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ABSTRACT Internet of Things (IoT) has been widely used in various application domains including
smart city, environment monitoring and intelligent transportation systems. Thousands of interconnected
IoT devices produce an enormous volume of data termed as big data. However, privacy protection has become
one of the biggest problems with the progress of big data. Personal privacy is usually challenged by the
development of technology. In this paper, we focus on privacy protection for location trajectory data, which is
collected in intelligent transportation system. First, we demonstrate that the moving preference of individuals
can be exploited to perform re-identification attacks, which may cause serious damage to the identity privacy
of users. To address this re-identification problem, we present a new trajectory anonymity model, in which
the degree of correlation between parking locations and individuals is precisely characterized by a concept
of Location Frequency-inverse user frequency (LF-IUF, for short). We then propose an anonymizing method
to replace parking locations by a k-correlation region. Our method provides a novel anonymity solution for
publishing trajectory data, which achieves a better trade off between privacy and utility. Finally, we run a set
of experiments on real-world data sets, and demonstrate the effectiveness of our method.

INDEX TERMS Data privacy, location, information security, Internet of Things.

I. INTRODUCTION
The IoT provides new services and applications that can
be deployed in smart homes, smart cities, and intelligent
transportation systems. A large amount of data can be col-
lected from multiple IoT devices, which can be utilized
for big data analysis. However, in many such applications
the data collected by IoT is sensitive and must be kept
private and secure, such as patient data in healthcare and
location data in transportation. The concept of privacy in
different domains may differ, but in general, it should protect
user’s personally identifiable information and keep a certain
degree of anonymity, unlink-ability and data secrecy. Existing
techniques for protecting sensitive data in IoT have mainly
focused on securing the communication channel, as well as
user authentication and authorization. Little work has been
done to protect sensitive data after they are collected [1].

The disclosure of such datamay create opportunities for crim-
inal activity, or result in serious harm to application users.
To protect such sensitive data, we should design anonymity
methods to ensure IoT big data privacy and security. In this
paper, we take location trajectory data in intelligent trans-
portation systems as an example to demonstrate the privacy
protection of trajectory data.

Studies on vehicle trajectory datasets have always been
important topics for many location-based applications such
as mobile navigation system, urban traffic analysis. Such
datasets are full of value and can be used in many fields.
For example, analyzing trajectories of passengers in an area
can help people make commercial decisions, such as where
to build a restaurant; analyzing trajectories of vehicles in a
city may help government to optimize traffic management
systems. However, personal location information is highly
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sensitive, since a location trace not only is a set of positions on
amap, but also tellsmuch about our habits, interests, activities
and relationships.

Therefore, location trajectory data need to be anonymized
before being published. As trajectory contains abundant
spatiotemporal information, simply removing identifiable
attributes is insufficient to protect the privacy of individuals.

Huo et al. [2] explained the ways of protecting parking
locations information in order to prevent sensitive informa-
tion leakage on location trajectories. A target user will be
re-identified if the parking location information is related
enough to an individual. The parking location can play the
role of a quasi-identifier (or QID) to re-identify the user.
To avoid the issue of re-identification of a user, generalizing
parking locations was adopted. However, the generalization
of parking locations could lead to information loss. It was,
therefore, suggested to modestly adopt according to the pri-
vacy requirements of users in order to minimize information
loss. It is not necessary to incorporate all parking locations
into this privacy strategy, such as generalization.

The privacy risk of parking location can be characterized
with a probability of re-identifying a trajectory based on
parking locations. Assuming that an adversary has been able
to observe the victim’s movements during a certain time and
try to infer the identity of the victim. The success probability
of identity attack mainly depends on the correlation between
parking locations and users. In previous works [25], [26],
the correlation between parking locations and users were
evaluated by the frequency of location in history location tra-
jectories of users. However, it is not precise enough; it ignores
the effect of inverse-frequency. That is, a higher frequency of
a parking location’s occurring in a user’s history trajectories
does not imply a higher probability of re-identification, and
a lower frequency does not mean the lower privacy risk of
the parking location. We need a more rational approach to
evaluate the privacy risk.

In this paper, we first learn each user’s moving preference
from the history trajectory datasets, and then quantify the cor-
relations between locations and users. That is, there is a cor-
relation value to describe the relationship between each park-
ing location and a user. Next, we present a re-identification
attack based on the user’s moving preference. Consequently,
a privacy-protection model is proposed to avoid the over-
protected problem in privacy protection of location trajectory
publishing.

Our contributions are as follows:
We study re-identification attacks based on history location

trajectory information, namely moving preference attack. To
the best of our knowledge, this topic has not been well studied
by prior works. We propose a new concept, called Location
Frequency-Inverse User Frequency, to evaluate the informa-
tion leakage of parking locations.
• A k-correlation privacy model is proposed for resisting

the moving preference attack. This model more precisely
measures the privacy risk of parking locations, as compared
with several existing related models. We also develop a novel

anonymity technique to realize the k-correlation model. Our
technique not only enhances the identity privacy of trajec-
tories, but also decreases the number of generalized parking
locations, consequently, reducing information loss.
• We evaluate the performance of our methods on a real

world dataset. The results show that our method achieves a
better privacy-utility trade-off than existing related models,
including k-anonymity and GridPartition [2].

The rest of the paper is organized as follows. Section II
discusses the related works on privacy protection of trajectory
data publishing. In Section III, some background information
related to ourmethods and notions are given. SectionVI states
the problem and describes our methods. The experimental
results on a real world dataset are presented in Section V.
Finally, Section IV provides the conclusion.

II. RELATED WORK
In this section, we briefly describe the most related topics
in trajectory privacy protection. Interested readers may find
more details in recent surveys and tutorials [3], [4].

