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ABSTRACT An adaptive model predictive controller with a new scheduling scheme for turbofan engines is
proposed, which can transfer engine from one working state to the others within the flight envelope. First,
the flight envelope is divided into several sections according to the engine inlet parameters, and the nominal
points in each section are determined, respectively. Then, considering the requirements of the turbofan
engines, a constrained linear model predictive control algorithm is improved, and a series of constrained
predictive controllers are designed based on the linear models at different nominal points. Furthermore,
a novel scheduling scheme with two layers is constructed, where the first layer is the flight envelope
scheduling layer that introduces fuzzy membership degree logic to distribute the weights of all nominal
predictive controllers, and the second layer is the power scheduling layer by adopting a linear interpolation
method. Simulation results show that the proposed scheduling scheme can coordinate these two layers to
realize the steady-state and transition-state control of the turbofan engines at off-nominal points within the
envelope, which provides an effective approach for the design of the adaptive controllers.

INDEX TERMS Adaptivemodel predictive control, a scheduling scheme, flight envelope, fuzzymembership
degree, turbofan engine, transition state.

I. INTRODUCTION
With the development of aircraft engine technology, the com-
plexity of engine working conditions increases, and engine
controller is thus more critical to transit engine from one
state to others while preventing engine from dropping into
abnormal conditions, such as overspeed, overtemperature,
stall/surge, etc [1]–[3]. However, traditional linear regula-
tors [4] with Min-Max switching logic cannot handle the
complicated output limits protection well due to its inher-
ent conservativeness [5]–[7]. Moreover, with Full Authority
Digital Engine Control (FADEC) system widely used in the
turbofan engine controllers [8], [9], model predictive con-
trol (MPC) algorithms have been proposed to design engine
controller [10]–[12], which possesses the ability to handle all
kinds of limits directly and conveniently [13], [14], and are
more powerful than traditional PID control method [15], [16].
Therefore, according to the control requirements of turbofan
engines [17], [18], a constrained linear model predictive con-
trol approach is proposed in this paper, in order to achieve
the thrust demand and limit protection simultaneously in the
entire flight envelope.

In general, a model predictive controller could adapt to a
wide range of disturbances and achieve satisfactory control
performance, even in the case of a model mismatch [19].
However, for the nonlinear complex aero-engines, it is dif-
ficult to guarantee that a predictive controller can achieve
satisfactory dynamic response in the full flight envelope [20].
Specifically, taking a predictive controller based on a fixed
linear engine model for example, a series of simulations
were conducted in the entire flight envelope with step inputs.
The results showed that there exist large overshoot, frequent
oscillations, and even instability during the transitions in
some parts, which is beyond the scope of the performance
requirements [21].

Therefore, due to various working conditions of turbo-
fan engines, an adaptive predictive controller needs to be
designed, and there are several methods that could be consid-
ered. One method is to modify the predictive model online to
match the current engine condition through the system identi-
fication techniques [22], however, there exist some conditions
that cannot meet the identification requirements. The second
strategy is the parameter similarity criterion that stems from
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the practical engineering applications, which converts other
flight condition parameters to the nominal conditions [3],
while the effectiveness of the similarity criterion is not veri-
fied theoretically and necessarily not applicable to all types of
turbofan engines. Another approach is parameter scheduling
logic, where flight envelope and power conditions are divided
in order to obtain a series of nominal points, and a schedul-
ing logic coordinates these nominal predictive controllers.
At present, in public literature, there are few works focuses
on flight envelope division and scheduling logic design.

In this paper, a novel scheduling scheme with fuzzy mem-
bership degree logic is proposed to design an adaptive model
predictive controller for a commercial turbofan engine. The
remainder of the paper is organized as follows. Section II
introduces the constrained model predictive controller design
of turbofan engines at nominal points. The flight envelope
division approach is described in Section III. Section IV
investigates the design of a two-layer scheduling scheme to
construct an adaptive model predictive controller, in which
the flight envelope scheduling layer that utilizes fuzzy mem-
bership degree idea and power scheduling layer that uses lin-
ear interpolation method are described in detail. In Section V,
simulations are conducted in two cases, and the proposed
scheduling scheme is compared with a traditional one. The
conclusions are summarized in Section VI.

