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ABSTRACT This paper presents amethodology for the joint capacity optimization of renewable energy (RE)
sources, i.e., wind and solar, and the state-of-the-art hybrid energy storage system (HESS) comprised of
battery energy storage (BES) and supercapacitor (SC) storage technology, employed in a grid-connected
microgrid (MG). The problem involves multiple fields, i.e., RE, battery technology, SC technology, and
control theory, and requires an efficient and precise co-ordination between sub-fields to harness the full
benefits, making the problem labyrinthine. The optimization problem is formulated, and it involves a variety
of realistic constraints from both hybrid generation and storage, and an objective function is proposed to:
1) minimize the cost; 2) improve the reliability; and 3) curtail greenhouse gases (GHG) emissions. The
complex optimization problem is solved innovatively in piecewise fashion to decrease the complexity and
computational time. First, sizes of solar photovoltaic (PV) and wind turbine (WT) are determined using
an innovative search algorithm, and in the second step, the size of HESS is calculated, finally the optimal
solution is determined. A comparison based upon cost, reliability, and GHG emissions is presented which
plainly shows the effectiveness of the proposed methodology. The technique is also applied to determine the
size of an MG employing PV, WT, and BES operating in grid-connected mode. And a brief cost analysis,
reliability assessment, and emission reduction are given for three scenarios: 1) MG with HESS; 2) MG with
BES; and 3) MG with conventional generation. It is shown that an MG with HESS is not only economical
but also more reliable and has lower GHG emissions.

INDEX TERMS Hybrid energy storage, microgrid, optimization, renewable power.

NOMENCLATURE
A. ABBREVIATIONS
BES Battery energy storage
DG Distributed generator
ERBC Emission reduction benefit cost
ESS Energy storage system
GHG Greenhouse gases
HESS Hybrid energy storage system
MG Microgrid
PSO Particle swarm optimization
PV Photovoltaic
RE Renewable energy
SC Supercapacitor
UG Utility grid
WT Wind turbine

B. INDICES
i Index of PV
j Index of WT
t Time
u Case number
w Iteration number

C. PARAMETERS
A Area of PV array
Blim Minimum battery utilization limit
c Scale factor
e Allowable tolerance
FORPV Forced outage rate of PV
FORWT Forced outage rate of WT
I Solar irradiation

VOLUME 5, 2017
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

25897

https://orcid.org/0000-0003-2757-1287
https://orcid.org/0000-0003-2757-1287


U. Akram et al.: Innovative Hybrid Wind-Solar and Battery-SC MG System

n Total number of intervals
N Total number of renewable sources types
NPV Number of PVs
NWT Number of WTs
Prated Rated power of WT
To Atmospheric temperature
vr Rated speed of WT
vci Cut-in speed of WT
vco Cut-out speed of WT
ηPV Efficiency of PV
ηc Charging efficiency of battery
ηd Discharging efficiency of battery
η Efficiency of supercapacitor
ξ Self discharge rate of supercapacitor
1t Time step
σ Shape factor

D. VARIABLES
Bmax Maximum energy capacity of battery
Bcap Required energy capacity of battery
Bopt Optimal energy capacity of battery
Bchg Battery charging factor
BCS Battery corrected size
BDV Battery decision variable
Cmax Maximum energy capacity of supercapacitor
Ccap Required energy capacity of supercapacitor
Copt Optimal energy capacity of supercapacitor
Cinv−sc Investment cost of renewable energy sources
Cc,sr Capital cost of renewable energy sources
Cinv−stg Investment cost of storage
Cc,stg Capital cost of storage
Crep−stg Replacement cost of storage
Com Operation and maintenance cost
Com,f Fixed operation and maintenance cost
Com,v Variable operation and maintenance cost
CMG−U Total cost of energy supplied by MG to UG
CU−MG Total cost of energy supplied by UG to MG
Cexchg Per-unit cost of the exchanged power
CERBC Emission reduction benefit cost
Cg Per-unit cost of microgrid
ES Energy served
ENS Energy not served
EBES Energy stored in battery
EminBES Minimum stored energy limit of battery
EmaxBES Maximum stored energy limit of battery
ESC Energy stored in supercapacitor
EmaxSC Maximum stored energy limit of

supercapacitor
EminSC Minimum stored energy limit of

supercapacitor
NDES Net discounted energy served
PL Load power demand
PGT Microgrid total power generation
PCap Power supplied by supercapacitor

PBat Power supplied by battery
PcBES Battery charging power
PdBES Battery discharging power
PPV Power supplied by PV
PWT Power supplied by WT
Pgap Difference between generation and demand
Pgap−L Low frequency component of Pgap
Pgap−H High frequency component of Pgap
PG Power generated by wind and solar
1P Cumulative error matrix
PcmaxBES Battery charging power limit
PdmaxBES Battery discharging power limit
PcBES Battery charging power
PdBES Battery discharging power
PmaxSC Supercapacitor power limit
PMG−U Power supplied by microgrid to utility
PU−MG Power supplied by utility to microgrid
PWF Present worth factor
r Uniform random number
RSspace Reduced search space
Sspace Search space
SS Solution space
To Atmospheric temperature
v Wind speed
ωo Cut-off frequency

I. INTRODUCTION
During the past few decades, rising concerns for global
warming and volatile fossil fuels prices have made renewable
energy (RE) sources an attractive alternative. This trend has
been further underpinned by rapid advancements in the power
electronics field, which enabled full controllability of RE
sources, within the constraints inflicted by the natural phe-
nomenon [1]. The integration of RE sources in electric power
grid has evolved into the concept of microgrid (MG). MGs
are state-of-the-art active distribution networks consisting of
distributed generators (DGs), energy storage system (ESS),
and flexible loads, operated grid-connected or islanded, in a
controlled, coordinated way [2]. Due to the propinquity of
DGs to the loads in MGs and the utilization of RE sources,
MGs are trusted to supply its customers with more efficient
and eco-friendly energy, reduced power losses and network
congestion, and improved power quality and reliability com-
pared to the energy supplied by conventional power plants.
MGs are contemplated to be an integral part of smart grids in
the future electric power system.