A. PRIVACY RISK
The spatial and temporal attributes of a trajectory can be
considered as powerfulQIDs that can be linked to other kinds
of physical data objects. Researchers illustrated trajectory
risk by inferring a user’s home address through location
trajectory information. Liao et al. [5] used a time and
location-sensitive clustering algorithm to find a user’s fre-
quent destinations based on higher-level machine learning
about a user’s habits. They attempted to infer the user’s
household geographic location. Hoh et al. [6] used a database
of week-longGPS trajectories from 239 drivers in the Detroit,
MI, USA area. They designed a clustering-based identifica-
tion algorithm to find plausible home addresses of about 85%
of the 65 drivers. John [7] collected 172 people’s GPS data,
and analyzed data using four heuristic algorithms which were
the Last Destination,Weighted Median, Largest Cluster, and
Best Time Algorithms, to compute the coordinates of each
driver’s home address.

Shokri et al. [28] represented the user profiles using the
hidden Markov model, and formalized the adversary’s per-
formance. Basically, they computed a matching probability
between pseudonym traces and user profiles using the clas-
sical forward-backward algorithm. The matching probability
represents the likelihood that a particular set of traces corre-
sponding to a specific user. De Montjoye et al. [29] showed
that if an individual has a unique pattern in the anonymized
dataset then it is enough to identify him even if the dataset
does not contain personal information, such as name, age and
address. Hua et al. [30] presented an attack based on a semi-
supervised learning approach to infer the riding trajectory of
the user.

B. PRIVACY MODEL
k-anonymity is often used in both location-based services pri-
vacy protection and trajectory publishing privacy protection.
Abul et al. [8] proposed an extended concept of k-anonymity
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based on the imprecision of sampling and positioning sys-
tems, named (k , δ)-anonymity, δrepresents the possible loca-
tion imprecision. Based on space translation, the general
idea is to modify the paths of location trajectories so that k
different trajectories co-exist in a cylinder of the radius δ.
However, the imprecision assumption may not hold in some
sources of trajectory data, such as transit data, RFID data
and purchase records. Yarovoy et al. [9] presented another
notion of k-anonymity based on the assumption that differ-
ent trajectories may have different QIDs. Specifically, they
considered timestamps as QIDs, and assumed that adver-
saries conduct privacy attacks based on an attack graph.
Josep et al. [10] introduced a similar micro aggregation
approach which has been successfully used in micro-data
anonymization to achieve privacy protection in trajectory data
publication. They first clustered trajectories into clusters the
size of at least k based on their similarities and then replaced
a cluster of trajectories with synthetic data that preserved all
the visited locations and a number of original trajectories.
Although they offered better utility than (k , δ)-anonymity, the
information loss is still large.

Some works consider that the potential QIDs are more
complex in trajectory databases. Mohammed et al. [11] lim-
ited adversaries’ background knowledge by a parameter L,
and presented a LKC-privacy model, where L is the maxi-
mum length of background knowledge. Giorgos et al. [12]
proposed a distance-based generalization to achieve
km-anonymity for location trajectory data. Similar to the
LKC-privacy model, it does not require detailed knowledge
of QIDs, or a distinction between sensitive and non-sensitive
information, prior to data publishing.

Another privacy protection method is suppression.
It simply deletes sensitive locations, and thus protects them
in trajectory data publishing. Terrovitis et al. [13] assumed
that each adversary would possess different portions of
users’ trajectories and that the data publisher was aware
of the adversaries’ knowledge. They proposed a method
that iteratively suppressed some trajectory segments until a
probabilistic constraint of disclosing whole trajectories was
satisfied. However, if too many trajectory segments are sup-
pressed, it will cause much information loss. Subsequently,
Chen et al. [14] first proposed a local suppression method to
solve the problem. However, it often leads to high information
loss and ineffective data mining.

Differential privacy has been also widely used to pro-
tect the privacy of individual participants while providing
useful statistical information about the whole population.
Chen et al. [15] was among the first to connect trajectory
data publishing with differential privacy, and proposed a data
dependent sanitization mechanism by building a noisy prefix
tree under a Laplace mechanism. Their recent work [16]
developed a robust sampling-based framework to system-
atically explore the dependencies among all attributes, and
subsequently, build a dependency graph. It preserves the
joint distribution of high-dimensional data under differential
privacy.

Some other works related to privacy are based on
road network, and semantic trajectory privacy [17], [18].
Monreale et al. [17] claimed that semantic trajectory poses
important privacy threats. They defined an attack model of
semantic trajectory linking, together with a privacy notion,
c-safety, based on the generalization taxonomy of visited
places. It provides an upper bound c in relation to the proba-
bility of inferring that a given person, observed in a sequence
of non-sensitive places, has also stopped in any sensitive
locations. Yigitoglu et al. [18] presented an approach to
protect sensitive semantic positions in an urban setting, which
extends the semantic location cloaking model to protect
against velocity-based linkage attacks.

In literatures, most anonymization approaches in a spa-
tiotemporal context are based on randomization techniques,
space translations, and suppression of various portions of a
trajectory [19]. They anonymize trajectories under a unified
standard, which may lead to serious information loss. Our
work is inspired by [25] and [26]. Zang et al. [25] conducted
a large scale study on the risk of re-identification attacks
with call records data, and considered the ‘‘top N ’’ locations
visited by users. They showed that the number N of top
preferential locations determines the power of an adversary
and the safety of a user’s privacy. The more top locations of a
victim an adversary knows, the easier it is to identify the vic-
tim. Gambs et al. [26] focused on de-anonymization attacks,
by which adversaries try to infer the identity of an individual
from a set of mobility traces. They modeled an individ-
ual’s mobility using a mobility Markov chain to perform
the de-anonymization attack. The experiment results showed
that a de-anonymization attack can re-identify individuals
whose movements are contained in an anonymous dataset
providing some mobility trajectories that the adversary can
use as background knowledge. However, we consider this
problem from a different perspective. Instead of focusing on
re-identification and de-anonymized attacks, we considered
the efficiency of privacy protection method against those
attacks.