II. CONSTRAINED LINEAR MODEL PREDICTIVE
CONTROLLER DESIGN AT NOMINAL POINTS
Due to the wide range of flight and operation conditions for
turbofan engines, a series of constrained model predictive
controllers need to be well established and arranged.

For a certain type of high bypass commercial turbofan
engines, a packaged component level nonlinear dynamic
model is employed in Matlab/Simulink platform via dynamic
link library technique [23], which was originally constructed
and tested perfectly in the GasTurb software. To design the
constrained model predictive controllers at nominal points,
linear engine models are obtained using the fitting method at
given flight conditions and power states. Note that the final
adaptive model predictive controller based on a scheduling
scheme is tested with the nonlinear component level engine
model, although a series of linearized models are prepared for
model predictive controller designs.

The purpose of an engine control system is to provide
the required thrust by changing the fuel flow according to
the throttle positions, while maintaining the limited-outputs
in the prescribed bounds [4]. However, in practice, thrust
cannot be sensed and therefore cannot be controlled directly.
Generally, speeds or engine pressure (EPR) is treated to be
the indicator of thrust [3]. In this paper, the control objec-
tive is to track the fan speed setpoints considering input
and output constraints, and conventional constrained model
predictive algorithm is improved accordingly, where tracking
outputs (e.g. fan speed) and limited-outputs (e.g. temperature,
surge margin) are handled in different ways. The constrained
model predictive controller consists of three parts [24]:

predictivemodel, feedback emendation, and receding horizon
optimization.

A. PREDICTIVE MODEL
Linear discrete state space models of turbofan engine at
nominal points are utilized as predictive models that can be
expressed as:

{
x̂(k + 1) = Ad x̂(k)+ Bd û(k)
ŷ(k) = Cx̂(k)+ Dû(k)

(1)

where y = [1Nf 1T45 1smHPC ]T , x =
[
1Nf 1Nc

]T ,
u = 1Wf . The control variable is the deviation of fuel flow
Wf in kg/s from the steady state, state variables are the devia-
tions of fan speedNf and core speedNc in r/min. Three output
variables are considered here, where fan speed is used for
tracking and the other two outputs (high pressure compressor
outlet temperature 1T45 in ◦R and high pressure compressor
stall margin 1smHPC in %) are regarded as limited outputs.
The values of matrices A, B, C and D are different corre-
sponding to different flight conditions (e.g. flight altitude H
and Mach number Ma) and power states (expressed as a
percentage of the max cruise speed or actual fan speed Nf ).

When the augmented state x̂Ta = [ x̂(k)T û(k − 1) T ] is
introduced, Formula (1) can be expressed as:



[
x̂(k + 1)
û(k)

]
=

[
Ad Bd
0 I

][
x̂(k)

û(k − 1)

]
+

[
Bd
I

]
1û(k)

ŷ(k) =
[
C D

] [ x̂(k)
û(k − 1)

]
+ D1û(k)

(2)

B. FEEDBACK EMENDATION
Owing to the disturbances, engine component degradation
and nonlinearities, predictive model is not exactly the same
as engine current state, that is, there exits model mismatch.
At sampling time k , define the error of engine actual output
yp(k) and predictive model output ŷ(k) (including tracking
outputs yt (k) and limited outputs yl (k)) as e(k) = yp(k)−ŷ(k).
The corrected predicted outputs ŷCOR can be represented as:


ŷCOR(k + 1)
ŷCOR(k + 2)

...

ŷCOR(k + ny)

=

ŷ(k + 1)
ŷ(k + 2)

...

ŷ(k + ny)

+

h1
h2
...

hny

[yp(k)− ŷ(k)]
(3)

where the correction factors hi, i = 1, 2, . . . , ny satisfy
0 < hi ≤ 1.
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FIGURE 1. Nf response at off-nominal points.

