3 · 432+
2

1+2+3 · 465+
3

1+2+3 · 422 = 438.
4) However, the real arrival rate of p4 is 311, so with

the capacity suitable for the arrival rate of 438 per
second, the real Tw will much lower than the E(Tw).
As a consequence of this, the number of samples used
for estimation return to one. So, when it comes to the
5-th period, only the sample p4 is used for p5.

5) The arrival rates of the subsequent periods are close,
accordingly, the number of samples used for estimation
grow linearly (adds one every time).

Design an excellent parameter estimation method is a chal-
lenge. However, compared with the representative Moving
Window Average (MWA) method [6], our method is more
sensitive to the fluctuation of workloads. In addition, exper-
imental results reveal that our method can achieve a good
performance.

C. SELECTION OF QUEUEING MODEL
One way to select the best queueing model is to pick
out the model whose mean prediction error is the lowest.
However, due to the bursty nature of workloads, one queueing
model can not well represent all the cases. Thus, performance
degradation will be introduced now and then. What’s more,
unpredictable bursts are spread over system workloads, and
the performance degradation is a big drag for DCs [26].
Therefore, the best way is to continually select a queueing
model to represent current workloads, with the purpose of
minimizing the prediction deviation.

Considering a storage cluster as multiple single-server
queues, first we get the current workload features, then
according to these features we select the best model. Specif-
ically, in the process of sampling in each service node, we
track the service time of each request. Then, by averaging the
values, we get the mean value. Finally, the CoV of service
time can be calculated. For G/M/1, due to the unknown
distribution function of inter-arrival time, Tw can not be fig-
ured out. Therefore, we use the other three queueing models
to estimate the performance of a service node. Referring to
the online chapters–Chapter 20 of literature [7], the CoV of
service time (cs) is used to decide which model is adopted:
• if cs is much less than 1, the arrivals of requests tend to
be evenly spaced, and G/G/1 is adopted;

• if cs is close to 1, the inter-arrival time tend to be
exponential, and M/M/1 is adopted;

• if cs is greater than 1, the arrivals of requests tend to
congest, and M/G/1 is adopted.

D. CAPACITY ESTIMATION
In a storage cluster, now we can estimate the features of
coming workloads. The main idea is to estimate the minimum
number of available nodes, which can fulfill the SLA. In this
paper, the SLA of a system is to guarantee the mean waiting
time of requests no larger than a expected value—E(Tw).
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To find out how many available nodes can fulfill the QoS
requirement (represented as a fixed mean waiting time SLA),
we first denote the required number of available nodes by N .
Thus, for each available node, the arrival rate of it is λ/N .
Replacing Tw with E(Tw) and λ with λ/N , then substituting
the other parameters of coming workloads into the formulas
in Table 2, N can be calculated out. Therefore, N is the
number of available nodes with which the mean waiting time
of requests is E(Tw). If N is less than the number of current
available nodes, the nodes which has the heaviest workloads
are selected to be transitioned to the low-power standby state,
and the number of available node in current new period is set
to the rounded up integer value of N . This is because in this
way, the remainder available nodes are more capable for the
coming workloads, thus the cluster is more capable to tolerate
workload fluctuations.

However ifN is larger than the number of current available
nodes, it means that the workloads increase. Thus the requests
arrived in the prior period but not finished are left to current
period. Therefore, to approximate the real situation, an addi-
tional value is added to the estimated arrival rate. The addi-
tional value (λa) can be calculated by dividing the number of
requests beyond the capacity of the cluster by the time length
of the new period. The former part consists two portions,
one is the requests overloaded in the prior period, and the
other portion is the requests beyond capacity caused by the
time delay of resuming a standby node in the current period.
Therefore, the total number of requests beyond capacity is
n(λ/n − λ/N ) × (tp + tr ) where tp is the time length of a
period, tr is the time needed to resume a standby node, and n
is the number of current available nodes. Thus, dividing the
total number by tp we get λa = n(λ/n− λ/N )× (1+ tr/tp).
Now, the approximate arrival rate (A(λ)) for current period is
λ+λa. Similar to the calculation ofN , the number of available
nodes (N

′

) with which the mean waiting time of requests is
E(Tw) can be calculate by replacing Tw withE(Tw) and λwith
A(λ)/N

′

, then substituting the other parameters of coming
workloads into the formulas in Table 2. Finally, the number
of available nodes is geared to the rounded up integer value
of N

′

.