III. PROBLEM FORMULATION
Spaccapietra et al. [20] proposed the first model that treats
trajectories of moving objects as a spatiotemporal concept.
They conceptualized a trajectory as a space-time evolution
of an object to reach a certain goal. In this section, we will
present some definitions relevant to trajectory privacy and
illustrate our problem’s definition.

A. PRELIMINARY
Definition 1 (Trajectory): By ordering the GPS points from
a moving object by time, we can obtain a trajectory. A tra-
jectory of a moving object u is a sequence of time-stamped
points tr =< u, p0, p1, . . . , pn >, where pi = (x, y, t), t is
a timestamp and (x, y) is two-dimension coordinate, which
represents the latitude and longitude of points.

We use Tr(u) to denote the set of trajectories belongs to u in
a trajectory dataset. We also use Dist(pi, pj) to stand for the
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geospatial distance between two GPS points pi and pj, and
Int(pi, pj) = |pi.t − pj.t| for the time interval when a moving
object moves from pi to pj. Let Tr and Dr be the time and
distance thresholds respectively. The parking point is defined
as follows.
Definition 2 (Parking Point): A parking point pp is a

5-tuple. pp =< u, x, y, ta, tl >, where (x, y) is the location
coordinate of a parking point, ta is the arriving time and tl is
the departure time.

Parking points are generated by a user staying over a
certain amount of time Tr within a distance threshold of Dr .
In a trajectory < u, p0, p1, . . . , pn >, if there is a sub-
sequence < pi, pi+1, . . . , pj >, such that Dist(pi, pk ) ≤
Dr for any k(i < k ≤ j), Dist(pi, pj+1) > Dr and
Int(pi, pj) ≥ Tr , then we can obtain a parking point pp=<
u, x, y, pi.t, pj.t >, where x =

∑k=j
k=i pk .x/(j− i+ 1),

y =
∑k=j

k=i pk .y/(j− i+ 1).
Parking points of a real-world location may have different

coordinates. That is, although multiple users visit the same
location, such as a shopping mall, the parking points we
extract are different. Besides, the imprecision of GPS devices
may also result in different parking points for a real-world
location. So we need to define the notion of parking location.
To facilitate defining parking location, we use pp←tr to
denote that the parking point pp is extracted from a moving
object u’s trajectory tr.
Definition 3 (Parking Location): A parking location l is a

geographic place constructed by a set of parking points {ppi},
denoted by the formula l = C {ppi}. In this case, we also
say the parking location l is generated by {ppi}, denoted by
ppi ∈C l.

B. FORMULATION AND PROBLEM DEFINITION
Definition 4: SupposeU is a set of users and L is a set of
parking locations extracted from a dataset D. A user parking
frequency function f is defined as follows.

f (u, l) = |{ppi|ppi ∈ C l, ppi ∈ Pu}| , (1)

where u ∈ U , l ∈ L and Pu = {ppi| ppi ← tr and
tr∈Tr(u)}.
Definition 5 (Location Frequency): Let ui be a user, and

lj be a parking location. A location frequency function LF is
defined as follows.

LF(ui, lj) =
f (ui, lj)∑

lq∈L
f (ui, lq)

(2)

For the re-identification attack, LF is not precise enough to
evaluate the privacy risk of a parking location. For example,
suppose l is a public place. The higher visited frequency by
u does not imply that l is more sensitive; many other users
might visit this place. We, thus, use inverse user frequency
to test whether a parking location is common or rare across
all users. The definition of inverse user frequency is shown
in Definition 6.

Definition 6 (Inverse User Frequency): The inverse user
frequency function IUF is defined as follows.

IUF(lj,U ) = log
|U |∣∣{ui|ui∈U , tr ∈ tr(ui), pp← tr, pp∈C lj

}∣∣ ,
(3)

where U is a set of users, and lj is a parking location. For
the convenience of calculation the log function is used, that
reduces the absolute value of IUF. By combining LF and
IUF, we propose the function LF-IUF (Location Frequency–
Inverse User Frequency) to evaluate the sensitivity of a park-
ing location for re-identifying a user. Definition 7 describes
LF-IUF in detail.
Definition 7 (LF-IUF): LF-IUF is defined as:

LF − IUF(ui, lj,U ) = LF(ui, lj)× IUF(lj,U ). (4)

LF–IUF is a numerical statistic that is intended to reflect
how important a location l is for a user u in a space. The
value of LF weighs l’s importance for u without considering
other users, and the value of IUF reflects the distribution of
location l among the entire users U . A high LF–IUF value
occurs when the location frequency of a given user is high and
the user frequency of the location in the whole collection of
trajectories is low; hence, LF–IUF tends to filter out common
locations shared by all users.

Now, we give an example to evaluate correlation degrees of
different locations. Assume that we have a parking location
dataset as described in Table 1. It contains five users and four
parking locations.

TABLE 1. Parking times of users.

We can compute LF according to (2) and IUF using (3).
We then obtain the IF-IUF results as shown in Table 2.

TABLE 2. Values of IF-IUF.