C. RECEDING HORIZON OPTIMIZATION
In order to meet the control requirements, a form of cost
function with constraints is shown as follows:

min
1u

J =
j=ny∑
j=1

(ŷtCOR(k + j)− yr (k + j))2

+

nu−1∑
i=0

λ1û(k + i)T1û(k + i)

s.t. umin ≤û(k + i) ≤ umax

1umin ≤ 1û(k + i) ≤ 1umax

ylmin ≤ ŷlCOR(k + j) ≤ ylmax

i = 0, 1, . . . , nu − 1

j = 1, 2, . . . , ny (4)

where yr (k + j) are the expected reference trajectories,
ŷtCOR(k + j) and ŷlCOR(k + j) are the corrected predicted
tracking outputs and limited-outputs in the future j time steps
respectively,1û(k+i) is the control variable increment vector
and λ is the corresponding weights, ny and nu are the control
horizon and prediction horizon respectively. umax, umin and
1umax, 1umin represent the maximum and minimum limits
of the control variable and its increments, ylmax and ylmin
indicate the maximum and minimum outputs limits. In for-
mula (4), tracking output ŷtCOR(k + j) is listed in the cost
function and limited-output ŷlCOR(k + j) is incorporated in
the constraints conditions, which meet the requirements of
the turbofan engine.

Incorporate formula (1)-(3) to the cost function (4), after
iteration, a quadratic programming problem with constraints
could be obtained. At each sampling time, call quadprog
function in the Matlab software to conduct the optimization,
and compute the control variable sequence
1u(k),1u(k+ 1), . . . ,1u(k+ nu− 1). However, only the

first control variable 1u(k) is applied to the turbofan engine
and at next sampling time, similar optimization procedures
are repeated, thus realizing receding horizon optimization.

III. ROBUSTNESS ANALYSIS OF A NOMINAL
CONTROLLER AND PARTITION OF
FLIGHT ENVELOPE
The robustness of a nominal model predictive controller
refers to the system’s ability to maintain stability with
good transient performance when there exists a model mis-
match between the predictive model and the actual engine
state. At present, robustness analysis of model predic-
tive control algorithm is mostly by means of simulation
results, this is mainly due to the complexity of theoretical
analysis.

As for turbofan engines, simulation results show that one
nominal predictive controller alone cannot satisfy the require-
ments of dynamic performance in the entire envelope, and
several examples are shown in Fig.1, where nominal point is
H = 11km, Ma = 0.8, and power = 100%Nf .
Fig. 1(a) shows that the response speed is too slow when

Ma is far from its nominal point; Fig. 1(b) indicates that
the overshoot is too large when H is off its nominal point;
and bad dynamic response appears when power state is far
away from its nominal point, as shown in Fig. 1(c). After all,
constrained model predictive controllers are designed based
on the small deviation linear dynamic models, which are only
applicable to the small areas around the nominal points for
better dynamic response.

As a result, different working conditions (H , Ma, Nf )
correspond to different engine linear models. For better con-
trol performance, the flight envelope (H , Ma) is divided
into N1 sections with a nominal flight point determined for
each section, and power states (Nf ) should also be divided
to generate N2 nominal power points. In this way, a series
of N1 × N2 nominal working conditions are acquired. For
simplicity, nominal power points can be determined with
mean intervals from idle state to take-off state. The method
for partition of the flight envelope is as follows.

For a given fuel flow supply, fan speed and the turbine
expansion ratio, as well as other engine outputs are a function
of flight parameters H and Ma. Furthermore, if the inlet
of the turbofan engine is determined, the sensed total tem-
perature T1 and total pressure P1 of inlet are a function of
H and Ma, as presented in (5) and (6). Therefore, it can
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be concluded that the linear state space models are closely
related to parameters P1 and T1.
When H ≤ 11km, there exists:
T1 = (288.15− 6.5× H )× (1+ 0.2×Ma2)− 273

P1 = 1.03323× (1−
H
44.3

)5.2553 × (1+ 0.2×Ma2)3.5

(5)

When H > 11km, there exists:{
T1 = 216.6× (1+ 0.2×Ma2)− 273

P1 = 0.2314× e(
11−H
6.318 ) × (1+ 0.2×Ma2)3.5

(6)

If the sensed parameters T1 and P1 change within a certain
small range, it is assumed that a nominal flight predictive con-
troller can be used to regulate this section. Thus the selection
rules J for section divisions can be defined as:

J =

√
(
P1x − P11

P11
)2 + (

T1x − T11
T11

)2 ≤ ε (7)

where T11, P11 and T1x , P1x are inlet total temperature and
pressure of a nominal point and an arbitrary point x in the
flight envelope respectively. If the Root-Mean-Square of the
temperature and pressure change does not exceed ε, it is
considered that point x is supposed to belong to the section
of this nominal point.