E. RELIEVE THE DEGRADING EFFECTS OF
BURSTY WORKLOADS
Due to the bursty nature of workloads [27], a problem must
be considered is how to relieve the negative effects of bursty
workloads on system performance. As stated above, EQP
only gears capacity at the end of each time period. When
workloads burst in a time period, capacity shortage will last to
the next period. In view of achieving a good QoS, EQP allows
extra system capacity adjustment to fit the bursty workloads
instantly when the QoS turns worse (in our experiments,
when the mean waiting time exceed the configured SLA).
In addition, when workloads decrease, to avoid a serious
capacity shortage caused by workload rebounding, each time,
at most half of current available nodes can be transitioned into
the low-power state.

V. EXPERIMENT ENVIRONMENT
A. EVALUATION MODEL
Our mechanism is evaluated in a typical energy-saving stor-
age cluster which is similar to the ones presented in numerous
research studies [9]–[13]. The system model of this cluster is
shown in Figre 7, where all homogeneous nodes are under
the control of a manager. Requests are first received by the
manager and then dispatched to theworking nodewhich owns
the most remainder capacity. Moreover, the manager keep
tracking the performance of all available nodes, and at the
end of each period it gears the number of available nodes
to maintain the provided resource capacity match the real
workloads.

FIGURE 7. System model.

To save energy, some nodes are switched into a low-power
state, and other ones keep working for service. The state tran-
sitions of cluster nodes are shown in Figure 8. When a work-
ing node is serving a request, it is in the active state; when a
working node does not serve any request, it is in the idle state;
the nodes which have been suspended into the standby state
are the low-power nodes. In our experiments, the power of the
three states are set to 60W, 40.2W and 4W respectively which
are the values measured by Zhang et al. [22]. Also, according
to their research, the energy cost of suspending a node and
resuming a node are set to 4J and 519J, and the time cost of
these two transitions are 1 second and 10 seconds. Besides,
the cost for transitions between active and idle is ignorable.

FIGURE 8. State transitions.

Remarkable, an available node is defined as the nodewhich
can receive and serve new requests. When the cluster decides
to suspend a working node, the node will no more receive any
new request. Before being suspended, the node has to wait
until all the requests in it are finished. In this paper, a node
in this waiting situation is called a leaving node. Although a
leaving node is working, it is not an available node. So the
resource capacity of the cluster is exactly the number of
available nodes, and the goal of our mechanism is to pro-
vide suitable number of available nodes for real workloads.
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When the cluster needs to add available nodes, the best choice
is the leaving nodes which have the lightest workloads. This
is because, these leaving nodes haven’t been suspended into
the standby state, and no extra overhead is needed to take
them back for work. In the absence of definition of available
node, the words ‘‘working node’’ appears in previous sections
which mean the node can receive new requests should pre-
cisely be written as ‘‘available node’’.

B. EXPERIMENT SETUP
We evaluate EQP against five capacity provisioning mecha-
nisms by simulation experiments which simulate the energy-
saving storage cluster described above. Two metrics are used
to compare the performance of all the mechanisms. One is
the energy consumption of cluster and the other is the mean
waiting time of requests. Specifically, a Reactive (Re) and a
Predictive (Pr) mechanisms which are described in the study
of Gandhi et al. [6] are classic mechanisms, EI [12] and
AutoScale [6] (AS) are state-of-the-art mechanisms:
Re: The Reactive capacity provisioning mechanism (Re)

reacts to the current request arrival rate, and attempt to
keep exactly λ/λc servers available at time t , where
λc is the max arrival rate of requests a server can
handle under a specify SLA of mean waiting time.
However, as we analyzed above, λc is not constant,
thus it’s hard to determine the most suitable capacity.
In our implementation of Reactive, λc is set to the
mean arrival rate a server can handle under the SLA.
Every time, an arrival request is dispatched to the node
whose resident requests are the fewest.