Solar and wind are two expeditiously emerging RE
sources, especially solar has gained more popularity due
to significant decline in its cost over the past few years.
Since, such sources are intermittent, uncontrollable, stochas-
tic, and highly variable, their integration in the electric power
grid poses challenges to its effective operation, especially
at higher penetration levels. For example, load mismatch,
poor load following, voltage instability, frequency deviation,
inferior power quality, and reliability problems are some of
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the detrimental impacts that RE sources introduce in electric
power network [3]. New, innovative technologies and novel
ideas are required to alleviate the aforementioned problems,
to increase the penetration of RE sources in the electric
power grid.

A potential candidate solution to the aforesaid problems is
to store energy during surplus generation hours using ESS and
redispatch it appropriately later when needed [4]–[8]. Several
types of ESS are available and among them battery energy
storage (BES) system is most frequently utilized [9]–[11].
But batteries are only efficient at supplying low steady loads,
while outputs of RE sources are highly fluctuating, which are
not suitable for them. It is difficult for batteries to recover
from rapid power swings without a significant reduction in
their lifetime [12]. An ideal ESS must have a high power
density to follow rapid power fluctuations, a high energy
density to give autonomy to the electric power grid, and
longer life. As a sole energy storage technology is unlikely to
deliver these essentials effectively and economically, it is vital
to couple multifarious energy storage technologies, creating
a hybrid energy storage system (HESS).

Most recently, HESS has become an emergig storage tech-
nology as it combines the benefits of multiple technologies.
For example, BES and SC can be combined to build HESS.
The BES systems have high specific energy, low specific
power, low self-discharge, low cycle life, long charge times,
and relatively lower cost per watt-hour. On the other hand,
the SC storage systems have low specific energy, high spe-
cific power, high cycle life, very high self-discharge, short
charge times, and high cost per watt-hour [13], [14]. The
HESS makes use of complementary properties of BES and
SC and provides large energy supply, high power, and fast
dynamic response at the same time economically and effec-
tively [15]–[18]. Nevertheless, to optimize the lifetime of
both BES and SC, it is vital to ensure that both operate within
their operational constraints. BES must operate within its
state of charge and current bounds and SC within its voltage
and current bounds. At the same time the SC should respond
to rapid large current signals in order tomaximize the lifespan
of BES [19]. It is also important to note that the cost of
energy storage units per kilowatt is a strong function of their
capacity, and too high cost is prohibitive to commercial and
industrial acceptance, a method for optimizing the size and
operation of such HESS to fit application constraints is a
crucial task. In this paper, BES and SC storage technologies
will be combined to build up a HESS as shown in Fig. 1.

This paper proposes a methodology for the capacity opti-
mization of a residential MG employing hybrid PV-WT
and BES-SC. The proposed method benefits from multi-
disciplinary fields. For example, battery storage technology,
SC technology, RE technology, control theory with an effi-
cient co-ordination within the subsystems. For instance, very
precise co-ordination is required for the operation of HESS
specifically at the switching instance otherwise the full ben-
efits of HESS will not be harnessed. The sizing problem
is formulated and it is a complex optimization problem,

FIGURE 1. A hybrid energy storage system.

subjected to variety of realistic constraints both from hybrid
generation and storage, and an objective function is proposed
to (i) minimize the cost, (ii) improve the reliability, and
(iii) curtail green house gases (GHG) emissions. The com-
plex optimization problem is solved innovatively in piece-
wise fashion to reduce the complexity and computational
time. First, combinations of optimal sizes of PV and WT
are determined out of several possible combinations using an
advanced constraint based innovative search algorithm, and in
the second step, size of HESS is calculated for each combina-
tion. Finally, the optimal solution is determined based upon
the minimum value of the cost function. The main contribu-
tions of our work is that we propose a technique for combined
capacity optimization of hybrid generation, i.e., WT-PV sys-
tem and the HESS comprising of BES and SC employed
in grid-connected MG. As, instead of a single energy stor-
age or renewable energy source, we consider hybrid power
generation with hybrid energy storage, and optimize their
capacities. This optimization exploits the benefits from each
individual element, and therefore the solution achieved is
more cost efficient, highly reliable and eco-friendlier.

As a case study, the proposed methodology is validated
using real-world data of wind speed, solar irradiation and
power demand from Dammam city in Saudi Arabia.

The remainder of the paper is organized as follows.
Section II presents the related work and detailed MG model-
ing is discussed in Section III. The proposed methodology is
demonstrated in Section IV. The information of the databases
is provided in Section V. The Section VI presents results and
discussions and conclusion is given in Section VII.

II. RELATED WORK
Different methods have been proposed in literature for sizing
of MG and we will briefly review some of them here. In [20],
sizing of PV, WT, and ESS is done based on minimization
of total planning cost. In [21], genetic algorithm is used to
determine the optimal sizes of PV,WT, diesel, and BES based
upon cost, carbon emissions, and dump energy. In [22], sizing
of WT, PV, BES, and fuel cell is done based on the cost and
reliability. In [23], optimal sizes of PV, WT, diesel generator,
BES, and pumped storage are determined based upon mini-
mizing both initial investment and operational/maintenance
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FIGURE 2. Block diagram of grid-connected MG system.

costs. In [24], sizes of PV, WT, and BES are determined
using mixed integer linear programming. In [25], capacity
optimization of PV, WT, diesel generator, BES, fuel cell,
electrolyzer, and hydrogen tank is done based upon cost
minimization, GHG emissions, and reliability using particle
swarm optimization (PSO). In [26], optimal sizes of PV,
WT, and BES are determined considering multiple objec-
tives, i.e., cost minimization, and higher supply reliability.
In [27], optimal sizing of MG comprising of WT, PV, BES,
and biomass is done considering two alternative objectives,
i.e., minimization of total annual energy losses and cost of
energy. In [28], optimal sizing and sitting of renewable DGs is
done based upon the minimization of annual investment cost
and operation cost. In [29], planning of PV, WT, and BES
grid-connected MG is done based upon cost minimization
and customer satisfaction maximization, and mixed integer
linear programming is used to solve the optimization prob-
lem. In [30], optimal sizing of PV, WT, and BES based
residential MG is done considering the cost minimization
objective. In [31], capacity optimization of PV and BES is
done based upon levelized cost of energy. In [32], capacity
optimization of PV, WT, tidal turbine, and BES is done based
upon the net present cost and reliability, the optimization
problem is solved using crow search algorithm. In [33], opti-
mal sizes of PV, WT, diesel generator, biodiesel generator,
fuel cell, and BES are determined based on minimization of
cost of energy. In [34], optimization of BES-SC is done based
upon initial investment cost and simulated annealing PSO is
used to solve the optimiztion problem. In [35], a statistical
approach is used to optimize the size of the BES-SC hybrid
storage system.