In this paper, to verify the effectiveness of the partition
method, take a part of the entire envelope, known as control
domain, for example, as shown in Fig. 2.

FIGURE 2. Control domain in the flight envelope.

For the turbofan engine, simulation results show that when
ε ≤ 0.2, good dynamic performance can be achieved
within the entire section by the nominal controller. Here,
ε is selected as ε = 0.2 and the nominal points need be
determined so that their sections can cover the entire control
domain. Through continuous attempts, three nominal points
in the control domain are finally selected as (H = 11km,
Ma = 0.8), (H = 11.7km, Ma = 0.65) and (H = 9.5km,
Ma = 0.75), as pointed out by ‘‘∗’’ in Fig. 3. Different
colors in Fig.3 represent different sections. It can be seen that
the constrained predictive controllers designed at these three
nominal points can cover the entire control domain.

FIGURE 3. Nominal points and sections.

IV. SCHEDULING SCHEME DESCRIPTION
In general, engine characteristics change with parameters
(H , Ma, Nf ), so these three parameters can be used as
scheduling parameters. As mentioned above, (H , Ma) deter-
mined the selection of the nominal controllers in the flight
envelope. Therefore, a two-layer scheduling scheme is pro-
posed here. Assume that the current working condition of
engine is (Hx ,Max ,Nfx) andNf (k) < Nfx < Nf (k+1) (where
Nf (k) and Nf (k + 1) are nominal power states) is satisfied.
The first layer is referred as the flight envelope scheduling
layer and the scheduling parameters are (H , Ma), in which
control values at (Hx , Max , Nf (k) and (Hx , Max , Nf (k + 1))
conditions are determined through the scheduling approach
of flight envelope. The second layer is called the power
scheduling layer and scheduling parameter is Nf , where the
final control value at (Hx , Max , Nfx) is determined through
the linear interpolationmethod, based on the control variables
values at (Hx ,Max , Nf (k)) and (Hx ,Max , Nf (k+1)) obtained
in the first layer.

An example is presented to illustrate the principle of the
scheduling scheme. Suppose that an adaptive predictive con-
troller with the above scheming scheme is designed, in order
to realize the control of the turbofan engine that works
from 80%Nf to 104%Nf in the control domain (H , Ma) of
Fig. 2. Take three nominal power points 85%Nf , 93%Nf and
100%Nf for example, covering the 80%Nf − 104%Nf power
states. Considering the fact that there are three nominal flight
points in the control domain, a total of 3 × 3 = 9 nomi-
nal working condition points need to be included, as listed
in Table 1.

To describe the proposed scheduling scheme in detail,
the 9 nominal working conditions in Table 1 are identified
in the three dimensional coordinate (H , Ma, Nf ), as shown
in Fig. 4.

In Fig. 4, the control domain under different nominal
power states can be regarded as planes perpendicular to
axis Nf . Suppose the current condition of engine is m
(Hx , Max , 90%Nf ) and it is obvious that ‘‘m’’ lies between
85%Nf and 93%Nf planes. The value of Wf under the con-
dition ‘‘m’’ can be obtained through the power scheduling
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TABLE 1. Different Nominal Points (NP).

FIGURE 4. The structure of the scheduling scheme.

layer, based on the values of Wf under the conditions
m1(Hx , Max , 93%Nf ) and m2(Hx , Max , 85%Nf ). Moreover,
the values of Wf under the conditions ‘‘m1’’ and ‘‘m2’’ can
be determined by the flight envelope scheduling layer, based
on ‘‘4,’’ ‘‘5,’’ ‘‘6’’ and ‘‘1,’’ ‘‘2,’’ ‘‘3’’ nominal controllers
respectively. Therefore, the value ofWf under the off-nominal
condition (Hx ,Max , 90%Nf ) can be finally determined by this
two-layer scheduling scheme.