Pr: There are two representative predictive policies for
Predictive capacity provisioning mechanism (Pr): one
is Moving Window Average (MWA) and the other is
Linear Regression (LR). Here, we use MWA because
it has a better performance than LR [6]. The way Pr
providing resource capacity is similar to Re, except
that Pr uses a predicted value of arrival rate rather
than current real λ. In our experiments, arrival rate
is calculated each second in every period, and the
window is set to 30 seconds which is the length of a
period. WMA firstly predicts the request arrival rate at
the later 40 second (10 seconds are needed to resume
a node). Then it determines the number of available
nodes needed to meet the SLA at the end of each
period. The predicted value is the mean of former
values, such as the predicted arrival rate at 31s is the
mean value of former 30s, and the predicted arrival rate
at 32s is the mean value of former 31s (including the
predicted value for 31s), and so on.

EI: The Energy-efficient capacity Immediately provision-
ingmechanism (EI) gears resource capacity leveraging
two utilization thresholds—Umax and Umin. When the
utilization of cluster is under Umin, EI decreases an
available node immediately; and when the utilization
exceeds Umax , EI adds an available node immediately.
Umax and Umin are set to 0.95 and 0.9 respectively

according to the study [12]. Because some nodes may
in the process of resuming and cannot serve immedi-
ately, the estimation of wether the provided capacity is
suitable is made after these nodes finished that process.
Every time, an arrival request is dispatched to the node
whose utilization is the lowest.

AS: AutoScale capacity provisioning mechanism (AS)
uses λc×Ts (denoted byCref ) to represent the capacity
of a node, rather than λc. To realize AS, we record
both the service time and arrival rate for each avail-
able node when the SLA is satiated, and then get the
mean values(namely λc and Ts respectively). When
the provided capacity is not suitable for current real
workloads, AS tries to scale the number of available
nodes to

⌈
Lsys/Cref

⌉
where Lsys represents the current

value of λ × Ts. An available node is not suspended
immediately in AS, and when it is idle, it still keeps
available for 5 seconds which are half of the time
needed to resume a node. Every time, an arrival request
is dispatched to the node whose workloads are the
lightest using an index-packing idea [6].

EQP: The Energy-efficient and QoS-oriented capacity Peri-
odical provisioning mechanism (EQP) is the one we
proposed, and it is described in Section IV. Compared
with EI, it finds out a suitable capacity for real work-
loads by analyzing a corresponding queueing model.
EQP directly gears the cluster to that capacity, rather
than increase or decrease one available node every
time as EI does. Every time, the manager dispatches
an arrival request to the available node which has the
most capacity remained, that is the one which has the
minimum value of Tw.

The workloads for the cluster is produced from three
real-world network file system traces: lair62b, home02 and
deasna2. The details of these traces can be obtained from
the web page: http://www.eecs.harvard.edu/sos/traces.html.
The main characteristics of these traces are listed in Table 3.
The weekday fragments of traces are arbitrarily selected for
our experiments (only use daytime records) for the sake of
generality, and the experiment results are the mean values for
every test.

TABLE 3. Main characteristics of traces.

The value of the δ can influence the reactivity of mecha-
nisms. However, to simplify the experiment results, the value
of δ (Section IV-B) is set to a fixed value—0.2. The QoS
requirement for the cluster is set as an mean waiting time
SLA, which requires the mean waiting time of requests is
not larger than 0.03 seconds. Because of the bursty nature of
workloads and the time delay introduced by resuming nodes,
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inmost cases the actual result of meanwaiting timewill larger
than the expected value. Hence, to fulfill the SLA, the value
of E(Tw) is set to 0.02 seconds.

For each trace, we determine the number of nodes con-
tained in the cluster. First, we test the mean waiting time for
every trace with the number of available node start from 1.
If the mean waiting time is lower than 0.03 seconds, the SLA
ismet. Then according to our test results, the average numbers
of available nodes required to fulfill the SLA for lair62b,
home02 and deasna2 are 7, 9 and 15 respectively. Finally,
based on the truth pointed out by Entrialgo et al. [12] that the
utilization of servers in data centers is typically under 50%,
the cluster contains 14, 18 and 30 nodes respectively which
are double of the required quantity. In addition, at the begin-
ning, half nodes are available in the cluster. All the settings
mentioned above for each trace are summarized in Table 4
where N represents the total number of nodes in the cluster
and Ni represents the initial number of available nodes.