It is important to understand that the size of ESS depends
upon the behavior of load, wind power, and solar power.
So, optimal size of ESS determined for a particular geograph-
ical location cannot be considered as optimal for any other

location even with same installed capacities of RE sources.
Thus, to harvest maximum benefits it is necessary to optimize
RE sources and ESS altogether. Also, BES systems have
limited number of cycles. One of the primary purposes of
hybridization of BES system with SC storage technology is
to prolong the lifespan of BES system. Therefore, it is also
vital to consider the cycles of BES system while optimizing
BES-SC system. Moreover, initial investment cost, operation
and maintenance cost, replacement cost, reliability, and GHG
emissions should be considered in the objective function
to get more optimized results. It is clearly evident from
the existing literature, the researchers have considered these
aforementioned parameters in their formulations, however,
considering sum of parameters is important but in most of
the cases, formulations are based upon one parameter only.
For example, [34] has optimized the size of BES-SC energy
storage based upon initial investment cost.

In general, the literature deals with the capacity opti-
mization of MGs employing single or multiple RE sources,
conventional DGs, ESS, and variety of loads, operating
in grid-connected or islanded mode based upon cost or
cost-reliability. And to date, to the best knowledge of authors
no methodology has been developed for the joint capacity
optimization of the emerging hybrid PV-WT and ultramodern
BES-SC system employed by a grid-connected MG system.

III. MICROGRID MODELLING
The block diagram of the MG considered in this study is
shown in Fig. 2, it utilizes PV-WT for hybrid power gen-
eration and BES-SC for hybrid energy storage. A hybrid
RE system, employing two or more RE sources, mitigates
the intermittent nature of RE resources to some extent and
also improves the system efficiency [21]. The PV and WT
are coupled to generation bus through DC/AC and AC/AC
converters respectively, and HESS is connected to AC bus via
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bidirectional DC/AC converter. The residential load is taped
from the load bus via step down coupling transformers, and
the utility grid (UG) is also connected to the load bus at point
of common coupling (PCC) through a controlled switch.

A. WIND POWER GENERATION SYSTEM
A WT generates electrical energy from kinetic energy of
wind. Weibull distribution function can be used to estimate
the wind speed as

F (v) = 1− exp
(
−

(v
c

)σ)
(1)

v = c [−ln (1− r)]
1
σ (2)

v = c [−ln (r)]
1
σ (3)

where σ is shape factor, c is scale factor, v is wind speed
in m/sec and, r is uniform random number. The values of
σ and c of any geographical location can be obtained from
the historical data. Using the wind speed the power output of
a WT can be calculated as [36].

PWT (v) =


0 v < vci

Prated ×
v− vci
vr − vci

vci ≤ v < vr

Prated vr ≤ v < vco
0 v ≥ vco

(4)

where vci, vr , and vco are cut-in, rated, and cut-out speeds
respectively, PWT is the output power of WT, and Prated
is the rated power of WT. From (4) the power output of
WT is zero below vci and above vco, and the output power
increases linearly with the increase in the wind speed between
vci and vr , and it generates rated power between vr and vco.

B. SOLAR PHOTOVOLTAIC GENERATION SYSTEM
A solar PV generation system converts solar energy to elec-
trical energy. The output power of a PV system depends
upon solar irradiation, atmospheric temperature, area and
efficiency of the PV array. It is assumed that a maximum
power point tracker is installed to extract the maximum of
available power. The hourly output power of a PV system is
calculated as

PPV (t) = ηPVAI (t) (1− 0.005 (To (t)− 25)) (5)

where ηPV is the efficiency and A is the area inm2 of the solar
cell array, I is the solar irradiation in kW/m2, and To is the
atmospheric temperature in oC .

C. BATTERY ENERGY STORAGE SYSTEM
A BES system consists of series and parallel strings of
batteries. In this work, a sodium sulphur (NaS) battery is
considered. NaS is one of the batteries used for commercial
electrical energy storage in electric utility distribution grid
support, wind power integration, and high-value grid ser-
vices. Its applications include load levelling, peak shaving,
and power quality as well as renewable energy management

and integration. A BES model, as given in [37], is calculated
as

Charge : EBES (t +1t) = EBES (t)+1tPcBESηc (6)

Disharge : EBES (t +1t) = EBES (t)−1t
PdBES
ηd

(7)

Charging/discharging constraints are

0 ≤ PcBES ≤ P
cmax
BES (8)

0 ≤ PdBES ≤ P
dmax
BES (9)

Stored energy bounds are

EminBES ≤ EBES (t) ≤ E
max
BES (10)

where EBES is the energy stored in the battery, i.e., state-of-
charge, PcBES and PdBES are charging and discharging powers
respectively, and ηc is charging efficiency and ηd is discharg-
ing efficiency of the battery.

D. SUPERCAPACITOR
Energy stored in the SC at any instant is modeled as

ESC (t +1t) = ESC (t)+ η1tPSC − ξESC (t) (11)

subjected to the following constraints

EminSC ≤ ESC (t) ≤ EmaxSC (12)

0 ≤ PSC (t) ≤ PmaxSC (13)

where ESC is the energy stored in SC, η is charging/
discharging efficiency, ξ is self-discharge rate, and PSC is
the power supplied/drawn to/from the SC. During charging
period PSC is positive while it is negative during discharg-
ing period. The (12) represents the stored energy constraint
whereas (13) represents the bounds for power supplied/drawn
to/from the SC.

E. UTILITY GRID
Utility grid serves two important objectives, (i) ensures load
and generation always to be equal by supplying the demand
whenever MG generation is lower than demand, and (ii) buys
energy from the MG during surplus generation hours to make
the system more economical. The power of UG at any instant
of time can be modeled as

Pgrid (t)=PL (t)−
∑

(PWT (t) ,PPV (t) ,PBES (t) ,PSC (t))

(14)

where Pgrid is the power supplied to/from the UG, PL is load
demand, PBES is the power supplied by BES and PSC is the
power supplied by SC. During surplus generation hours Pgrid
is negative while positive during inadequate supply hours.