A. THE FLIGHT ENVELOPE SCHEDULING LAYER
In the first layer, (H ,Ma) are used as scheduling parameters.
Under a certain power state, define current flight condi-
tions are (Hx , Max), and sensed parameters (T1x , P1x) can
then be achieved according to (5) or (6). In the same way,
the sensed parameters of nominal flight points 1, 2, . . . ,N1
can be expressed as (T11, P11), (T12, P12), . . . , (T1N1 , P1N1 ),
and outputs of these nominal predictive controllers are Wf 1,
Wf 2, . . . ,WfN1 accordingly. For this layer, the proposed fuzzy
membership degree scheduling approach, as well as a tradi-
tional scheduling technique used for comparison is described.
The regional scheduling approach is regarded as the tra-
ditional one, which means if the current flight condition
(Hx ,Max) lies in a section, then the nominal controller in this
section takes over. The fuzzy membership degree scheduling
strategy is as follows.

Define:

J1 =

√
(
P1x − P11

P11
)2 + (

T1x − T11
T11

)2

J2 =

√
(
P1x − P12

P12
)2 + (

T1x − T12
T12

)2

...

J3 =

√
(
P1x − P1N1

P1N1

)2 + (
T1x − T1N1

T1N1

)2 (8)

where J1, J2, . . . , JN1 represent the closeness degree between
current flight condition andN1 nominal flight conditions, and
the smaller the value is, the closer the two states are.

If J1 = 0, the required Wfx for (Hx , Max) is defined
as Wf = Wf 1, and J2 . . . JN1 are treated in the same way.
If J1, J2, . . . , JN1 6= 0, define Q1 = 1/J1, Q2 =

1/J2, . . . ,QN1 = 1/JN1 , and Wf 1 can then be expressed as:

Wfx=
Q1

Q1+Q2 + . . .+ QN1

Wf 1+
Q2

Q1+Q2 + . . .+ QN1

Wf 2

+ . . .+
QN1

Q1 + Q2 + . . .+ QN1

WfN1 (9)

Suppose that the current flight condition (Hx ,Max) belongs
to section 1, it is indicated that the current state is the closest
with nominal point 1, andQ1 is bigger, thus making the coef-
ficient Q1

Q1+Q2+...+QN1
become bigger and Wf 1 plays a domi-

nant role. Especially, if (Hx , Max) and the nominal point 1
almost overlap, then J1 → 0 and Q1 → ∞, there exists

Q1
Q1+Q2+...+QN1

≈ 1, and Wfx ≈ Wf 1. Similar conclusions

can be derived for sections 2, 3, . . . ,N1. It is obvious that the
above analysis is consistent with the practical situation.

For fuzzy membership degree scheduling technique,
the control values for the off-nominal flight condition are
determined by all nominal controllers with different weights,
and control variable can change in a continuous way
when flight conditions change. However, for the regional
scheduling approach, control variable may jump when flight
conditions go through different sections, because different
nominal controller is activated with changes of flight con-
ditions. Therefore, the proposed fuzzy membership degree
technique is better.

B. THE POWER SCHEDULING LAYER
Now we turn our attention to the power scheduling layer as it
relates to how the fan speed Nf is utilized as a scheduling
parameter. In the above flight envelope scheduling layer,
N2 nominal power controllers under the current flight condi-
tions (Hx , Max) could be got. For any power status between
Nf (k) and Nf (k + 1), which are two adjacent nominal power
points, the final output value of the adaptive predictive con-
troller (fuel flow) could be obtained by the linear interpolation
method, based on the control values for (Hx ,Max , Nf (k)) and
(Hx , Max , Nf (k + 1)). The linear interpolation approach can

VOLUME 5, 2017 24537



X. Du et al.: Scheduling Scheme of Linear Model Predictive Controllers for Turbofan Engines

be defined as:

ucmd = Wf _Hx ,Max (k)+
Nf − Nf (k)

Nf (k + 1)− Nf (k)
× (Wf _Hx ,Max (k + 1)−Wf _Hx ,Max (k)) (10)

where Wf _Hx ,Max (k) and Wf _Hx ,Max (k + 1) are control vari-
ables for working conditions (Hx ,Max , Nf (k)) and (Hx ,Max ,
Nf (k + 1)), and ucmd is the final control variable after these
two scheduling layers.