We notice that u1 has only one parking location l1 and the
LF(u1, l1) has reached the maximum value of 1, but l1 is also
visited by u2 and u5, so the LF-IUF(u1, l1, U ) is offset some
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correlation degree by IUF(u1, l1). We observe that u3 has two
parking locations l3 and l4 with the same value of IUF, while
LF(u3, l3) > LF(u3, l4). So, the association degree LF-IUF
of location l3 is higher than that of l4 to user u3.
Based on above-mentioned analysis, the correlation

between locations and individuals can be evaluated by
LF-IUF, and then the value of LF-IUF could reflect indi-
vidual’s moving preference. In this paper, we focus on the
re-identification attack based on the moving preference of
individuals called the Moving Preference Attack, by which
adversaries try to infer the identity of some location trajec-
tories in published datasets. In this paper, we use LF–IUF
(ui, lj, U ) to describe the correlation between parking loca-
tion lj and individual ui, whereU is the set of moving objects.
For a published trajectory dataset D, we define a moving
preference attack as follows.
Definition 8 (Moving Preference Attack): We assume that

adversaries know the parking preference of the victim ui and
can access the published trajectory dataset D. The parking
preference of ui can be learnt by the adversary’s observation
or from history location trajectories in the past. Then, the
objective of the adversary is to de-anonymize dataset D by
linking it to the corresponding individual ui.
Our main goal is to provide a model and related approach

to generate an anonymous trajectory dataset, which guaran-
tees that the probability of attackers’ being able to infer the
identity of a user is less than a pre-defined threshold. For
privacy protection, it is desirable to minimize the correlation
between a user and a parking location. The set of candidate
trajectories corresponding to a given parking location should
be as large as possible. We propose a concept of k-correlation
as a compromise.
Definition 9 (k-Correlation): A parking location

(or a region consisting of several locations) R is k-correlation
for a moving object ui, if

pp ∈ R and

LF − IUF(ui,R,U ) ≤
1

|{l|tr ∈ tr(ui), pp← tr, pp ∈C l}|

× log(
|U |
k

), (5)

where ui denotes a moving object, and pp is a parking point
of a trajectorytr, |{l|tr ∈ tr(ui), pp ← tr, pp ∈C l}| is the
total number of parking locations from ui.
To capture the information loss, we adopt the reduction in

the probability with which people can accurately determine
the position of an object in [9] as our information metric.
Definition 10 (Information Loss): Given an anonymized

version D∗ of a trajectory dataset D, the information loss is
measured by

ILavg =

∑N−1
i=0

∑M−1
j=0 (1− 1/area(region(tri, lj)))

N ×M
, (6)

where area(region (tri, lj)) represents the area size of the
corresponding k-correlation region of ui when tri contains lj.
We define area size as the number of cells a region covers.

N denotes the total trajectories in D, and M denotes the
number of different ‘‘top m’’ parking locations of history
trajectories. N ∗M represents the number of locations that
anonymized in D∗. So, ILavg ranges from 0 to 1.
Based on the definitions introduced in the above, our prob-

lem definition is as follows.
Definition 11 (Problem Definition): Given a location tra-

jectory dataset D and a protection threshold k , k-correlation
privacy model generates a version D∗ of D such that all
parking locations in D∗ satisfy k-correlation.

IV. ANONYMIZED METHOD AGAINST MOVING
PREFERENCE ATTACKS
In this section, we describe an anonymity preserving method
to protect location trajectory data against moving preference
attacks based on k-correlation. It first extracts the parking
locations of each individual. A parking location is strongly
correlated to an individual when it allows inference of the
individual’s identifier. To avoid this re-identification attack,
we should point out which locations are closely correlated to
individuals and how strong the association is. Then, for every
parking location that is correlated to a user, we will replace it
with a k-correlation region to anonymize the trajectory.

A. EXTRACTING PARKING LOCATION
Users usually choose a fixed range to drive and fixed loca-
tion to stop. So we can learn the parking habits of drivers
from their history trajectories. The first step is to detect
parking locations from the GPS data. Here, we extract every
parking location from the vehicle GPS dataset according to
Definition 3.We set the time interval Tr as 15minutes and the
distance thresholdDr as 40meters. Interested readers can find
more detailed information about parking location extraction
in [2], [20], and [21].

B. COMPUTING THE LF-IUF
As mentioned in [26], the mobility of an individual can
act as a signature, and plays the role of a quasi-identifier.
If an adversary learns a victim’s mobility signature from
history trajectories, he can identify the victim by finding a
matched signature in the anonymized dataset. To address this
re-identification attack, we need find themost likely signature
(QID) of victims, and then increase the size of anonymized
set by adding more of the same QIDs. In our work, we first
find the closely correlated locations of each individual with-
out considering others, called personal-correlated locations.
We then adopt LF-IUF to evaluate the degree of association
between parking locations and individuals.

As shown in Fig. 1, if a user u stopped at a location l, there
will be a link from the user to the location. A user can park
at several different locations, and a location can be parked at
by many different users. In Fig.1, gray nodes denote moving
objects, black nodes stand for parking locations, and weight
fij on an edge represents the frequency of a user ui parking at
the location lj. The parking frequency fij can be learned from
a user’s history trajectories [22].
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FIGURE 1. Users and parking locations.

Given a collection of user’s parking locations extracted
from a history trajectory dataset, we can build a matrixM , in
which an entry fij stands for the frequency that ui has parked
at location lj, 1 6 i 6 |U |, 1 6 j 6 |L|. The matrixM can be
represented as follows:

M =


f11 f11 . . . f1m
f21 f22 . . . f2m
. . . . . . . . . . . .

fn1 fn2 . . . fnm

 (7)

The raw frequency fij in a user’s history trajectories is the
number of times that ui has been ped at lj. To prevent a bias
towards more trips, we select an augmented frequency to
compute LF(ui, lj), the raw frequency divided by the sum raw
frequency of all parking locations of ui is described by (8).

LF(ui, lj) =
fij∑q=m
q=1 fiq

(8)

The inverse user frequency is a logarithmically scaled frac-
tion of the users that stopped at the location. It is obtained by
dividing the total number of users, n, by the number of users
parking at the location, and then taking the logarithm of that
quotient, as described by (9).