IV. PROPOSED METHODOLOGY
The proposed methodology is further divided into five sub-
sections. Section IV-A presents methodology for sizing of
RE sources, and HESS sizing strategy is discussed in detail

VOLUME 5, 2017 25901



U. Akram et al.: Innovative Hybrid Wind-Solar and Battery-SC MG System

in Section IV-B. Reliability and economic modeling is dis-
cussed in Section IV-C, while modeling of GHG emissions
is presented in Section IV-D. Finally, the objective function
formulation is given in Section IV-E.

A. RENEWABLE ENERGY SOURCES SIZING
Consider a hybrid PV-WT generation system as shown
in Fig. 2. Power generated by the system is calculated as
follows

P(i,j)G (t)=N i
PVPPV (t)PV

i
status (t)+N

j
WTPWT (t)WT

j
status (t)

∀i ∈ [1, imax] , j ∈ [1, jmax] , t > 0 (15)

where

PV i
status (t) =

{
0 GiPV (t) < FORPV
1 otherwise

∀i, t > 0

GiPV (t) = rand () (16)

and

WT jstatus (t) =

{
0 GjWT (t) < FORWT
1 otherwise

∀i, t > 0

GjWT (t) = rand () (17)

subjected to the following constraints

Nmin
PV ≤ N i

PV ≤ N
max
PV

Nmin
WT ≤ N j

WT ≤ N
max
WT

wherePG is the renewable generated power,NPV andNWT are
the number of PVs and WTs, PPV and PWT are the powers
generated by single PV and WT, and PVstatus and WTstatus
are the statuses of PVs and WTs which decide whether they
would generate power or not. When the value of PVstatus
of a solar PV is 0 that means the solar PV cannot generate
power because of some fault or any other reason. As given
in (16) and (17), values of PVstatus andWTstatus are calculated
using forced outage rates FORPV and FORWT .GPV andGWT
are random numbers which are generated using the rand ()
command of MATLAB. Nmin

PV , Nmin
WT , N

max
PV , and Nmax

WT are
minimum and maximum number of PVs and WTs which are
calculated using following relations:

Nmin
PV =

∑n
t=1 αPL (t)∑n
t=1 PPV (t)

(18)

Nmin
WT =

∑n
t=1 βPL (t)∑n
t=1 PWT (t)

(19)

Nmax
PV =

∑n
t=1 γPL (t)∑n
t=1 PPV (t)

(20)

Nmax
WT =

∑n
t=1 ρPL (t)∑n
t=1 PWT (t)

(21)

where α, β, γ , and ρ are scaling factors and n is the total
number of intervals. The instantaneous error between load
and generation is calculated as follows

1p(i,j) (t) = PL (t)− P
(i,j)
G (t) ∀i, j, t > 0 (22)

where 1p is the instantaneous error. Cumulative error 1P is
the sum of absolute values of all instantaneous errors.

1P(i,j) (t) =
n∑
t=1

(
|1p(i,j) (t)|

)
∀i, j, t > 0 (23)

where 1P(i,j) is the cumulative error corresponding to N i
PV

and N j
WT . A smaller value of the cumulative error means

that intermittent generation follows load demand effectively.
While a larger value of the cumulative error shows that there
is a significant difference between load and generation. All
cumulative errors are stored in a matrix as

1P =

 1P(1,1) · · · 1P(1,jmax )
...

. . .
...

1P(imax ,1) · · · 1P(imax ,jmax )


(imax×jmax )

(24)

where 1P is the matrix that contains the values of the cumu-
lative errors for every possible combination of NPV and NWT .
The values of NPV and NWT that correspond to each 1P are
stored in the vectors NPV and NWT as follows

NPV =
[
Nmin
PV · · · Nmax

PV

]T (25)

NWT =
[
Nmin
WT · · · Nmax

WT

]
(26)

A search space has been formulated by using (24)-(26) as

Sspace =
[

0 NWT
NPV 1P

]
(imax+1)×(jmax+1)

(27)

where Sspace is the search space which contains all possible
combinations ofNPV andNWT and their corresponding cumu-
lative errors. The Sspace is reduced by selecting the minimum
value of the 1P from its each column as follows

1Pmin =
[
1P1min · · · 1Pjmaxmin

]
1×jmax

(28)

where

1Pjmin = min
(
Sspace (z, j)

)
∀j (29)

z = 2, ......, imax + 1

where 1Pmin is the vector which contains the minimum val-
ues of cumulative errors, i.e.,1Pmin extracted from the Sspace.
The values of NPV and NWT that correspond to the minimum
values of the cumulative errors are stored in the following
vectors as

NPVmin =

[
N 1
PVmin · · · N jmax

PVmin

]T
jmax×1

(30)

NWTmin =

[
N 1
WTmin · · · N jmax

WTmin

]
1×jmax

(31)

A reduced search space is formulated using (28)-(31) as

RSspace =
[
1Pmin

T NPVmin NWTmin
T ]

jmax×3
(32)

where RSspace is the reduced search space. There are jmax
combinations ofNPVmin andNWTmin inRSspace for which there
will be jmax optimal storage sizes, one for each combination.
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B. HYBRID ENERGY STORAGE SYSTEM SIZING
Power generated by any combination selected from the
reduced search space is calculated using following equation

PuG (t) = Nminu
PV PPV (t)+ Nminu

WT PWT (t) ∀t > 0 (33)

subjected to following constraints

Nmin1
PV ≤ Nminu

PV ≤ N
minjmax
PV

Nmin1
WT ≤ Nminu

WT ≤ N
minjmax
WT

where PG is the power generated by the MG and u is the case
number. The difference between power generated and power
demanded for case u at any instant of time is denoted by pugap
and calculated as follows

pugap (t) = PL(t)− PuG (t) ∀t > 0 (34)

The pgap is divided into two components, i.e., high frequency
and low frequency components as shown in Fig. 2. The high
frequency component is used for the sizing of SC and the
low frequency component is used for the sizing of BES.
The algorithm for dividing pgap into high and low frequency
components can be realized by low pass energy filter whose
transfer function is given below

H (s) =
Kω2

o

s2 + (ωo/Q)+ ω2
o

(35)

pugap = pugap−H + p
u
gap−L (36)

where ωo is cut-off frequency, pgap−H is high frequency
component, and pgap−L is low frequency component. The
maximum capacities of BES and SC that can be employed
to store all of the excess energy are determined by using
the algorithms given below. These algorithms represent the
operation of BES and SC based upon which their maximum
capacities, that can be installed, have been calculated.