C. IMPLEMENTATION OF THE PROPOSED
SCHEDULING SCHEME
In this part, the example mentioned above that involves
9 working status is still adopted to illustrate the implementa-
tion of an adaptive model predictive controller with the two-
layer scheduling scheme, as shown in Fig. 5.

FIGURE 5. The implementation of the proposed scheduling scheme.

For the example, as shown in Fig.5, the 9 constrained
model predictive controllers are the basis of this adaptive con-
troller, which should be arranged in the bottom place. Then
through the flight envelope scheduling technique and power
scheduling strategy successively, as well as a packaged top
layer, the expected adaptive controller can be established and
realized. The inputs of this adaptive controller are composed
of the fan speedNf , the pilot’s instruction (the expected power
status), the flight conditions (H ,Ma), input and its increment
limits and output limits. The output is the main fuel flowWf .

V. SIMULATIONS
In this part, simulations are conducted to verify the effec-
tiveness of the proposed adaptive model predictive con-
troller with the two-layer scheduling scheme. Two cases are
included here.

A. CASE ONE
The control objective is to maintain the power states as
expected when the flight conditions change. In this example,
the desired power states is 90%Nf (4500r/min), and the flight
conditions (H ,Ma) changes dramatically with time, as shown
in Fig. 6 (a). In this situation, the changes of flight conditions
can also be regarded as disturbances applied to the system.

The input and output dynamic responses are then displayed
in Fig. 6.

For an expected power states of 90%Nf , which is between
85%Nf and 93%Nf nominal power states, the final control
value will be associated with six nominal model predictive
controllers named ‘‘1,’’ ‘‘2,’’ ‘‘3,’’ ‘‘4,’’ ‘‘5,’’ ‘‘6,’’ as men-
tioned in Section IV. In order to show the advantage of
the proposed fuzzy membership degree scheduling approach
(called ‘‘Approach 2’’ in Fig.6), control variable strategies in
each layer are depicted to compare the proposed technique
with the traditional regional scheduling approach (called
‘‘Approach 1’’ in Fig.6).

In Fig.6 (b), it is observed that when flight conditions
change, the output Nf can be restored to the original expected
setpoint in a very short time with minor deviations, which
indicates that the adaptive predictive controller can deal
with flight disturbances effectively during the steady state.
It is obvious that different scheduling schemes result in
different Nf response, and ‘‘Approach 2’’ is better than
‘‘Approach 1.’’

In Fig. 6(c)-(f), ‘‘m1’’ and ‘‘m2’’ denote control values at
nominal power states 85%Nf and 93%Nf respectively with
different scheduling methods. Taking ‘‘m2’’ for example,
Fig. 6(a) shows that flight trajectories go across two sec-
tions of the control domain comparing with Fig. 3. Accord-
ing to the principle of the traditional regional scheduling
approach, control value is determined by nominal controllers
‘‘1’’ or ‘‘2’’ with the changes of flight conditions, that is, there
exists switching between nominal controller ‘‘1’’ and ‘‘2.’’
As shown in Fig. 6(c), the control value is firstly dependent
on controller ‘‘1,’’ and at about 89s, then the control value
jumps to be determined by controller ‘‘2,’’ which results in a
bigger deviation forNf in Fig. 6(b). As for fuzzy membership
degree scheduling approach, the control value is decided by
a combination of three nominal controllers ‘‘1,’’ ‘‘2,’’ ‘‘3,’’
control value changes continuously and smoothly without big
jumps, which facilitates a better performance of Nf , as seen
in Fig. 6(b).

When control variables for ‘‘m1’’ and ‘‘m2’’ are deter-
mined by the flight envelope scheduling layer, the final
control variable can then be obtained by the power
scheduling layer (linear interpolation method), as shown
in Fig. 6(g) and 6(h).