IUF(lj,U )

= log
n∣∣{ui|ui ∈ U , tr ∈ tr(ui), pp← tr, pp ∈C lj

}∣∣ , (9)

where
∣∣{ui|ui ∈ U , tr ∈ tr(ui), pp← tr, pp ∈C lj

}∣∣ denotes
the number of users that parked at location lj, n is the number
of users in U . LF-IUF is then calculated using (10):

LF − IUF(ui, lj,U ) =
fij∑q=m
q=1 fiq

× log
n∣∣{ui|ui ∈ U , tr ∈ tr(ui), pp← tr, pp ∈C lj

}∣∣ .
(10)

It is noted that the above formula consists of two com-
ponents. One is the location frequency (LF) and the other
is the inverse user frequency (IUF). The LF is calculated as
the frequency of location lj divided by the frequency of all
the locations from a user ui’s history trajectories. Its value
reflects the correlation between location lj and user ui without
considering other users. On the contrary, the value of IUF

shows the influence of other users in the database. As a
location is visited bymore users, the ratio inside the logarithm
approaches 1, consequently, bringing down the value of IUF
closer to 0. The LF-IUF(ui, lj, U ) is proportional to the
visited frequency of ui and is inversely proportional to the
number of users parking at lj. A high LF–IUF value occurs
when the location frequency of a given user is high and the
user frequency of the location in the whole collection of
trajectories is low. So locations with high values of LF-IUF
are considered to be generalized before published.

C. TRAJECTORY ANONYMIZATION
As in [26], we assume that an adversary observed the
history of movements made by some individuals during a
non-negligible amount of time, which can be treated as
background knowledge of an adversary. Later, the adversary
accesses a different trajectory dataset containing mobility
traces of the individuals observed previously. The aim of
the adversary is to re-identify this dataset by linking it to
the corresponding individuals contained in their background
knowledge.

In process of trajectory anonymization, we attempt to
prevent adversaries from inferring individuals from the
anonymity dataset, which means the value of LF-IUF of
personal-correlated location has to be smaller than a sensi-
tivity threshold. According to the above analysis, our object
is to reduce the correlation between users and parking
locations. There are mainly four approaches [3] to protect
trajectory data publication privacy. Firstly, the clustering-
based approach adopts the uncertainty of trajectory data
to group k trajectories within the same time period to
form a k-anonymized aggregate trajectory. Secondly, the
generalization-based approach picks atomic points from the
group and rebuilds trajectories based on these points. Thirdly,
the suppression-based approach deletes locations iteratively
until the privacy constraint is met. Lastly, the grid-based
approach aims to construct a grid on a system space and
partition the grid based on the privacy requirements. The grid-
based approach [2] is a simple and effective method, which
divides the space map into several grid cells. It supports most
location trajectory queries in data mining. In this paper, we
propose a TRAMP Algorithm (trajectory-anonymity against
moving preference) to anonymize trajectories by combining
spatial cloaking on a grid. We divide the space map into grid
cells on-demand. On one hand, a coarse grid may have a very
low accuracy because the area covered by each grid node
is too large. A fine grid needs more storage and computing
resources.

Next, we identify personal-correlated locations of each
individual. If the value of LF-IUF (ui, lj,) is less than the
sensitivity threshold ∂ , then we publish this parking location
directly. Otherwise, we apply a greedy heuristic algorithm
to select one neighbouring lneig with the minimum value of
LF-IUF to merge, replace the value of LF-IUF(ui, lj,) by
LF-IUF(ui, {lj,lneig}). We repeat the merging process until
the privacy requirement is met.
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The proposed trajectory anonymized algorithm based on
LF-IUF is described as follows.

Algorithm 1 Trajectory-Anonymity Against Moving
Preference Algorithm

Input: trajectory dataset TrajD; personal related demands
k history trajectories TrajH

Output: the published trajecotry dataset TrajD∗

1: TrajD∗←TrajD
2: Extracting parking locations LH for each user from
TrajH
// computing frequency matrix M
3: for each uiεU and each ljεLH do
4: M [i][j]← f (ui, lj)
5: Extracting parking locations L for each user from TrajD

// generate k-correlation region R
6: for each uiεU and each ljεL do
7: while LF-IUF(ui, lj)) > (1/m)× log(|U | /k) do
8: select a neighbor lk with the minimum LF-IUF value
to merged
9: replace lj by the merged region R = {lj, lk}
10: update LF-IUF
// generalize trajectories
11. for each ti in TrajD
12: if ti’s point is in the related region then
13: replaced it by its k-correlation region R in TrajD∗

14: else
15: preservedin TrajD∗

16: Return TrajD∗

Three inputs of Algorithm 1 are trajectory dataset to be
publishedTrajD, a correlation parameter k , and a history tra-
jectory dataset TrajH. The algorithm starts with extracting
parking locations from a history of trajectories; and then
defines a frequency matrix M . The entry M [i][j] denotes
a frequency of user ui parking at location lj. According
to (10), we can get the value of LF-IUF. In line 7, we set
the sensitivity threshold ∂ as (1/m) × log(|U | /k). Here,
m denotes the number of entries which are greater than zero
in the ith row of M . It is the number of locations where ui
has been parked, and k is an integer number greater than
zero.

We obtain the k-correlation region R for a user ui in respect
to a parking location lj as follows. For each user in the TrajD,
the correlation LF-IUF between ui and lj is calculated in
line 6, and k-correlation is tested in line 7. If some parking
location violates k-correlation, that is the value of LF-IUF is
greater thanu′is threshold ∂ , we then pick a neighbor location
with a minimum LF-IUF amongst all the neighbors to merge.
This merging process repeats until the correlation condition
is satisfied. We will get a k-correlation region R for ui at lj
(lines 7-10). At the last step, if a GPS point locates in a
k-correlation region, it will be replaced by the region in

anonymized trajectory data; otherwise, the point can be pub-
lished directly.

Note that a location may be generalized to multiple regions
in different trajectories. Trajectories are anonymized based
on the grid cell map. The original trajectory dataset is set as
the input. Each GPS sample is scanned. Personal-correlated
locations are replaced by the corresponding k-correlation
region. For other points in the GPS sample, the published
version is the same as the original one, unless the GPS point
is located in the k-correlation region of the same trajectory.

FIGURE 2. Personal-correlated locations.