Pugap−H (h̄) =

{
Pugap−H (h̄) Pugap−H (h̄) > 0

0 otherwise
∀h̄ (37)

where

Pugap−H (h̄) =
h̄∑
t=1

pugap−H (t) (38)

The maximum SC size is calculated as

Cu
max = max(Pugap−H ) (39)

Similarly, for BES we have

Pugap−L (h̄) =

{
Pugap−L (h̄) Pugap−L (h̄) > 0

0 otherwise
∀h̄ (40)

where

Pugap−L (h̄) =
h̄∑
t=1

pugap−L (t) (41)

The maximum capacity of BES is calculated as

Bumax = max(Pugap−L) (42)

where Bmax and Cmax are the maximum capacities of BES
and SC. Required capacities of BES and SC would be less
than or equal to Bmax and Cmax which are calculated as

Bucap =

{
Bumax x = 1
CBSu x = 0

(43)

where Bcap is the required energy capacity of battery. The
Bcap is equal to Bmax if the battery discharges completely
after the full charging period and this condition is indicated by
x = 1. While the Bcap is equal to corrected battery size CBS
if the battery does not discharge fully after its full charging
period, this condition is indicated by x = 0. The condition
x = 0 implies that the battery is over-sized. An iterative
region elimination algorithm is used to calculate CBS which
is defined by following equations:

CBSu(w) =
Sumin(w)+ S

u
max(w)

2
(44)

where

Sumin(w+ 1) =

{
Sumin(w) x = 1
CBS(w) x = 0

(45)

and

Sumax(w+ 1) =

{
Sumax(w) x = 0
CBS(w) x = 1

(46)

STEPua = Sumax(w)− S
u
min(w) (47)

where Smin and Smax are the minimum and maximum bound-
aries of solution, STEPa is the difference between the
minimum and maximum boundaries, and w is the iteration
number. Initially, Smin and Smax are set equal to 0 and Bmax
respectively. Both of them get updated in an iterative fashion
until STEPa becomes less than or equal to the allowable tol-
erance e. Similar calculations that are given in (43)-(47) can
be repeated (just with a little modification in the constraints
while calculating x) to find the required size of SC (Ccap).
The Bcap and Ccap are the required sizes but both are not
optimal. If they are installed, the system will be reliable but
not efficient and economical.

An important parameter that needs to be checked is utiliza-
tion factor; higher value of utilization factor reduces the idle
time and ensures the maximum benefit from BES and SC.
Therefore, utilization factor is used to determine the optimal
capacities of BES and SC. In order to calculate the utilization
factor, battery decision variable BDV is computed as

BDV u
=

∑
Buchg−dcg(t)

n
∀t > 0 (48)

where

Buchg−dcg(t)=

{
1 |Pugap(t)−P

u
gap(t−1t)|≥λP

u
BESmax

0 else
∀t>0

(49)

where Bchg−dcg is the battery charging and discharging factor
which is equal to one when the charging or discharging power
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is greater than or equal to λPBESmax , where λ is a constant
which can take a value btween 0 and 1. Hence, optimal size
of BES is calculated as

Buopt =

{
Bucap BDV u

≥ Blim
BCSu else

(50)

where Bopt is the optimal capacity of BES and Blim is the min-
imum battery utilization limit. The Bopt equals to Bcap if BDV
becomes greater than or equal to Blim otherwise Bopt equals
to battery corrected size BCS. The BCS is calculated using a
region elimination iterative search algorithm as following

BCSu(w) =
OCFumin(w)+ OCF

u
max(w)

2
(51)

where

OCFumin(w+ 1) =

{
OCFumin(w) BDV u

≥ BUlim
BCSu(w) else

(52)

and

OCFumax(w+ 1) =

{
BCS(w) BDV u

≥ BUlim
OCFumax(w) else

(53)

STEPub = OCFumax(w)− OCF
u
min(w) (54)

where OCFmin and OCFmax are the minimum and maxi-
mum boundaries of solution respectively and STEPb is the
error between minimum and maximum boundaries. Initially,
OCFmin and OCFmax are set equal to 0 and Bucap and both
of them get updated in the iterative algorithm until STEPb
reaches below the allowable tolerance e. Similar calculations
that are given in (50)-(54) are repeated (just with a little
modification in the constraints while calculatingBDV ) to find
optimal size of SC (Copt ). A suitable value of ωo for every
combination of RSspace is determined using particle swarm
optimization (PSO) technique to calculate the Bopt and Copt .

C. RELIABILITY AND ECONOMIC MODELING
Reliability and cost are two important parameters that can be
used to analyze the performance of a system. A power system
having lower cost, higher reliability (i.e., energy served),
and lower GHG emissions can be considered to have better
performance. In this study, the optimal solution is determined
on the basis of cost, reliability, and GHG emissions.

The total generation of MG after finding the optimal size
of the HESS, i.e., Bopt and Copt for uth combination of
PV and WT is calculated as following

PuGT (t)=N
minu
PV PPV (t)+Nminu

WT PWT (t)+PuBat (t)+P
u
Cap (t)

(55)

where PGT is the total power generated by MG, PBat is the
power supplied by battery and PCap is the power supplied
by SC. Energy served is the summation of demand that is
served by the MG over a period of its operation.

EuS =
n∑
t=1

Du(t) (56)

where

Du(t) =

{
PL(t) PuGT (t) ≥ PL(t)
PuGT (t) otherwise

∀t > 0 (57)

where ES is energy served, PL is the load power demand, and
PGT is total generation of the MG. Energy not served ENS
is the summation of demand that is not supplied by the MG
during its operation.

EuNS =
n∑
t=1

Gu(t) (58)

where

Gu(t)=

{
PL(t)− PuGT (t) PL(t)>PuGT (t)
0 otherwise

∀t>0 (59)

Net discounted energy served is calculated as

NDEuS = EuSPWF (60)

where

PWF =

[
(1+ d)l − 1

d (1+ d)l

]
(61)

where PWF is the present worth factor, l is the year of
operation, and NDEuS is the net discounted energy served by
the MG.

