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ABSTRACT In this paper, we propose an efficient algorithm, termed as progressive sparse spatial consensus,
for mismatch removal from a set of putative feature correspondences involving large number of outliers.
Our goal is to estimate the underlying spatial consensus between the feature correspondences and then
remove mismatches accordingly. This is formulated as a maximum likelihood estimation problem, and
solved by an iterative expectation-maximization algorithm. To handle large number of outliers, we introduce
a progressive framework, which uses matching results on a small putative set with high inlier ratio to
guide the matching on a large putative set. The spatial consensus is modeled by a non-parametric thin-
plate spline kernel; this enables our method to handle image pairs with both rigid and non-rigid motions.
Moreover, we also introduce a sparse approximation to accelerate the optimization, which can largely
reduce the computational complexity without degenerating the accuracy. The quantitative results on various
experimental data demonstrate that our method can achieve better matching accuracy and can generate more
good matches compared to several state-of-the-art methods.

INDEX TERMS Feature matching, spatial consensus, sparse approximation, progressive, outlier.

I. INTRODUCTION
This paper focuses on the establishment of accurate feature
correspondences between two images of the same scene,
which is a fundamental problem in computer vision, image
analysis and pattern recognition [1]–[3]. The features are
often salient points with associated descriptors extracted
by some detectors, such as Scale Invariant Feature Trans-
form (SIFT) [4] or Shape Context [5], and the goal is to
find point correspondences according to their positions and
descriptors.

The matching problem is an ill-posed problem and typ-
ically regularized by first imposing a similarity constraint
requiring that two points can be matched if they have sim-
ilar feature descriptors, and then imposing a geometric con-
straint requiring that the correspondences should satisfy some
global geometrical relationship [6]. In general, the simi-
larity constraint is able to generate a putative correspon-
dence set containing major correct matches, or inliers, which
largely reduces the scale of possible matches. However, due

to viewpoint changes, repeated patterns, as well as occlu-
sions, the correspondences established by only local feature
descriptors become unreliable. Thus the geometric constraint
is further adopted to remove the false matches, or outliers. For
example, fit a spatial transformation between two feature sets
and discard those matches which do not obey the transforma-
tion. In this paper, we focus on mismatch removal from a set
of putative matches.

To efficiently remove mismatches, one of the most
widely used methods is the RANdom SAmple Consen-
sus (RANSAC) [7]. It tries to get a minimum outlier-free
subset to estimate a given parametric model by resampling.
RANSAC needs to know the image transformation model in
advance, which cannot work well if the spatial transforma-
tion is non-parametric, or non-rigid. To address this issue,
recently some new non-parametric model-based methods
are proposed, including Identifying Correspondence Func-
tion (ICF) [8], Graph Shift (GS) [9], Vector Field Consen-
sus (VFC) [6], Coherent Spatial Relations (CSR) [10] and
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Locally Linear Transforming (LLT) [11]. These methods
usually interpolate the underlying image transformation with
kernel functions using unsupervised learning, and are able to
handle complex non-rigid deformation.

Although various robust estimators have been proposed
to distinguish inliers from outliers, it is still a challenging
task to customize a practical algorithm when dealing with
real-world matching problems. On the one hand, the exist-
ing matching methods typically require that the putative set
should not contain large proportion of outliers. To achieve
this goal, Lowe [4] suggested using a distance ratio thresh-
old to filter out mismatches. It calculates the ratio of the
Euclidean distance of the closest neighbor and the second-
closest neighbor, and preserves only thosematcheswith ratios
below a predefined threshold. Based on this strategy, Pele
and Michael [12] replaced the Euclidean distance with earth
movers’ distance, which further enhanced the matching accu-
racy in the putative set. However, by using only descriptor
similarity to suppressmismatches, these strategies at the same
time inevitably discard a lot of correct matches [13], leading
to the performance degradation in the subsequent applications
such as image retrieval [14], visual homing [15], object recog-
nition [16], etc. Therefore, it is desirable to ensure that the
putative set covers the whole true matches; this requires the
matching algorithm to be robust even in case of extremely
high proportion of outliers. On the other hand, the existing
matching methods often suffer from low efficiency due to
their large computational complexities, which is problematic
in handing large scale problems. For example, for meth-
ods based on non-parametric models, the number of model
parameters increases with respect to the scale of the putative
set; the total time complexity can then achieveO(N 3) or even
larger. Simultaneously, if the outlier percentage reaches up
to 80% in the putative set, RANSAC will need more than 20
million times of sampling to generate a satisfying result [8].
Therefore, it is desirable to seek a fast implementation to
reduce the computational complexity, especially for real-time
tasks.

In view of the above problems, we propose an effi-
cient algorithm for robust feature matching even in case of
extremely large number of outliers. To this end, we first
introduce a mixture model composed of a Gaussian distri-
bution and a uniform distribution, respectively indicating the
inliers and outliers, to estimate the underlying spatial rela-
tionship (or spatial consensus) between feature points. The
mismatch removal problem then can be formulated as a maxi-
mum likelihood estimation problem and solved by an iterative
Expectation-Maximization (EM) algorithm. To enable our
method to address extremely large number of outliers, we also
introduce a progressive matching strategy. The key idea is
to use the matching results on a small putative set with high
inlier ratio to guide the matching on a larger putative set with
lower inlier ratio but covering more true matches. We model
the spatial transformation in a reproducing kernel Hilbert
space (RKHS) using the thin-plate spline (TPS) kernel [17],
which is efficient to handle both rigid and non-rigid motions.