Figure 2 depicts an example of generalization with k = 2.
User u3 has two parking locations l3 and l4 located at grid
cells c22 and c23. We can easily calculate the user’s per-
sonal correlation degree of l3 and l4, the results are shown
in Table 2.

Next, we compare LF-IUF(u3, l3) andLF-IUF(u3, l4) with
the sensitivity threshold ∂ . If LF − IUF < ∂ , then we
publish this parking location directly, otherwise, we per-
form an estimation based on cell c22 to decide whether this
region is k-correlation region or not. If not, we merge the
proper neighbor cell, and repeatedly merging until we find
the k-correlation region of the parking location l3. In this
example, we set k = 2, then the threshold ∂ = 1/2 ∗

log(5/2) = 0.458, we observe that LF-IUF(u3, l3) > ∂ and
LF-IUF(u3, l4) < ∂ , as we calculate, the region composed by
l3(c22) and l1(c32) is a k-correlation region of l3. Therefore,
for the trajectory of u3, l4 can be published directly, and l3
should be replaced by the region contained l3 and l1.

V. EXPERIMENTS
In this section, we conduct extensive experiments to evalu-
ate the performance of our trajectory anonymization method
described in Section IV.

A. DATASET
We use a real-world taxi trajectory dataset in our experiments.
It contains about 356,000 trajectories of 12,504 taxis. The
total number of GPS points is 596 million. The interval of
GPS data collection is approximately one minute. All taxis
simultaneously report a file every five minutes. Each file
records taxi’s SIM card number, longitude and latitude of
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FIGURE 3. Spatial distribution of parking locations.

the vehicle’s location, time, speed, direction, current status
of the vehicle and other information during the five-minute
time interval.

There are 9548 taxis left after data preprocessing. We set
the time threshold to 15 minutes and the distance threshold to
40 meters for parking location detection just like [22], which
results more than 1.9 million parking locations. Figure 3
shows the spatial distribution of parking locations. Obviously,
the distribution of parking locations within the Fifth Ring
Road in Beijing is concentrated. They almost cover the whole
area. Locations outside the Fifth Ring Road are distributed
comparatively sparsely.

To simplify the generalization process of locations, we use
a grid-based approach to split the map as aforementioned [2].
The map is divided into 53186 grids; users have stopped at
only 9761 grids. Therefore, the parking coverage of grids is
only 18%,which suggests that parking locations are relatively
concentrated.When analyzing the 9761 grids, we find that the
average number of users per grid is 47 during a month, and
the average number of parking points per grid is 202 during
a month. This suggests that a user might have stopped at a
location several times. Figure 4 presents the grid’s distribu-
tion with differences in the frequencies of users and parking
locations. The x-axis shows the number of users (parking
times) per grid, and y-axis shows the number of grids in
log-scale.

Note that in Fig. 4, there are 8845 grids with the parking
frequency between 1 and 100 times, and 7456 grids have
been parked at by 1 to100 users. 511 grids have been parked
at more than 1000 times, and 51 grids parked at by more
than 1000 users. Next, we find the ten most popular grids.
Figure 5 depicts the top 10 parking locations (grids). We used
Google Maps API to reverse these parking locations to a real-
world address. They are located at Deshengmen, Sanyuan-
qiao, Liuliqiao, Bird Nest, Beijing Capital International Air-
port, train stations, and subway’s terminal stations, respec-
tively. The most popular grid is located at Beijing Capital
International Airport, which is the biggest airport of China

FIGURE 4. Number of grids with different parked frequency.

FIGURE 5. Top 10 parking locations.

with its passenger volume at the 2nd place worldwide. Bird
Nest and Water Cube have been the tourist hot spots after the
2008 Beijing Olympic Games. It is reasonable that there are
more taxis waiting for passengers at these locations. It is also
reported that there are giant free parking lots at Deshengmen,
Sanyuanqiao, Liuliqiao.

This result further illustrates that a user might have parked
at a location several times and that different grids have dif-
ferent parking frequencies. The correlation between a user
and a location is not only dependent on the user’s parking
frequency, but also related to the location’s popularity. It is
reasonable to compute the personal correlation degree using
LF-IUF as defined in Section III.

B. PRIVACY ANALYSIS
In this section, we discuss the privacy guarantees of our
anonymization approach. We formally show that the TRAMP
Algorithm guarantees that the anonymized datasetD∗ is a
k-correlation version of D.
In our model, we assume that the background knowledge

obtained by adversaries can be modelled as a matrix, whose
entry pij = LF(ui, lj) is the probability that ui stops at location
lj to describe the moving preference of users. We quantify
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‘‘how much correlation’’ between an arbitrary location and a
user is by a correlation metric function LF-IUF. We select the
‘‘top m’’ locations parked by users to describe users’ parking
preferences. As declared in [25], it is natural to consider that
the top 2 locations are home and work places for majority
users, but, more generally, the number m of top preferential
locations determines the power of an adversary and the safety
of a user’s privacy. The more top locations of a victim an
adversary knows, the easier it is to identify the victim.
Theorem 1: Given a trajectory dataset D and a correlated

threshold k>1, Algorithm TRAMP produces a dataset D∗ that
is a k-correlation version of D.
Proof: For any parking location lj of a user ui, there are

three possible cases:
(a) Location lj is not in the ‘‘top m’’ locations of individual

ui, which implies that the mobility behavior of ui is irrelevant
to this location lj. In our assumption, adversaries take the
probability of selecting top m parking locations of an indi-
vidual as their background knowledge. In this case, location
lj can be released directly without violating the concept of
k-correlation.