As discussed earlier, cost is also an important parameter
that can be used to assess the performance of a system. In this
work initial investment cost, fixed and variable operation
and maintenance costs, storage replacement cost, and cost of
energy exchanged between MG and UG are considered. The
following relation is used to determine the investment cost
associated with RE sources

Cu
inv−sc =

N∑
k=1

Ck
c,srP

k,u
sr (62)

where Cinv−sc is the total investment cost of RE sources,
Ck
c,sr is the capital cost of k th source in $/MW, Pksr is the

installed capacity of k th source in MW, and N is the total
number of RE sources. The investment cost of storage system
is calculated as follows

Cu
inv−stg =

M∑
k=1

(
Ck
c,stgE

k,u
stg + C

k
c,pcsP

k,u
stg

)
(63)

where Ck
c,stg is the capital cost of k

th storage unit in $/MWh,
Ekstg is the energy capacity of k th storage unit in MWh,
Ck
c,pcs is the cost of power conditioning system required for

the storage in $/MW, Pkstg is the power capacity of k
th storage

unit in MW, and M is the total number of storage units. The
replacement cost of storage is modeled as following

Ck,u
rep−stg =

∑ Ck
c,stgE

k,u
stg

(1+ d)s
s = p, 2p, 3p, ....l − p (64)

where d is the discount rate and p is the life of the storage
in years. The operation and maintenance costs of the MG
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consist of fixed and variable operation and maintenance costs
are calculated as follows

Cu
om = Cu

om,f + C
u
om,v (65)

where

Cu
om,f =

n∑
t=1

M+N∑
k=1

T k (t) J kom,f P
k
r (66)

and

Cu
om,v =

n∑
t=1

M+N∑
k=1

J kom,vP
k (t) (67)

where Com,f is the fixed operation and maintenance cost,
T k is the time of operation of k th element, J kom,f is the
operation and maintenance cost factor in $/MW-yr, and Pkr is
the rated power capacity of k th element in MW. The variable
operation and maintenance cost is referred by Com,v, J kom,v is
the variable operation and maintenance cost factor in $/MW,
and Pk (t) is the output power of k th element at time t in MW.
Net present value of Com is calculated as

NPVCu
om = Cu

omPWF (68)

where NPVCom is the present worth of Com.
During surplus generation hours, the MG sells energy

to UG. Total cost and net present worth of the energy supplied
by MG to UG is calculated as follows

Cu
MG−U =

n∑
t=1

Cexchg (t)PuMG−U (t) (69)

NPVCu
MG−U = Cu

MG−UPWF (70)

where CMG−U is the total cost of the energy sold by MG
to UG, Cexchg (t) is the cost at time t , PMG−U (t) is the power
supplied by MG to UG at time t , and NPVCMG−U is the
present worth of CMG−U . In the event when MG generation
is insufficient to meet the demand, the MG buys power
from UG. Total cost and net present worth of energy supplied
by the utility to MG is calculated using following equations

Cu
U−MG =

n∑
t=1

Cexchg (t)PuU−MG (t) (71)

NPVCu
U−MG = Cu

U−MGPWF (72)

where CU−MG is the total cost of energy supplied by UG
to MG, Cexchg (t) is the cost at time t , PU−MG (t) is the power
supplied by UG to MG at time t , and NPVCU−MG is the
present worth of CU−MG.

D. MODELING OF GHG EMISSIONS
When electric power is generated by burning fossil fuels,
it results in GHG emissions in the environment. There is
a correction cost which is needed to mitigate the damage
caused by these emissions as shown in Table 1. This correc-
tion cost would be a saving if the electric power is generated
by utilizing RE sources instead of fossil fuels. This saving

TABLE 1. Greenhouse gases emission data.

is named as emission reduction benefit cost (ERBC), and
modeled as

Cu
ERB =

4∑
k=1

n∑
t=1

PuGT (t)E
kEkcc (73)

where CERB is the total ERBC, PGT (t) is the power output
of MG at time t , Ek is the emission of k th type of GHG,
and Ekcc is the cost required to correct the damage caused
by k th type of GHG. The net present value of total ERBC
is calculated using following equation as

NPVCu
ERB = Cu

ERBPWF (74)

where NPVCERB is the present worth of ERBC.

E. COST FUNCTION FORMULATION
The objective is to find an optimal combination of PV, WT,
BES, and SC that must result in lower cost, higher reliability,
and lower GHG emissions. Cost function of the optimization
problem is formulated as following

obj : Fu=
√(
f u1 (X1

u,X2
u)−f u2 (X1

u,X2
u)
)2
→min (75)

s.t.

{
g` (X1

u,X2
u) = 0 ` = 1, 2, , . . . ,m

hı (X1
u,X2

u) ≤ 0 ı = 1, 2, , . . . , q
(76)

where

X1
u
=

[
Nminu
PV , Nminu

WT , PuCap, P
u
Bat

]
(77)

and

X2
u
=

[
EuCap, E

u
Bat , ω

u
o

]
(78)

The first term in the objective function is cost per unit of
the MG. It is important to note that the initial investment
cost of sources (62), initial investment cost of storage (63),
operation and maintenance cost (68), replacement cost (64),
cost of energy supplied by UG toMG (71), and energy served
(60) are incorporated in the cost per unit of MG. Second
term of the objective function represents the GHG emissions
that are translated in terms of cost using ERBC concept
as discussed in Section IV-D. The equality constraints are
referred by g and in-equality constraints are referred by h.
All system constarints are summarized as:

The Pimary System Constraint (Generation = Demand):

PuGT + P
u
U−MG − PL − P

u
MG−U = 0 (79)

The hybrid power generation constraints:

Nmin1
PV ≤ Nminu

PV ≤ N
minj
PV (80)

Nmin1
WT ≤ Nminu

WT ≤ N
minj
WT (81)
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TABLE 2. Monthly shape and scale factors.