VI. EXPERIMENTAL RESULTS
In this section, we first present the performance of the cluster
for each period (period performance), that is themeanwaiting
time for requests in each period and the energy consumption

TABLE 4. System settings.

in each period. Both of them are calculated in the end of each
period. Then, we give out the results of overall performance.
The results contains two parts, one is the total SLA violation
ratio, and the other is the total energy consumption. Finally,
we present the results of capacity unsuitable degree for each
mechanism, to show how suitable the provided capacity is
for real workloads. All the above experiment results are pro-
duced by several experiments, which test arbitrarily selected
segments from the traces (Section V-B).

A. PERIOD PERFORMANCE
At the end of each period, the mean waiting time for requests
and the energy consumption of the cluster in current period
are calculated. The results are shown respectively in Figure 9
and Figure 10. In each figure, the subfigures from left to right
correspond to the results for lair62b, home02 and deasna2
respectively.

FIGURE 9. Mean waiting time for each period. (a) lair62b. (b) home02. (c) deasna2.

FIGURE 10. Energy consumption for each period. (a) lair62b. (b) home02. (c) deasna2.
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As shown, the mean waiting time for Re, Pr, EI and AS
always cannot fulfill the SLA (0.03 seconds). That’s because
the workload features they considered are not sufficient
enough as we explained before. Among these four mecha-
nisms, both Re and Pr only focuss on the changes of arrival
rate in workloads, and EI just focusses on the changes of the
utilization. However, as revealed in Section III-A, arrival rate
or utilization sometimes can not well reflect the QoS of a
cluster. To provide a good QoS, a cluster sometimes has to
work with a large resource capacity, under a low mean arrival
rate or a low utilization. Although both considering the arrival
rate and service time, the parameter Cref used in AS is still
not a proper one to represent the capacity of a service node.
As a result, the QoS of AS is also far from satisfactory, and
is often close to Re. EQP, by contrast, can make a good esti-
mation on resource capacity demond through the workloads
features involved in queueing theory. Thus, it can provide
a suitable capacity for real workloads on the fly, no matter
how workloads change. Consequently, EQP can maintain the
mean waiting time of requests under the SLA most of the
times. Moreover, it can observed that the mean waiting time
for each period is close to the SLA. This validates that EQP
indeed can always provide a suitable capacity to fulfill the
SLA, for the reason that the mean waiting time will be far
below the SLA if capacity is over-provisioned andwill violate
the SLA if the provided capacity is insufficient.

Pr predicts the future arrival rate as the mean of historical
values. In general, taking mean covers the burst nature of
workloads. Thus, the capacity provided by Pr is relatively sta-
ble, and the energy consumption of the cluster with Pr change
slightly during different periods. The energy consumption for
EI also have the same situation as Pr, for EI maintains the
utilization of the cluster within a fixed range and not care
of the workload features. While, when it comes to the other
three mechanisms, the energy consumption vary a lot during
different periods. This reality reflects that workloads are
fluctuant. Besides, as explained in the end of Section III-A,
although sometimes the utilization or arrival rate is low, the
required capacity is large to fulfill the SLA. Thus, as a result
of providing a suitable resource capacity for real workloads,
EQP consumes more energy than other mechanisms in many
periods.

B. OVERALL PERFORMANCE
To show the QoS of the cluster with different mechanisms
clearly, we first define a metric—SLA violation ratio. The
SLA violation ratio is 0 if the mean waiting time is under the
SLA, and the SLA violation ratio equivalents to the ratio of
the exceeded value if the mean waiting time violate the SLA.
That is, the value of SLA violation ratio is 0 when the SLA is
not not violated, while, if the mean waiting time violate the
SLA, the value is

(Tw − S(Tw))/S(Tw)

where Tw is the actual mean waiting time of requests and
S(Tw) is the maximum mean waiting time set by the SLA

(0.03 seconds in our experiments). For example, if the real
mean waiting time is 0.09 seconds which exceed the SLA by
0.06 seconds, thus the SLA violation ratio is 0.06/0.03 equals
to 2. Obviously, the lower the SLA violation ratio of one
mechanism achieves, the better the QoS of the mechanism is.
The sum of SLA violation ratios for all periods in one hour
is calculated to show the overall performance of the cluster.
Accordingly, the total energy consumption of these periods
are also calculated, and is normalized to the one-hour energy
consumption of the cluster with all nodes serving (available).