In addition, to reduce the computational complexity of our
proposedmethod, we introduce a sparse approximation based
on the idea of the subset of regressors method [18]. This
can significantly accelerate our method without sacrifice the
matching accuracy. Experimental results on various image
data demonstrate the superior performance of our method
compared to several other state-of-the-art matching methods.

Our contribution in this paper includes the following two
aspects. Firstly, we introduce a progressive matching strat-
egy combined with a maximum likelihood spatial consensus
estimation, which can not only find more feature correspon-
dences, but also can successfully distinguish the inliers even
in case of extremely large outlier ratio. Secondly, a sparse
approximation is applied to the estimation of spatial con-
sensus, which greatly reduces the computational complexity
and hence enables our method to be applicable to large scale
matching problems.

The rest of the paper is organized as follows. Section II
describes some background material and related work.
In Section III, we present the proposed matching method,
including the maximum likelihood formulation, sparse
approximation solution, and the progressive matching strat-
egy. Section IV illustrates the experimental performance of
our method with comparison to other state-of-the-art methods
on real image data, followed by the concluding remarks in
Section V.

II. RELATED WORK
Image registration has been widely used in many fields
including computer vision [19], [20], pattern recogni-
tion [21]–[23], medical image analysis [24], [25], and remote
sensing [26], [27]. Exhaustive reviews on the image regis-
tration methods can be found in the literature [28], [29]. The
registrationmethods can be broadly classified into area-based
and feature-based methods. The area-based methods usu-
ally contain three types of methods, such as correlation-like
methods [30], Fourier methods [31] and mutual information
methods [32]. These methods deal with the original image
intensity values directly and hence are preferable in case of
few prominent details. However, they typically suffer from
illumination changes, image distortions, and heavy compu-
tational complexities. Alternatively, feature-based methods
are more robust and potentially faster, if implemented in the
right way. They work by first extracting salient features from
the image pair and then establishing correspondences and
estimating spatial transformation between them, which are
further used to align the image pair together. In this proce-
dure, the image registration reduces to a feature matching
problem, where the goal is to determine the correspondences
between two feature point sets. Next, we briefly overview
some works that are most relevant to our approach.

A popular strategy for establish feature correspondences
is a two-step matching strategy [6]. In the first step, a set
of putative correspondences is constructed by pruning all
possible feature correspondences based on a similarity con-
straint, which discards those correspondences with sufficient
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dissimilar descriptors. In the second step, a certain robust esti-
mator is adopted to detect and remove the false matches in the
putative set according to some geometrical constraint such as
homography and epipolar geometry [10]. To address the mis-
match removal in the second step, a plenty of methods have
been proposed over the last decades, which can be roughly
divided into four categories, including statistical regression
methods, resampling methods, non-parametric interpolation
methods, and graph matching methods.

Early in the statistics literature, it has been shown that
maximum likelihood estimation of model parameters using
L1 norm is more robust and capable of resisting a larger num-
ber of outliers compared with quadratic L2 norm [33], [34].
Based on adaptive boosting learning, Liu et al. [35] proposed
a regression method for 3D rigid registration. In addition,
a guided matching scheme is introduced based on statistical
optical flow which has achieved promising results [36]. The
most popular resampling method is RANSAC [7] as well
as its variants including MLESAC [37] and PROSAC [38].
These methods aim to obtain a smallest possible outlier-free
subset to estimate a given parametric model through resam-
pling. The statistical regression and resampling methods need
to define a parametric model for the image transformation
in advance, which cannot work well in case of non-rigid
transformation. Moreover, if the outlier ratio in the putative
set is large, they also tend to severely degrade [8].

To address these issues, several non-parametric model-
based methods [6], [8], [11] have recently been introduced,
which commonly interpolate a non-parametric function by
applying a slow-and-smooth prior. The ICF method learns a
correspondence function pair mapping feature points across
two images by using support vector regression, and then
removes the false matches according to the estimated cor-
respondence functions [8]. The VFC method interpolates a
global smoothness motion field associated with the image
pairs by using regularized kernel methods which can resist
quite a large number of outliers [6]. In contrast, the LLT
method recovers a smoothness image transformation by pre-
serving local neighborhood structure of feature points. These
methods often have computational complexities larger than
O(N 3), limiting their uses in real-time applications including
object tracking, visual odometry, SLAM, etc. Graphmatching
provides another strategy for solving the matching prob-
lem [9], [13]; it provides considerable flexibility for building
models and delivers robust matching and recognition. Graph
matching problems usually incorporate pair-wise constraints,
and they can be cast as a quadratic assignment problem.
These methods however suffer from similar drawbacks of
their NP-hard nature.

Except for mismatch removal, some efforts focus on
generating better putative correspondences have also been
made. For example, Guo and Cao [39] proposed a triangle
constraint as a preprocess for pruning false matches, while
Hu et al. [40] introduced to select an appropriate descrip-
tor rather than a global descriptor for each feature point
during matching. Ma et al. [41] provided an effective way

called Locality Preserving Matching (LPM) to filter out
false matches by preserving the local neighborhood struc-
tures of those potential true matches. In addition, a cascade
scheme has been used to alleviate the loss of true correspon-
dences [13]. In this work, we propose an effective method
for boosting true matches while avoiding false matches. It is
general and has low complexity which can be applied to
handle various matching tasks.