This example shows that the adaptive LMPC controller
with this two-layer scheduling scheme owns the ability to
arrange these 9 nominal MPC controllers through parame-
ters H , Ma, and Nf . Through the analysis of control vari-
able trajectories in each layer, it is shown that the fuzzy
membership degree scheduling approach together with the
linear interpolation scheduling technique can make the con-
trol variable change in a continuous way, thus achieve the
control objective with satisfactory dynamic effect. Sim-
ilarly, for other expected constant power states objec-
tives, it can be validated that the control effects under
small disturbances are consistent with good disturbance
rejection.
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FIGURE 6. Input and output response trajectories with flight conditions changes. (a). Flight conditions trajectories. (b). Fan speed
response with different approaches. (c). Fuel flow change trajectories of flight scheduling layer at 93%Nf power state under
Approach 1. (d). Fuel flow trajectories of flight scheduling layer at 93%Nf power state with Approach 2. (e). Fuel flow trajectories
of flight scheduling layer at 85%Nf power state with Approach 1. (f). Fuel flow trajectories of flight scheduling layer at 85%Nf
power state with Approach 2. (g). Fuel flow trajectories of power scheduling layer with Approach 1. (h). Fuel flow trajectories of
power scheduling layer with Approach 2.

B. CASE TWO
In this case, the control objective is to transfer power
states for a large range from 82%Nf to 104%Nf

(4200r/min-5200r/min), that is, the acceleration and decel-
eration transition process for engines. An idea of the accel-
eration and deceleration process arrangement is to limit the
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FIGURE 7. Response during transition state. (a). Fuel flow trajectories
during transition state. (b). Fan speed response during transition state.
(c). Temperature response during transition state. (d). Surge margin
trajectories during transition state.

maximum/minimum change rate of the fuel flowWf , as well
as the maximum/minimum amplitude of the limited outputs
T45 (temperature after high-pressure turbine), smHPC (surge
margin).

Unlike the traditional transition controls (e.g. PID con-
troller) where anti-windup (IWU)must be taken into account,
MPC is well-known as a better way to deal with input and
output constraints directly within the process of optimiza-
tions. However, such constraints are not included in the con-
ventional control algorithms, which cannot produce a control
input that breaks away from the constraints to overcome
the ‘‘IWU’’ phenomenon. Therefore, for the adaptive MPC
controller, there is no need to consider the ‘‘IWU’’ problem
during the acceleration and deceleration transition state.

In this example, suppose the maximum limit of the Wf
change rate is 0.03kg/s and the minimum limit is -0.04kg/s.
In addition, for the output limits, T45 ≤ 1250K and
smHPC ≥ 12% are also taken into account during the transi-
tion state. These constraints are then added to the nominal
MPC controller designed in Section II. Input and outputs
trajectories are depicted accordingly in Fig.7.

As seen in Fig.7, Nf can track its setpoints with little
overshoot and short settling time. Input and output constraints
play an important role in the transition process. For the
acceleration process, rate limits of control variable Wf are
activated first, so Wf increases in an increment of 0.03kg/s,
until smHPC reaches its limit and followed by the T45 limit.
The deceleration process operates in a similar way. It is also
observed that limited outputs T45 and smHPC are within their
ranges during the transition state.

The simulation results show that the designed adaptive
MPC controller with the two-layer scheduling scheme meets
the performance requirements of both steady state and transi-
tion state processes. Therefore, it is feasible for the adaptive
MPC controller to be applied to turbofan engines.

VI. CONCLUSIONS
An adaptive model predictive controller based on a two-layer
scheduling scheme was designed and tested with a nonlinear
component level turbofan engine model, which can drive
the engine to operate randomly under the power states from
80%Nf to 104%Nf in the entire control domain. Acceler-
ation and deceleration transition processes are realized by
adding input and output constraints to the control system.
The fuzzy membership degree scheduling approach proposed
in the flight scheduling layer makes the control variable
change smoothly with the flight conditions. Although the
control domain considered in this paper is just a section of
the full flight envelope, the proposed method to divide the
entire envelope is the same, thus it is easy to extend the
controller to realize the control in the whole flight envelope.
Therefore, the two-layer scheduling method proposed in this
paper gives instructions for adaptive controller design involv-
ing the whole power states and the entire flight envelope.
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