As Figure 11 shows, EI has the highest sum of SLA viola-
tion ratios for each traces. This demonstrates that the utiliza-
tion is not a good indicator for QoS, though EI maintains the
utilization of the cluster within an appropriate range, it can not
obtain a good QoS. The values for Pr and Re are lower than
EI, and this reveals that providing capacity by considering the
arrival rate can obtain a better performance than considering
the utilization. Re and AS have similar performance, and the
QoS of them outperform that of Pr. The reason behind this
is that Re and AS are more aware of workload fluctuations,
they immediately scale up the capacity when they detect that
the workloads become heavier. EQP provides the best QoS
among all mechanisms, and for lair62b it does not violate the
SLA at all.

FIGURE 11. Sum of SLA violation ratios.

The total energy consumption for each mechanism is
shown in Figure 12. As explained in above subsection,
the capacity provided by Pr and EI is relatively stable,

FIGURE 12. Total energy consumption.
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accordingly the energy consumption of Pr and EI is main-
tained at a lower level. In contrast, the energy consump-
tion for Re and AS is higher, for the reason that they
scale up the system capacity when workloads just temporary
increase thus more capacity is supplied. In the viewpoint
of energy saving, Pr and EI are good choices, however, the
QoS of them is poor. Compared with other mechanisms,
although overall EQP consumes more energy, it provides
a suitable resource capacity which can just fulfill the SLA
almost all the time as stated in above subsection. The reason
behind the low energy consumption of other mechanisms
is that they often do not provide enough capacity for real
workloads.

C. CAPACITY UNSUITABLE DEGREE
In this subsection, we separately describe the capacity unsuit-
able degree which indicates how suitable the provided capac-
ity is for real workloads. The unsuitable degree is expressed
as the sum of

|Tw − S(Tw)| /S(Tw)

for all periods. Obviously, the more suitable the provided
capacity is, the smaller the value of the unsuitable degree is.
Compared with the SLA violation ratio, it also care about
whether the capacity is over-provisioned by calculating the
absolute value. The most suitable case is that the actual mean
waiting time equal to the value set by the SLA. In this case,
|Tw − S(Tw)| /S(Tw) equal 0. The unsuitable degrees for each
mechanism are shown in Figure 13.

FIGURE 13. Capacity unsuitable degree.

As shown, the unsuitable degree of EQP is always very
low for each trace, because the mean waiting time of EQP
is always close to the SLA as Figure 9 shows. Although for
home02, the unsuitable degree of EQP is a little bigger than
Re and AS, Re and AS violate the SLA as Figure 9b shows.
Besides, the capacity provisioned by EQP is always a suitable
value under the SLA. Therefore, the experiment results of the
unsuitable degrees for each mechanism also attest that the
overall high energy cost of EQP is just the result of that EQP
provides a suitable capacity for real workloads, whereas the
low energy cost of other mechanisms is caused by insufficient
capacity provision.

VII. CONCLUSION
The global interconnection of heterogeneous information
systems promotes the popularization of IoT, and present
a large requirement on modern storage systems both for
capacity and scale. To alleviate the huge energy consumption
of modern storage clusters, extensive researches cut the
power of the components which are not actively working in
clusters. However, the issue of matching the offered resource
capacity with the real system workloads is a big challenge.
Many researchers gear resource capacity base on some isolate
workload features, such as the arrival rate of requests or the
utilization of cluster. Although from the viewpoint of energy
saving, they have a good performance, most of the time they
do not provide a suitable capacity for real workloads. Thus,
we propose an energy-efficient and QoS-oriented capacity
provisioning mechanism, EQP, which uses a suitable queue-
ing model to represent current workload pattern. Then, lever-
aging the model, EQP can obtain a good forecast for resource
capacity demand under a SLA. Finally, with this forecast,
EQP can provide a suitable capacity for real workloads.
Experiment results show that EQP significantly outperforms
the other mechanisms. Specifically, EQP on average saves
more than 28.6% energy compared with the case that all
nodes serving. Meanwhile, it almost does not violate and just
fulfill the SLA which is set as the QoS requirement.

We present a rough way in Section IV-E to relieve the
negative effects taken by bursty workloads. For future work,
we plan to propose a more intelligent approach to tackle
the negative effects, thus strictly fulfilling QoS requirements
even the real workloads are complicated by numerous irreg-
ular fluctuations.
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