III. METHOD
This section describes the proposed featurematchingmethod.
We start by briefly introducing the general regularization
technique, and then present the formulation of our method
and derive its EM solution together with a sparse approxima-
tion by using regularized kernel method.We subsequently lay
out our progressive matching strategy for handling extreme
outliers, followed by the analysis of computational complex-
ity and some implementation details. Finally, we discuss the
relation to existing work. Throughout the paper we use the
following notations:

• (un, vn) - a feature correspondence,
• f - the spatial transformation,
• θ - an unknown parameter set,
• A3×3 - the TPS affine matrix,
• WN×3 - the TPS non-affine coefficient matrix,
• K - the TPS kernel
• P = diag(p1, · · · , pN ) - the match posterior
probabilities.

A. TIKHONOV REGULARIZATION
Given a set of input-output pairs S = {(xn, yn)}Nn=1, the pri-
mary goal with learning is to interpolate a function f from
them that can give good predictions for new inputs rather than
precisely fit the given samples. Typically, we have limited
number of samples of data in a much higher-dimensional
space, and hence we cannot expect to obtain satisfying perfor-
mance by blindly choosing a model. For example, a highly-
parameterized model will probably overfit the data, and a too
simple model may not adequately describe the data. Regu-
larization in this context provides us with one way to strike
the appropriate balance in creating the model. The goal of
regularization is to solve the empirical error minimization
problem by controlling the complexity of the function space,
for example, by introducing a penalty term into the empirical
error

ERR(f)+ λPEN(f), (1)

where the first term is the empirical error measuring the
fitting degree of the function and the samples, the second term
is a penalty item which requires the function to be not too
complex, and λ is used as a regularization parameter to make
a trade-off between the two items. By using the L2 loss on
the data fitting and L2 functional norm on the model com-
plexity, the Tikhonov regularization minimizes the following
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regularized risk functional [42]:

E(f ) = min{
N∑
n=1

‖yn − f(xn)‖2 + λ‖f‖2}. (2)

By choosing a specifical kernel in a reproducing kernel
Hilbert space (RKHS) to define f, the minimization problem
in Eq. (2) is equivalent to solving a linear system [42].

B. A MAXIMUM LIKELIHOOD FORMULATION
The Tikhonov regularization in Eq. (2) does not consider
the outlier issue in the given samples. In other words, if the
data samples contain outliers, the fitting result will be badly
biased. Suppose we obtained a set of putative feature corre-
spondences S = {(un, vn)}Nn=1 which may contaminated by
some unknown mismatches, where un and vn are the spatial
positions of two feature points in the original two images.
We use homogeneous coordinates, e.g., u = (ux ,uy, 1),
and the underlying spatial transformation between the feature
correspondence is denoted as f, e.g., vn = f(un) if (un, vn) is
an inlier. Due to the existence of outliers, it is desirable to have
a robust estimation of f. To this end, we make the assumption
that the noise on inliers is Gaussian on each component with a
zero mean and a uniform standard deviation σ , and the outlier
distribution is uniform 1/a, where a is the area of input image.
We assume the uniform distribution on the outliers is based
on the observation that the false matches can occur anywhere
in an image pair, and this assumption has also been widely
used in the matching problem [6], [37], [43]. Let γ be the
percentage of inliers which we do not know in advance. Thus,
the likelihood is a mixture model

p(S|θ ) =
N∏
n=1

∑
zn

p(un, vn, zn|θ )

=

N∏
n=1

( γ

2πσ 2 e
−
‖vn−f(un)‖2

2σ2 +
1− γ
a

)
, (3)

where θ = {f, σ 2, λ} include a set of unknown parameters
to be solved, zn ∈ {0, 1} is a latent variable associated the
n-th correspondence with zn = 1 indicating a Gaussian
distribution and zn = 0 denoting a uniform distribution.

Generally, the true parameter set θ maximizes the likeli-
hood. Next, we seek a maximum likelihood estimation of θ ,
i.e., θ∗ = argmaxθ p(S|θ ), which is equivalent to solving the
minimal energy

E(θ ) = −
N∑
n=1

ln
∑
zn

p(un, vn, zn|θ ). (4)

Thus we can obtain the spatial transformation f from the
optimal solution θ∗.

C. TRANSFORMATION MODELLING WITH SPARSE
APPROXIMATION
Before we solve the optimization problem in Eq. (4), we first
consider the problem of transformation modelling. For image

pairs of statical scenes, the spatial transformations can be
characterized by epipolar geometry, i.e., vFuT = 0 with F
being a 3× 3 fundamental matrix with 8 degrees of freedom.
Furthermore, if the image pairs are of planar scenes or taken
by camera in a fixed position during acquisition, then the
spatial transformations will degrade to homography or even
affine model, i.e., v = uH with H being the corresponding
3× 3 coefficient matrix. However, these parametric model
cannot work well if the image pairs involve dynamical
scenes or non-rigid motions. Moreover, in many practical
tasks such as image retrieval and object matching and track-
ing, the transformationmodels are often unknown in advance,
which further limits the application of parametric model.

In this paper, to make our method more general,
we consider the non-parametric model and require the trans-
formation to lie within an RKHS. More specifically, the TPS
kernel is chosen to parameterize the transformation. The TPS
is a general purpose spline tool which produces a smooth
functional mapping for supervised learning [10]. Specifi-
cally, it also has been applied to the dimensionality reduction
problem and shown promising results [44]. TPS has no free
parameters that need manual tuning and also has a closed-
form solution which can be decomposed into a global linear
affine motion and a local non-affine warping component
controlled by coefficients A andW, respectively:

f(u) = u · A+ K̃ (u) ·W, (5)

where A is a matrix of size 3 × 3, W is a matrix of size
N × 3, and K̃ (u) is a 1×N vector defined by the TPS kernel,
i.e., K (r) = r2 log r , with each entry K̃n(u) = K (|u− un|).