(b) Location lj belongs to the ‘‘top m’’ locations of indi-
vidual ui, but the correlation LF-IUF(ui, lj) is no larger than
sensitivity threshold ∂ . In this case, the location lj can also be
released directly without violating the k-correlation demands.
(c) Location lj is one parking location of the ‘‘top m’’

locations of individual ui, and their correlation LF-IUF(ui, lj)
is larger than the sensitivity threshold ∂ . This implies that lj is
much related with ui. If one trajectory contains lj, it is more
likely that this trajectory belongs to ui. In this case, we first
take a partition of the spatial space to generate a grid G. For
example, two cells c1, c2 are adjacent if they have a common
border. IF lj is enclosed by c1, the TRAMP Algorithm merges
cells to generate a new partition in which cells c1 and c2 are
replaced by c1∪ c2. It can be inferred that when c1 and c2 are
merged, the correlation of the resulting cell is lower than that
of c1, that is:

LF − IUF(ui, c1)

= pij log
|U |∣∣{ui|lj∈c1, ui∈U , tr ∈ tr(ui), pp← tr, pp∈C lj

}∣∣
≤ pij log

×
|U |

|{ui|lj∈c1∪c2, ui∈U , tr ∈ tr(ui), pp← tr, pp∈C lj}|
= LF − IUF(ui, c1 ∪ c2)

In essence, the coarser the partition is, the lower the cor-
relation value between the partition and the specified user
is. From this consideration, it is trivial to show that there
must be a minimal merged region r satisfies the demand of
k-correlation for each user:

LF − IUF(ui, r)

= pij log
|U |∣∣{ui|lj∈r, ui∈U , tr ∈ tr(ui), pp← tr, pp∈C lj

}∣∣
≤

1
m

log
|U |∣∣{ui|lj∈c1, ui∈U , tr ∈ tr(ui), pp← tr, pp∈C lj

}∣∣

In the worst case, themerged process degenerates returning
a unique obfuscated location for the whole space. �
Theorem 2: Given a k-correlation version D∗ of a trajec-

tory dataset D and a threshold ∂ , we have that, for anymoving
preference attacks, the probability of re-identification can be
kept under ∂by choosing the parameters k and m properly.
Proof:We use re-identification probability to measure the

probability of a privacy breach of anonymized trajectory data.
It represents the maximum probability of re-identification
of a trajectory in anonymized trajectory data by an adver-
sary with some background knowledge. Let tr∗i ∈ D∗

be the anonymized version of a trajectory tri ∈ D. The
re-identification probability of tri, given that a adversary’s
background knowledge learned from history trajectories, is
calculated as:

Pr (ui|tr∗i , lj, pij)

=



1∣∣{uq|uq ∈ U , tr ∈ tr(uq), pp← tr, pp ∈C lj
}∣∣

pp ∈C lj, pp← tr∗i
1∣∣{uq|lj ∈ r, uq ∈ U , tr ∈ tr(uq), pp← tr, pp ∈C lj

}∣∣
pp ∈C r, pp← tr∗i , lj ∈ r

0 otherwise,

where pij denotes the moving preference of user ui, which is
the probability of ui parking on lj gained by adversaries. Since
all parking locations in tr∗i satisfy the k-correlation, we have:

pij log
n∣∣{uq|uq ∈ U , tr ∈ tr(uq), pp← tr, pp ∈C lj

}∣∣
≤

1
m

log
n
k

pp ∈C lj, pp← tr∗i

pij log
n∣∣{uq|lj∈r, uq∈U , tr ∈ tr(uq), pp← tr, pp ∈C lj

}∣∣
≤

1
m

log
n
k

pp ∈C r, pp← tr∗i , lj ∈ r .

Then the re-identification probability is:

Pr (ui|tr∗i , lj, pij) ≤
mpij
√
n/k
n

.

Clearly, if we adjust the parameters k and m properly,
we can get different privacy protection levels. �

In anonymization experiments, we randomly pick
100 taxis’ trajectories to be anonymized, and the remaining
trajectories are used as a history of trajectories. Figure 6
presents the total number of top m parking locations of the
100 taxis; we can then observe that a larger m leads to more
correlated locations. The inherent characteristics of taxis
decide that there are more parking locations than common
vehicles. Generally speaking, the top 2 locations parked by
common vehicles (i.e., personal cars) are usually located at
home and work locations. The average number of parking
locations per taxi per day is about 6.8.We, therefore, consider
that the ‘‘top m’’ parking locations ranges from 2 to 10.
Whenm increases, the number of parking locations we should
consider increases. More than 86% locations are considered
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FIGURE 6. Personal-correlated top m locations.

in the anonymization process when m equals 10, which is
adequate in our evaluation experiments.

To illustrate the privacy and impact of m and k , we choose
m and k in {2, 4, 6, 8, 10}. Since the number of frequency of
parking locations for most taxis is less than 10 in our dataset,
it is reasonable to anonymize the trajectories while fixing m
to 2, 4, 6, 8, and 10. There are 1496 locations correlated to
our randomly selected 100 taxis (users). Figure 7 shows the
number of the original locations published under different k .

FIGURE 7. Original location published.

We can observe that there are only 209 locations related
to our selected users when m = 2 as shown in Fig. 6, and
199 original locations are published when k = 2 as shown
in Figure 7. In other words, only 10 locations are generalized
under k = 2, as Figure 8 shows.Whenm = 10, there are 1291
correlated locations as shown in Fig. 6. 103 locations should
be generated under k = 2, 110 locations were generated
under k = 4, and 123 locations were generated under k = 10
as shown in Fig. 8.

Figure 8 shows that an increase of k leads to the number of
generalized location increasing slowly under the fixed m. We
also observe that the increase of m leads to more locations
being generalized. From another point of view, m denotes
the attack capability of adversaries, so as adversaries’ attack
capability improves, more locations needs to be generalized;
and k denotes the degree of blend in the crowd, then with

FIGURE 8. Generalized locations published. (a) numbers under
differet m; (b) numbers under different k.

increasing the blend degree, also needs to generalize more
locations. The main factor influencing the number of gener-
alized locations ism, which determines privacy levels, and the
other parameter k plays a fine-tuning role in the anonymiza-
tion process.