BES Constraints:

0 ≤ PcBES ≤ P
cmax
BES (82)

0 ≤ PdBES ≤ P
dmax
BES (83)

EminBES ≤ EBES (t) ≤ EmaxBES (84)

SC Constraints:

EminSC ≤ ESC (t) ≤ EmaxSC (85)

0 ≤ PSC (t) ≤ PmaxSC (86)

Switching Frequency Constraint:

0 ≤ ωuo ≤ 1 (87)

A solution space is generated which contains the values of
cost function that correspond to all jmax combinations of PV,
WT, BES, and SC. Solution space is given as follows

SS =
[
F1 F2 . . . F jmax

]
1×jmax

(88)

where SS is the solution space and F is value of the
objective function. There are jmax possible solutions each
corresponding to one combination. The best solution from the
SS is selected based uponminimum value of the cost function
by using a minima search algorithm. The pseudocode of the
optimal sizing is given in Algorithm I.

V. DATABASES
As mentioned earlier, the proposed methodology is tested
using real-world data of wind speed, solar irradiation and
power demand from Dammam city in Saudi Arabia. The
Dammam city lies in the eastern province of Kingdom of
Saudi Arabia and its coordinates are 26.3927N, 49.9777E.
Thewind speed is calculated using the shape and scale param-
eters of Weibull distribution. The shape and scale parameters
were determined using well maintained meteorological data
of wind of 20 years [38]. Monthly shape and scale parameters
are given in Table 2. The normalized daily average residen-
tial power demand of the calendar year 2015 is presented
in Fig. 3, which depicts that the daily peak occurs around 8 pm
while minimum demand appears around 7 am. The normal-
ized daily average solar irradiation is shown in Fig. 4 showing
irradiation peak at around 1pm.Whereas the normalized daily
average wind speed is shown in Fig. 5. It can be observed that
wind speed is variable and fluctuates throughout the day. The
economic and technical data is given in Table 3.

Algorithm 1 Optimal Capacity Sizing
Start
Initialization: i← 1, j← 1, t ← 1, u← 1, e← 0.1
• Data Generation

Read: c, σ , I , α, β, γ , ρ, Load
Calculate: PPV , PWT , PL , Nmin

PV , Nmin
WT , N

max
PV , Nmax

WT , PG
Save: PPV , PWT , PL , Nmin

PV , Nmin
WT , N

max
PV , Nmax

WT , PG
• Search Space Formation

While i ≤ imax Do
While j ≤ jmax Do

Calculate: 1P(i,j), 1P
Save: 1P, NPV, NWT
Calculate: Sspace
j← j+ 1

End While
i← i+ 1

End While
• Reduced Search Space Formation

While j ≤ jmax + 1 Do
While i ≤ imax + 1 Do

Calculate: 1Pjmin, N
j
PVmin , N

j
WTmin

i← i+ 1
End While
Calculate: 1Pmin, NPVmin , NWTmin

j← j+ 1
End While
Calculate: RSspace
• HESS Sizing

While u ≤ jmax Do
Call PSO
Calculate: PuG, p

u
gap, ωo, P

u
gap−H , P

u
gap−L

• Required size of BESS and SC
Calculate: Bumax , x, C

u
max ,

Call Region reduction iterative search algorithm
• Optimal size of BESS and SC

Calculate: Buchg−dcg, BDV
u

Call Region reduction iterative search algorithm
Calculate: PuGT , E

u
S , C

u
g , F

u

u← u+ 1
End While
• Determination of the optimal solution

Generate: SS
CallMinima search algorithm
Optimal solution

End

VI. SIMULATION RESULTS AND DISCUSSIONS
The first step in our proposed methodology is to find combi-
nations of PV and WT for the reduced search space given
in (32). The determination of the combinations is based
upon minimization of the cumulative error between load
and generation, defined in (23), so that renewable power
generation should have better load following. The algorithm
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TABLE 3. Economic and technical data of sources.

FIGURE 3. Normalized average daily power demand of Dammam of
calendar year 2015.

FIGURE 4. Normalized daily average solar irradiation.

given in Section III-A has selected 800 combinations of PV
and WT. As mentioned earlier, RE sources perform effec-
tively when operated with properly sized and suitable type
of energy storage. The optimal size of ESS is characterized
by both energy storing capacity and maximum power rating.
Second step of the strategy is to determine the energy (MWh)
and power (MW) capacities of BES system and SC storage.
Finally, the optimal combination of PV, WT, BES, and SC is
determined based upon three important parameters, i.e., cost,
reliability, and GHG emissions. The solution space, as given
in (88), is formulated and shown in Fig. 6. It is important to
note that for each index of solution space there is a combi-
nation of PV, WT, BES, and SC, and optimal combination

FIGURE 5. Normalized daily average wind speed.

FIGURE 6. Variation in the cost function w.r.t. index of the solution space.

corresponds to the index with minimum value of objective
function. A smaller value of the objective function implies
that the energy supplied by the MG is larger, cost per unit of
the MG is smaller, GHG emissions are lesser, and emission
reduction benefit cost (as defined in (73)) is higher. In the
presented case study, the minimum value of cost function
appears corresponding to index number 88 which can be seen
in Fig. 6.

The optimal capacities of PV, WT, BES, and SC are given
in Table 4. The overall cost per unit is USD 0.1552. It is
important to note that the cost per unit is the function of many
parameters, for example a location with higher correlation
between the solar irradiation curve, wind speed curve and
load curve would result in further reduction in cost, and our
optimized solution will then be more effective and justified.
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TABLE 4. Optimal capacities combination.

FIGURE 7. Cost function vs different combinations of PV and WT.

FIGURE 8. Cost function vs different combinations of SC and BES.

In order to get more comprehensible insight in variations
of the cost function with RE sources and HESS capacities,
the cost function is plotted against the combinations of PV
and WT, and SC and BES, that corresponds to each index
of solution space shown in Fig. 7 and Fig. 8 respectively.
Initially, the installed capacities of both RE sources andHESS
are small while values of the cost function are higher because
GHG emissions are higher, energy served by theMG is lesser,
and ERBC is also small. With the increase in the installed
capacities, corresponding values of the cost function decrease
because energy supplied by the MG increases which results
in lower GHG emissions and increased ERBC. Although,
per unit cost also increases with the increase in the installed
capacities but its impact on the objective function is non-
dominant for moderate capacities. However, for very large
capacities, values of the objective function are high because
the impact of cost of RE sources and HESS on objective func-
tion becomes dominant. Although, for very large capacities

FIGURE 9. Hybrid power generation.