Feature matching methods based on non-parametric model
often lead to computational complexity as leastO(N 3), as the
number of parameters in a non-parametric model is propor-
tional to the number of putative correspondences (see the
coefficient matrix W for example), i.e., their models involve
O(N ) numbers of parameters to be determined [18]. This will
be problematic if the putative set contains a large number of
correspondences. In fact, the spatial transformation between
two images should not depend on the number of putative
correspondences, as it would not change with respect to the
change of putative correspondences. Therefore, if the scale
of the putative correspondences is large, the standard non-
parametric model will contain a lot of redundant parameters.
To address this issue, we adopt a sparse approximation of the
non-parametric model, and choose a fix set of M (M � N )
bases {̃u1, ũ2, · · · , ũM } to construct the transformation:

f(u) = u · A+ K̃ s(u) ·W, (6)

where K̃ (u) is a 1×M vector with each entry K̃m(u) = K (|u−
ũm|), and the coefficient matrixW in this case is of sizeM×3.
The choice of bases {̃u1, ũ2, · · · , ũM } could be arbitrary,
which could be an arbitrary subset of the original feature
points {u1,u2, · · · ,uN }. This follows [45] who found that
this sparse approximation works well and simply selecting
a random subset of the feature points performs no worse than
those more sophisticated and time-consuming methods.
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D. AN EM SOLUTION
Next, we consider the solution of the minimal energy prob-
lem in Eq. (4). There are several techniques can be used
to solve this problem, where the well-known EM algorithm
provides a natural framework for achieving the goal. The
E-step basically estimates the responsibility indicating to
what degree a sample belonging to inlier under the given
spatial transformation f, while the M-step updates f based on
the current estimate of the responsibility. Following standard
approach and omitting the terms independent of θ , we obtain
the complete-data log likelihood as follows:

Q(θ , θold) = −
1

2σ 2

N∑
n=1

pn‖vn − f(un)‖2 − ln σ 2
N∑
n=1

pn

+ ln γ
N∑
n=1

pn + ln(1− γ )
N∑
n=1

(1− pn), (7)

where pn = P(zn = 1|un, vn, θold) is a posterior probability
indicating to the degree the match (un, vn) belonging to an
inlier under the current estimated spatial transformation f.
E-Step: Denote P = diag(p1, · · · , pN ) a diagonal matrix,

where the responsibility pn can be computed by applying
Bayes rule:

pn =
γ e−

‖vn−f(un)‖2

2σ2

γ e
−‖vn−f(un)‖2

2σ2 +
2πσ 2(1−γ )

a

. (8)

M-Step:We determine the revised parameter estimate θnew

as follows: θnew = argmaxθ Q(θ , θold). Taking the derivative
of Q(θ) with respect to the variance σ 2 and the mixing
coefficient γ and setting them to zero, we obtain

σ 2
=

∑N
n=1 pn‖vn − f(un)‖2

2 · tr(P)
, (9)

γ = tr(P)/N , (10)

where tr(·) denotes the matrix trace.
To complete the M-step, we have to estimate the spatial

transformation f, which is relatively complex and we leave it
in the next section. Once the EM iteration converges, we get
the transformation f. The mismatches can then be removed
by checking whether they are consistent with f. With a pre-
defined threshold τ , the inlier set I is determined by the
following formula:

I = {n|pn > τ, n = 1, · · · ,N }. (11)

E. TRANSFORMATION ESTIMATION
According to complete-data log likelihood in Eq. (7), the spa-
tial transformation f is estimated by minimizing a weighted
empirical error function as follows:

Q(f) = −
1

2σ 2

N∑
n=1

pn‖vn − f(un)‖2. (12)

This is an ill-posed problem, as there are infinite solutions
for the transformation f. To make the problem well-posed,

we consider the regularization technique, as mentioned in
Section III-A. The TPS regularization, e.g. the L2 functional
norm in Eq. (2), is defined as [10]:

‖f‖2 = tr(WTKsW), (13)

where Ks
∈ IRM×M is the so-called Gram matrix with Ks

ij =

K (|ũi− ũj|). Therefore, the weighted empirical error function
in Eq. (12) becomes a weighted regularized risk functional

Q(f) = −
1

2σ 2

N∑
n=1

pn‖vn − f(un)‖2 +
λ

2
tr(WTKsW). (14)

We use a matrix form to rewrite Eq. (14) and obtain

Q(A,W) =
1

2σ 2 ‖P
1/2(V− UA−Ks

uW)‖2F

+
λ

2
tr(WTKsW)

=
1

2σ 2 ‖Ṽ− ŨA− P1/2Ks
uW‖

2
F

+
λ

2
tr(WTKsW), (15)

where U = (u1,u2, · · · ,uN )T and V = (v1, v2, · · · , vN )T

are matrices of both size N × 3, Ũ = P1/2U, Ṽ = P1/2V,
Ks

u ∈ IRN×M withKs
uij = K (|ui− ũj|), and ‖ · ‖F denotes the

Frobenius norm.
To solve the TPS parameter pair A and W, we use a QR

decomposition [46]:

Ũ = [Q1,Q2]
[
R
0

]
, (16)

where Q1 and Q2 are orthonormal matrices of sizes respec-
tively N × 3 and N × (N − 3), and R is an upper triangular
matrix of size 3 × 3. With the QR decomposition in place,
Eq. (15) becomes

Q(A,W) =
1

2σ 2 ‖Ṽ− [Q1,Q2]
[
R
0

]
A− P1/2Ks

uW‖
2

+
λ

2
tr(WTKsW)

=
1

2σ 2

∥∥∥∥[QT
1 Ṽ

QT
2 Ṽ

]
−

[
RA
0

]
−

[
QT

1 P
1/2Ks

uW
QT

2 P
1/2Ks

uW

]∥∥∥∥2
+
λ

2
tr(WTKsW)

=
1

2σ 2 ‖Q
T
2 Ṽ−QT

2 P
1/2Ks

uW‖
2

+
1

2σ 2 ‖Q
T
1 Ṽ− RA−QT

1 P
1/2Ks

uW‖
2

+
λ

2
tr(WTKsW). (17)

Since each term in the last equation is non-negative and
only the second term involves the parameter A, to minimize
this equation, the second term should be required to be zero
at the optimal solution:

‖QT
1 Ṽ− RA−QT

1 P
1/2Ks

uW‖
2
= 0, (18)
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Algorithm 1Mismatch Removal by SSC

Input: Putative set {(un, vn)}Nn=1, parameters λ, τ , M
Output: Inlier set I

1 Initialization: 0 < γ < 1,W = 0,A = 0;
2 Compute a according to the area of the given image;
3 Compute Gram matrix Ks and Ks

u using the TPS kernel;
4 repeat
5 E-step:
6 Update the responsibility pn by equation (8);
7 M-step:
8 Update transformation f by using equations (22)

and (19);
9 Update σ 2 and γ by equations (9) and (10);

10 until some stopping criterion is satisfied ;
11 The inlier set is determined by equation (11).

Therefore, the optimal solution of A should be as follows:

A = R−1QT
1 (Ṽ − P1/2Ks

uW). (19)

We submit the solution of A into Eq. (17) and obtain

Q(W) =
1

2σ 2 ‖Q
T
2 Ṽ−QT

2 P
1/2Ks

uW‖
2
+
λ

2
tr(WTKsW).

(20)

We take the derivative of Q(W) with respect to the variable
W and set it to zero, and obtain

(QT
2 P

1/2Ks
u)
T (QT

2 Ṽ−QT
2 P

1/2Ks
uW)− λσ 2KsW = 0.

(21)

By denoting S = QT
2 P

1/2Ks
u, we obtian the optimal solution

of W

W = (STS+ λσ 2Ks
+ εI)−1STQT

2 Ṽ, (22)

where εI is used for numerical stability.
Until now, we have solved all the parameters in the

M-step. As the spatial transformation is computed only using
those underlying inliers with sparse approximation, we call
this strategy Sparse Spatial Consensus (SSC) and summarize
it in Algorithm 1.

F. THE PROGRESSIVE MATCHING STRATEGY
Note that for most feature matching methods the proportion
of outliers in the putative set in general should not be too high,
and hence some sophisticated strategies [4], [12], [39] are
used to filter out mismatches during the construction of puta-
tive correspondences. However, this process will also lead
to discarding those unstable correct matches, and sometimes
these discarded correct matches dominate the whole true
matches which will degrade the subsequential applications,
and hence a putative set coversmore truematches is desirable.
To solve this dilemma, we introduce a progressive matching
strategy in this section, as shown in Fig. 1. First, we construct
a putative set S0 = {(ui, vi)}

N0
i=1 by using a small distance

Algorithm 2 Progressive Sparse Spatial Consensus

Input: Putative sets S0, S1, parameters λ, τ , M
Output: Inlier set I1

1 Perform SSC on S0 using Algorithm 1 and obtain I0;
2 Using I0 to initialize P with Eq. (23);
3 Perform SSC on S1 using Algorithm 1 and obtain I1.

ratio threshold t0 of SIFT matches1 [4], as shown in Fig. 1a.
In this putative set, the inlier percentage is typically high, and
hence using our SSC proposed in Algorithm 1 works well,
as shown in Fig. 1b. Then we construct a larger putative set
S1 = {(ui, vi)}

N1
i=1 using a larger distance ratio threshold t1,

as shown in Fig. 1c. Clearly, S1 contains S0 and it is much
larger than S0 with much more mismatches and expected to
cover more true correspondences. To enable our SSC to work
well on S1, we introduce a strategy that using the result on S0
to guide the matching on S1, which can generate the matching
results in Fig. 1d.
The major reason why our SSC cannot work well on S1 is

because that the EM iteration is easy to get trapped into local
extrema. However, if we give a good initialization to the EM
iteration, then it is definitely possible to reach a satisfying
solution. To this end, we use the matching result on S0 to
initialize the EM iteration of SSC on S1. For example, after
we obtain the matching result on S0, the transformation f on
S0 could be used to initialize the transformation f on S1, as the
true transformation should not change in case of different
putative sets. This is equivalent to using the responsibility pi
of correspondence (ui, vi) on S0 to initialize the responsibility
on S1. More specifically,

pi =

{
1, if i|(ui,vi) ∈ I0
ε, otherwise,

(23)

where ε is a small number used for numerical stability, and
I0 is obtained according to Eq. (11). By using the preserved
correspondences in S0, we could recover the transformation f
from S1 in the first EM iteration. In this way, the EM iteration
is able to avoid many of the local extrema inherent in the SSC
formulation and obtain a good estimate very quickly.