For the generalized locations, we also measure their aver-
age sizes. In Figure 9, we present the average size per
generalized locations under varying k from 2 to 10 while
fixing m to be 2, 4, 6, 8, and 10 respectively. As expected,
the average size of generalized locations increases when the
privacy parameter k increases. Nevertheless, the size does not
necessarily increase with the increase of m under different k .
From Fig. 9, it is surprising to see that the average size with
m = 6 and k = 6 is 48.99, while the generalized average
sizes are 47.33 underm = 8, k = 6, and 44.17 underm = 10,
k = 6 respectively. This is because the number of generalized
locations withm = 6 is less than those of the casesm = 8 and
m = 10. When calculating the average size, fewer locations
share the sum of generalized locations size withm = 6, which
can easily make the average size of the generalized location
relatively larger.

Next we study how information loss vary under different
correlation parameters while fixing m = 2, m = 4, m = 6,
m = 8, m = 10 and varied k in [2] and [10].

24564 VOLUME 5, 2017



P. Sui et al.: Study of Enhancing Privacy for Intelligent Transportation Systems

FIGURE 9. Top 10 parking locations Average size of generalized locations.
(a) size under different m; (b) size under different k.

C. MEASURE OF INFORMATION LOSS
To quantify information loss, we measure the number of
original and generalized locations in an anonymized dataset.
For the generalized locations, we measure the average infor-
mation loss by (6), similar to [2] and [9].

Figure 10 examines the information loss for different
correlation parameters k and m under three different
anonymization methods, k-anonymity, our method TRAMP,
GridPartition proposed in [2].

In general, the information loss increases by the increment
of k . Comparison of all the three algorithms are shown in
Fig.10, we can see that the GridPartition causes more infor-
mation loss than that of k-anonymity and TRAMP, but the
information loss caused by TRAMP is slightly higher than
that of k-anonymity. Since k-anonymity adopts a clustering
strategy, which completely ignores the correlation of loca-
tions, it only needs to meet that at least k different moving
objects co-exist in a location or a generalized location, and
this condition is easy to satisfy when the volume of data is
large, but it cannot defend against moving preference attack.

The information loss caused by GridPartition is mainly
caused by generalization of parking points, which generalizes
all parking locations in its anonymization process, however
TRAMP states that not all parking locations should be satisfy

FIGURE 10. Information loss. (a) loss of k-anonymity; (b) loss of TRAMP;
(c) loss of GridPartition.

the demands of k-anonymity or l-diversity; in other words,
it generalizes only these parking locations with high cor-
relation to individuals. Therefore, TRAMP performs better
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than GridPartition on Information loss. In all three figures,
performance decreases as privacy level grows. However,
the increment of k in k-anonymity and increment of l in
GridPartition will make a great change in the information
loss as shown in Fig.10 (a) and (c), while increment of k in
TRAMP will only make a very small change in the informa-
tion loss as plotted in Fig.10 (b).

Therefore, in our proposed method, TRAMP, k slightly
affects the information loss. In other words, less informa-
tion loss is added when improving the privacy level through
increasing k . In addition, the information loss in TRAMP
increases with an increase of m, because more correlated
parking locations need to be generalized to hide stronger
correlation, which increase information loss. We can observe
that a large m can provide high privacy level even when
k is relatively small in TRAMP. Meanwhile it causes more
information loss. In practice, we can select a proper parameter
pair of (k , m) to balance the privacy and information loss.
The experiment’s results not only illustrate the validity of our
proposed privacy framework, but also provide guidance on
how to set privacy parameters m and k .

VI. CONCLUSION
With development of information technology, the IoT and
big data have integrated into various aspects of human life.
As such, security and privacy are becoming more difficult
to handle as the IoT is characterized by numerous mobile
devices and vulnerability to many security attacks. Many
works in the IoT discuss the privacy and security of com-
munication channels, user authentication and authorization,
but few works focus on the privacy of data itself. The huge
amount of collected data contains profoundly sensitive infor-
mation. This paper contributes in the field of individual pri-
vacy of trajectory data generated in intelligent transporta-
tion systems, which is a main application of IoT. We anal-
ysed location trajectory from the perspective of individual’s
privacy.

A generalized model to balance trajectory privacy and
information loss was studied. Most trajectory methods ignore
individual’s distinguishability in terms of moving preference.
However, adversaries may use the uniqueness of a moving
object to identify anonymized trajectories. Moreover, the
existing methods, such as [2], generalize all parking locations
no matter how they are related to an individual; this leads to
an increase of information loss alongwith the expansion of all
parking locations. To overcome these limitations, we took an
individual’s history trajectories into account, and learned an
individual’s moving preference from them.We then proposed
to use personal-correlated location to represent the moving
preference, and developed a new anonymized framework that
takes the correlation between locations and individuals into
account. For each trajectory to be published, we calculated
every single location’s correlation using LF-IUF, which is
related to the studied individual and other individuals who
have been parked at that location. Consequently, for each
personal-correlated location, we determined a k-correlation

region to replace it with the anonymized trajectories. Our
approach created a new method to evaluate the correlations
between locations and individuals. It is a practical solution
for trajectory data publication via generalization. Extensive
experiments demonstrated that our solution performs well
in terms of privacy protection and information loss. The
decision of generalizing a correlation parking location is done
through the LF-IUF value differences, that is, if the correla-
tion is very small, then it is not necessary to generalize, thus
avoiding over-protection problems. In addition, our method
can effectively resist individual’s moving preference attacks.

However, in the context of trajectory data the privacy pro-
tection is very challenging, because location is a special kind
of privacy that contains abundant spatiotemporal information.
As future work, we are planning to apply more sophisticated
method such as real-time streaming data analysis, trajectory
compression, road network matching, frequent sub-trajectory
mining, and other spatiotemporal processing techniques to
find effective solutions for privacy protection of moving
object data.
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