FIGURE 10. Load power demand.

energy supplied by the MG is higher, GHG emissions are
lesser and ERBC is also higher but their impact on the cost
function is less dominant as compared to the cost of RE
sources and HESS. The cost of BES and SC is very high so
for larger capacities they have large impact on overall cost of
the MG.

The hybrid power generated by optimal PV-WT system
and the load power demand are shown in Fig. 9 and Fig. 10
respectively. While the error/gap between the generation and
demand is plotted in Fig. 11. This error is required to be
supplied to/by energy storage system, which is HESS in
our case. The error signal is supplied to/by BES and/or SC
depending upon its magnitude and frequency. A histogram
of the error signal is presented in Fig. 12 which shows that
most of the times the magnitude of error is more than the
rated power capacity of BES system. However, most of the
times the error signals can be supplied by utilizing the HESS
system.

A comparison based upon cost per unit of the MG, GHG
emissions, energy served by the MG, and ERBC, between
four different possible solutions selected from the solution
space, is tabulated in Table 5. Cost per kWh of the MG is
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TABLE 5. Comparison between different possible solutions.

FIGURE 11. Difference in generation and demand.

FIGURE 12. Histogram of gap between generation and demand.

minimum for Case number 2 and maximum for Case num-
ber 4, since installed capacities in this case are very high.
The GHG emissions are minimum for Case number 4 while
maximum for Case number 1, and moderate for Case num-
ber 2 and 3. Energy served is highest for Case number 4whilst
lowest for Case number 1 and moderate for Case number 2.
As the optimal solution is determined based upon the cost,
reliability, i.e., energy served, and GHG emissions, Table 5
clearly shows that Case number 2 is optimal.

As mentioned earlier that the output of RE sources is
variable, so it may happen during the operation of the MG
that output of the RE sources and storage system becomes

FIGURE 13. Energy share of MG and UG.

FIGURE 14. Variation in GHG emissions.

inadequate to supply the required load demand, during such
events, the MG buys power from UG in order to meet the
demand. Total energy share supplied by the MG and the
UG to fulfill the required load demand is shown in Fig. 13.
It can be observed that with the increase in indices the energy
supplied by the MG increases while energy supplied by UG
decreases. In the beginning, energy supplied byMG increases
and energy supplied by utility decreases rapidly and finally
both saturates.

The variation in the GHG emissions and ERBC with the
indices of solution space are shown in the Figs. 14 and 15
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FIGURE 15. Emission reduction benefit cost.

FIGURE 16. Actual demand vs supplied power with optimal system
parameters.

respectively. It can be depicted that GHG emissions decrease
while ERBC increases with the increase in the index (as over-
all installed capacities of RE sources and HESS increase with
the increase in the index). It can be observed from Fig. 14 that
the GHG emissions for the optimal solution are almost 55%
less as compared to the conventional generation.

The operation of the MG over a period of one year with the
optimal parameters is shown in Fig. 16. It can be observed that
the system supplies the required demand effectively. As the
system under consideration is grid-connected that is why the
generation is always equal to the required load power demand
which makes the system highly reliable.

A comparison between the following three case studies is
presented in Table 6.
• CASE-I: PV/WT/BES/SC based grid-connected MG.
• CASE-II: PV/WT/BES based grid-connected MG.
• CASE-III: A MG employing conventional generation.
The cost per unit is minimum for CASE-III but it can

not be selected as in this case the load demand is served
by conventional generation only. The cost per unit of the
CASE-I is 0.13% less than that of CASE-II. This can result in
savings of about USD 1M per year as compared to CASE-II.
So, by employing the HESS instead of BES system, cost per

TABLE 6. Comparison of different case studies.

unit decreases which results in considerable savings. This
decrease in the cost is due to the fact that the SC prolongs the
lifespan of BES system. The clean energy (energy from MG)
supplied by the CASE-I is more than that of CASE-II. Simi-
larly, the emissions are minimum for CASE-I and maximum
for CASE-III. The emissions for CASE-I are approximately
55% less than that of CASE-III. These less GHG emissions
also result in considerable savings in terms of ERBC and it
can be seen from the Table 6 that the ERBC is maximum for
CASE-I. So, the HESS is not only economical but also more
reliable and cleaner as compared to BES.

VII. CONCLUSION
This paper has presented a methodology for joint capacity
optimization of hybrid renewable power generation system
and energy storage in the context of a grid-connected micro-
grid (MG). The hybrid generation system is comprised of
solar photovoltaic (PV) and wind turbine (WT) and hybrid
energy storage system (HESS) is composed of battery energy
storage (BES) system and supercapacitor (SC) technology.
The combined optimization exploits the benefits of both
hybrid power generation and HESS. The proposed strategy
is primarily based upon a few important factors associated
with a MG system such as cost minimization, greenhouse
gases (GHG) emissions reduction, higher emission reduction
benefit cost (ERBC), and higher reliability. The optimization
problem has been formulated and solved in a piece-wise
fashion to decrease the complexity and computational time.

The proposed methodology has been tested using real
residential power demand, solar irradiation and wind speed
data. The resulted optimal solution is economical, has higher
reliability and lesser GHG emissions when compared with
other possible solutions. It has also been shown that when the
MG is operated with optimal parameters it serves the demand
effectively. Moreover, a comparison between three case stud-
ies, i.e., PV/WT/BES/SC, PV/WT/BES, and conventional
generation has also been presented. It has been observed
that the topology, PV/WT/BES/SC, resulted in the optimal
choice as there are multiple benefits associated with hybrid
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BES-SC energy storage system. It is an economical and reli-
able solution because the use of SC in conjunction with BES
prolongs the BES lifespan, and supplies the demand more
effectively and efficiently. In addition, it results in least GHG
emissions thus increasing ERBC which makes the overall
system more economical and eco-friendly.

For future research, a detailed load analysis considering
different types of loads including controllable and uncon-
trollable loads, and load shifting will be performed to deter-
mine an optimum combination of RE sources along with
conventional generation that fulfills the load effectively and
economically. Furthermore, uncertainty associated with the
availability of RE sources and degradation of battery energy
storage will also be considered for more realistic results.
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