This process could be performed progressively to boost
more true correspondences. For example, construct an even
larger putative set S2 with an even larger distance ratio thresh-
old t2, and then use the matching result on S1 to guide the
matching on S2. In our evaluation, we found two iterations can
already achieve satisfying results, for example, we construct
S0 using a small t0 and directly construct S1 at t1 = 1. As this
progressive strategy is base on the SSC algorithm, we call it
Progressive Sparse Spatial Consensus (PSSC) and summarize
it in Algorithm 2.

1The value of distance ratio threshold t ranges from 0 to 1, where smaller
t indicates larger inlier ratio in the putative set with less true matches, and
t = 1 equals to the nearest neighbor matching strategy.
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FIGURE 1. Schematic illustration of our progressive matching strategy. (a) A small putative set with high inlier ratio. (b) The matching result of our
SSC on (a). (c) A small putative set with low inlier ratio but covers more true matches. (d) The matching result of our PSSC on (c) by using (b) for
guided matching. The blue lines denote true matches and the black lines denote false matches.

G. COMPUTATIONAL COMPLEXITY
To compute the transformation f, the most time-consuming
step is the calculation ofW in Eq. (22), which has time com-
plexity O(MN 2) due to the matrix inversion and the matrix
multiplication operations. Besides, for amatrix of sizeM×N ,
its time complexity of QR decomposition is about 2MN 2,
and hence the time complexity of Eq. (16) is about O(N ).
Therefore, the total time complexity for each EM iteration of
our method is about O(MN 2). The space complexity of our
method scales like O(MN ) due to the memory requirements
for storing the matrixKs

u. SinceM is a constant andM � N ,
the time and space complexities can be written as O(N 2) and
O(N ), respectively. Without using the sparse approximation,
the time and space complexities will increase to O(N 3) and
O(N 2), respectively [10].

H. IMPLEMENTATION DETAILS
There are mainly three parameters in our algorithm: the regu-
larization parameter λ, inlier threshold τ and the bases num-
ber M , where λ controls the trade-off between the closeness
to the data and the smoothness of the transformation, τ is
used to decide the correctness of a correspondence, and M
is the number of bases used for sparse approximation to the
TPS kernel. In our experimental evaluations, we found that
our method is not very sensitive to these three parameters.
Throughout this paper, we set λ = 500, τ = 0.5 andM = 30.
In addition, the matching performance typically depends

on the coordinate system in which the feature points are
expressed. To alleviate the influence, we use data normaliza-
tion, where a linear re-scaling of the matches is performed
so that the two sets of points both have zero mean and unit
variance. In addition, the constant a in Eq. (3) is set as the
normalized area of input image after data normalization.

I. RELATION TO EXISTING METHOD
Our PSSC is related to the VFC algorithm [6]. On the one
hand, both the two algorithms use the maximum likelihood
spatial consensus estimation to formulate the matching prob-
lem, and the EM approach is adopted for optimization. On the

other hand, our PSSC is different from VFC. We use the TPS
kernel to parameterize the transformation model rather than
the GRBF kernel in VFC. This can decompose the spatial
transformation into explicit linear and nonlinear components,
and the corresponding bending energy possesses a specific
physical explanation, which is benefit to non-rigid matching.
In addition, we generalize the formulation under a progressive
matching framework to boost the number of truematches, and
a sparse approximation is also applied to the TPS kernel to
greatly reduce the computational complexity.

IV. EXPERIMENTAL RESULTS
In this section, we test the feature matching performance
of our PSSC and compare with other six feature matching
methods such as RANSAC [7], ICF [8], GS [9], VFC [6],
CSR [10] and LPM [41]. We implement ICF and LPM and
tune all their parameters accordingly to find optimal settings.
For RANSAC, GS, VFC and CSR, we implement them based
on the publicly available codes. For the six comparison meth-
ods, the putative correspondences are all established by using
the nearest neighbor matching strategy. The experiments are
performed on a desktop with 3.5 GHz Intel Core CPU, 64 GB
memory and Matlab code. Throughout all the experiments,
six algorithms’ parameters are all fixed.

A. EXPERIMENTAL SETUP
We use the open source VLFeat toolbox [48] to extract the
SIFT features, and then construct the putative correspon-
dences according to the distance ratio threshold. Note that
our method does not depend on any specific feature, some
other features such as SURF [49] and ORB [50] can also
be used to construct putative correspondences. The matching
performance is characterized by precision and number of
preserved correct matches, where the precision is defined as
the ratio between the number of preserved correct matches
and the number of whole preserved matches.

The match correctness for establish the ground truth is
determined as follows. On the one hand, for image pairs
related by parametricmodels such as homography, the ground
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FIGURE 2. Some examples in the dataset of VGG [47].

truth model parameters can be obtained, and then we use an
overlap error εS to determine the match correctness. Specif-
ically, we first reduce the SIFT feature scales to one third of
the original scales, and then a match is regarded as correct
match if εS > 0. This follows [6], [10] who found that
this strategy is consistent with human perceptions. On the
other hand, for image pairs related by non-rigid transfor-
mations, the ground truth model parameters usually cannot
be obtained, and we determine the match correctness by
manual checking. Although in this case the judgment of
correct or false match seems arbitrary, to ensure objectivity
we make the benchmark before conducting experiments.

B. RESULTS ON IMAGE PAIRS RELATED BY
HOMOGRAPHY
We test our PSSC on the dataset of Visual Geometry
Group (VGG) in the University of Oxford [47], which con-
tains image transformations involving viewpoint change,
scale change, rotation, image blur, JPEG compression, and
illumination change. Some examples are shown in Fig. 2. The
image pairs in this dataset are either of planar scenes or taken
by camera in a fixed position during acquisition, and hence
they always obey the homography. We use all the 40 image
pairs for evaluation, where the ground truth homographies
are supplied by the dataset. The reasons why we choose
this dataset lie in two-fold: (i) it offers ground-truth for
quantitative evaluation; (ii) it contains challenging situations
in matching such as view point change, rotation, illumina-
tion variation, and so on. In the following, we first test the
influences of different parameter settings, and then report the
quantitative comparisons of different methods on the dataset.

We first investigate the influence of the choice ofM , which
is the number of basis functions used for sparse approxi-
mation. Five values of M including 10, 20, 30, 40 and 50
are chosen for test. In addition, we also test our algorithm
without using the sparse approximation, i.e., M = N . The
average precisions, numbers of preserved correct matches

TABLE 1. Performance comparison under different values of M.

TABLE 2. Performance comparison under different values of t1.

and run times on the whole dataset are summarized in Table 1.
From the results, we see that by using or not using the sparse
approximation, the average precisions and numbers of pre-
served correct matches are similar, but the average run times
by using sparse approximation are much less. This demon-
strates that the sparse approximation can largely speedup
the matching procedure without much performance sacrifice.
Moreover, M = 30 achieves the best trade-off between the
accuracy and efficiency. Note that the average run time at
M = 30 is even less than that at M = 20; this is due to
that the EM iteration converges much faster atM = 30.

We then investigate the influence of the choice of dif-
ferent bases for sparse approximation. Except for simply
selecting a random subset, we consider three other strategies:
(i) using the

√
M×
√
M uniform grid points distributed evenly

throughout the whole image; (ii) finding the M clustering
centers of the feature points {un}Nn=1 by using a clustering
algorithm such as k-means clustering; (iii) picking M bases
sophisticatedly that minimize the residuals via sparse greedy
matrix approximation [51]. By using these three strategies
to select bases, we obtain the average correct match number
and precision pairs (697.7, 95.38%), (696.1, 95.36%) and
(697.5, 95.37%), respectively. We see that there is no sig-
nificant difference among the different strategies. However,
in the interests of computational efficiency, we implement the
sparse approximation simply selecting random bases.

We subsequently investigate the influence of the choice
of t1, which is the distance ratio threshold of S1, i.e., the
larger putative set. Six values of t1 including 0.5, 0.6, 0.7,
0.8, 0.9 and 1.0 are chosen for test. The average inlier ratios
and inlier numbers in the putative sets are reported in the
first three rows in Table 2. We see that as t1 increases,
the inlier ratio gets smaller while the inlier number becomes
larger. The matching results are provided in the last three
rows in Table 2, including the average precisions, numbers of
preserved correct matches, as well as the average run times
on the whole dataset. We see that the matching precision
of our PSSC does not decrease with the decrease of inlier
ratio. At t1 = 1.0 which equals to the nearest neighbor
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TABLE 3. Performance comparison under different values of λ.

FIGURE 3. The probability distribution of pn in Eq. (8) of each putative
correspondence on the whole dataset of VGG [47].

matching strategy, the preserved correct matches achieve the
largest number. In fact, we have also tried to construct an
even larger S1, for example, for each feature point in one
set, we seek its K -nearest neighbors in the other set and
construct K putative correspondences. We found that this
procedure can only slightly increase the true match number
but significantly increase the run time. Therefore, we just
use the nearest neighbor matching strategy to construct S1 in
practice. Simultaneously, for the comparison methods in our
experiments, we also construct the putative correspondences
using the nearest neighbor matching strategy.

We next investigate the influence of the choice of λ, which
controls the trade-off between the closeness to the data and
the smoothness of the transformation. Six values of λ includ-
ing 1, 10, 100, 500, 1000 and 5000 are chosen for test. The
average precisions and numbers of preserved correct matches
on the whole dataset are summarized in Table 3. We see that
the value of λ does not influence the performance too much,
where λ = 500 seems the best and we use it as the default
value.

The influence of the parameter τ has also been investi-
gated, which is used to decide the correctness of a correspon-
dence. The probability distribution of pn in Eq. (8) of each
putative correspondence on the whole dataset is provided
in Fig. 3, where the left figure is about the inliers and the
right figure is about the outliers. We see that most of the
putative correspondences have posterior probability either
about 0 or about 1. Therefore, we can simply set the parameter
τ to be 0.5.

Finally, we provide quantitative comparisons on the
dataset with other six feature matching methods such as
RANSAC [7], ICF [8], GS [9], VFC [6], CSR [10] and
LPM [41]. The statistical results of precisions, numbers of
preserved correct matches, as well as run times are reported
in Fig. 4. We see that the precisions and correct match num-
bers of VFC and CSR are similar, both are ranked in the
middle. The average precision of ICF is the lowest, and it
cannot preserve too many correct matches either. LPM does

TABLE 4. The inlier ratios and inlier numbers in the putative sets on the
six image pair in Fig. 5.

not yield high precision, due to that the neighborhood struc-
tures among correct matches cannot be preserved well in case
of severe false matches. RANSAC and GS preserve the least
correct matches, although GS is able to achieve satisfying
precisions. In contrast, by using the progressive matching
strategy, our PSSC can achieve the best precisions and best
correct match numbers, where the curves are consistently
above those of the other methods. The average precision
of our PSSC reaches up to 95.36%, which is far ahead of
the second best (e.g., 88.27%). In fact, there are only four
image pairs with precisions less than 95%, and we found that
these image pairs typically have extremely small inlier ratios,
e.g., lower than 5%. While on these image pairs, all the other
comparisonmethods completely fail. Our PSSC generates the
most number of correct matches on almost all the image pairs,
and the average correct match number achieves about 768.1
on the dataset.

We also report the comparison of run times of different
methods on the right of Fig. 4. We see that by using the
sparse approximation, our PSSC has comparable efficiency
ranked in the middle tier. LPM is the most efficient as it
merely requires to construct the neighborhood for each fea-
ture points. VFC also adopts a sparse approximation sim-
ilar to our PSSC and hence it is quite efficient. Note that
RANSAC also has similar average run time as our PSSC; this
is due to that the maximum resampling time of RANSAC is
set to a relatively small number (e.g., 200).

C. RESULTS ON IMAGE PAIRS RELATED BY
NON-RIGID DEFORMATION
In this section, we test our PSSC on image pairs involving
non-rigid deformations. As in such test data the ground truth
of matching correctness of each putative correspondence
is manually determined, it is difficult to construct a large
dataset with ground truth for quantitative evaluation. Thus we
only choose several typical image pairs for evaluation such
as DogCat, Peacock, Fox, Mex, Tree and T-shirt, as shown
in Fig. 5. For the two image pairs of DogCat and Peacock,
we first manually add a regular grid on it, and then warp it
and take two views with different deformations. The image
pair of Fox contains a moving fox leading to two different
motion models in the scene. The two image pairs ofMex and
Tree are two wide baseline image pairs, which is frequently
encountered in epipolar geometry. The image pair of T-shirt
involves natural non-rigid motion, which consists of scenes
of a T-shirt undergoing two different deformations together
with illumination changes.

The initial inlier ratios and inlier numbers in the putative
sets on the six image pair are summarized in Table 4. We see
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FIGURE 4. Precisions (left), numbers of preserved correct matches (middle) and run times (right) of six feature matching methods on the dataset of
VGG [47]. The numbers in the three figures are average precisions (AP), average correct matches (ACM) and average run times (ATR), respectively. A point
on the curve with coordinate (x, y ) denotes that there are 100 ∗ x percents of image pairs which have precisions, correct match numbers or run times no
more than y .

FIGURE 5. Matching results of our PSSC on six typical image pairs (from left to right and top to bottom: DogCat, Peacock, Fox, Mex, Tree and T-shirt)
involve non-rigid deformations. The lines and arrows indicate the mismatch removal results. For each group of result, we use two types of
representations to show the result, where the left figure provides a schematic illustration with at most 50 randomly chosen matches are shown for
visibility, the right figure provides the complete mismatch removal result (blue = true positive, black = true negative, green = false negative, red = false
positive). For each arrow, the head and tail correspond to the positions of two feature points in the left and right images, respectively. Best viewed in
color.

that the inlier ratios are quite low, especially on the image
pair of Tree which has only about 5.75% inliers. Therefore,
the matching problem on these image pairs is quite challeng-
ing. The mismatch removal results of our PSSC are provided
in Fig. 5. From the results, we see that our method is able to
identify most of the inliers and outliers for all the test image
pairs, even the inlier ratio is quite low.

We also provide the quantitative comparisons with other
five feature matching methods on the six image pairs, where
we do not use RANSAC for comparison due to that the image
transformations on most image pairs cannot be modeled by
a parametric model and hence RANSAC is not applicable.
The precisions (%) and numbers of preserve correct matches

of the five comparison methods are summarized in Table 5.
Clearly, our method performs overall the best, especially in
case of extremely low inlier ratio e.g., Tree and large non-rigid
deformation (e.g., T-shirt). This demonstrate the generality
of our PSSC for handling various feature matching problem.
Note that ICF has the best results in terms of the preserved
correct matches; this is because it completely fails and all
the matches in the putative sets are taken as correct matches.
In addition, VFC works better sometimes in terms of the
matching precision, especially on the Fox pair. This is due to
that it fits a simple smooth motion field on the ground which
can precisely identify the correct matches on the ground, and
hence leading to a higher precision. However, this simple
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TABLE 5. Performance comparison of precision (%) and number of preserved correct matches for different feature matching methods on the six image
pair in Fig. 5.

motion field is not consistent with the motion of the other
parts in the image pair, e.g. the fox, and then the matches on
the fox will be all falsely removed, leading to an unsatisfying
correct match number.

V. CONCLUSION
Within this paper, we propose a new method named Pro-
gressive Sparse Spatial Consensus (PSSC) for robust feature
matching. It formulates the mismatch removal as a maximum
likelihood estimation problem and solves it by an iterative
EM algorithm. The transformation between two images is
characterized by a non-parametric model with TPS kernel,
which enables our PSSC to be applicable in handling both
rigid and non-rigid matching problems. We also adopt a
sparse approximation to the TPS kernel so that it can work
well on large scale matching problem. In addition, by using
a progressive matching strategy, our PSSC is able to boost
the number of true feature correspondences and can success-
fully remove outliers even the putative match set contains
extremely number of mismatches. Experimental results on
publicly available datasets with comparisons to other six
state-of-the-art matchingmethods demonstrate that our PSSC
algorithm can achieve much better results, especially when
the putative set is badly degraded by the mismatches.
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