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ABSTRACT Advanced correlation filters are an effective tool for target detection within a particular class.
Most correlation filters are derived from a complex filter equation leading to a closed form filter solution. The
response of the correlation filter depends upon the selected values of the optimal trade-off (OT) parameters.
In this paper, the OT parameters are optimized using particle swarm optimizationwith respect to two different
cost functions. The optimization has been made generic and is applied to each target separately in order
to achieve the best possible result for each scenario. The filters obtained using standard particle swarm
optimization (PSO) and hierarchal particle swarm optimization algorithms have been compared for various
test images with the filter solutions available in the literature. It has been shown that optimization improves
the performance of the filters significantly.

INDEX TERMS Correlation filter, optimal trade-off, hierarchical particle swarm optimization, object
recognition.

I. INTRODUCTION
Correlation filters have been widely used in numerous
domains including Pattern Recognition, Signal Processing
and Image Processing for various applications such as auto-
matic target recognition (ATR) [1]–[5], biometric recogni-
tion [6]–[8] and object tracking [9], [10]. The correlation
filters is constructed to generate correlation peaks for targeted
objects in the image whilst yielding a low response to back-
ground noise, clutter and illumination changes. Advanced
correlation filters (CFs) were introduced to offer distortion
tolerant object recognition more than three decades ago [11].
Over time, the accuracy of correlation filters has been
improved [12]–[15].

Correlation filters are effective for accurate detection
of target objects. The Maximum Average Correlation
Height (MACH) and Minimum Average Correlation Energy
(MACE) filters have been used to cater noise and clut-
ter distortion to give output in form of a correlation peak
[16]. The MACE filter yields pronounced peaks for easy
detection of the filter output but sensitive to noises and
distortions [17]. Unlike the MACE, the MACH filter gener-
ates maximum relative height of the correlation peak with

respect to the expected distortion but produces broader
peaks [18].

Correlation filters can be implemented in software using
the complex filter equation. Different correlation filters can
be implemented by varying the values of optimal trade-off
parameters of filter equation. Until now, researchers sim-
ply tuned these parameters through experimental trials. The
motivation for this study is to optimize the OT-parameters
of a correlation filter as no optimization process has, to
date, been implemented and in this way determine the best
possible values for these parameters. Particle swarm opti-
mization (PSO) is a population based stochastic optimization
technique proposed by Eberhart and Kennedy [19] inspired
by the social behavior of animals such as bird flocking or
fish schooling. The PSO algorithm defined in [20] is now
referred as standard PSO. One of the most prominent variants
of the PSO algorithm is the Self-Organizing Hierarchical
PSO (HPSO) algorithm, proposed by Ratnaweera et al. [21].
These algorithms have been used for optimization in various
applications [22]–[28].

This paper proposes the optimization of the OT parameters
using the standard PSO and HPSO algorithms. Optimization
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is based on the cost functions that are used by the MACE and
MACH filters. Resulting filters are not generic as the values
of the parameters change for each target object. However, the
proposed method is generic as it can be applied to any target
object to give optimum performance with respect to both cost
functions.

The rest of the paper is organized as follows. Problem
statement is described in section 2. Combined framework of
the optimized algorithm and correlation filter is discussed in
section 3. Comparative results are analyzed in section 4 and
conclusion is given in section 5.

II. LITERATURE REVIEW
The motivation for using an enhanced correlation filter is to
suppress the presence of extraneous correlation peaks that
make detection difficult. Linear combination of correlation
templates employed in multiplexed filters does not yield a
sharp peak in the correlation plane and often produces side
lobes of high intensity. MACE filter ensures a sharp corre-
lation peak that results in easy detection in the correlation
plane, is sensitive to distortion. Correlation function level is
reduced all over the correlation plane except at the center
in the MACE filter. This is similar to minimizing the Aver-
age Correlation Energy (ACE) of the plane while retaining
intensity constraints at the origin. On the other hand, peak
of the MACH filter is broader but it possesses high tolerance
against several distortions. Average Similarity Matrix (ASM)
is minimized for the implementation of theMACHfilter. This
can be more accurate in terms of average dissimilarity mea-
sure as minimization of ASM reduces dissimilarity between
correlation planes. Amplitude of the MACH filter correlation
peak is higher as compared to the MACE filter [17], [18].

Energy equation of correlation filter is given by [29]:

E(h) = α(ONV )+ β(ACE)+ γ (ASM )− δ(ACH ) (1)

The ASM is given by [18]:

ASM = h+

 1
N

N∑
i=1

(
Xi − X

)∗
(Xi − X )

 h = h+Sxh (2)

where h is the designed filter and the superscript + shows the
conjugate transpose in which:

Sx =
1
N

N∑
i=1

(Xi − X )∗(Xi − X ) (3)

and the Average Correlation Energy (ACE) is [18]:

ACE = h+
(
1
N

N∑
i=1

XiX∗i

)
h = h+Dxh (4)

where

Dx =
1
N

N∑
i=1

Xi∗Xi (5)

The output noise variance is [18]:

ONV = h+Ph (6)

where P = δ2I and the average correlation height is [29]:

ACH = htmx (7)

Equation (1) is minimized to [29]:

E(h) = h+Ih− δ
∣∣htmx ∣∣ (8)

where I = αP+ βDx + γ Sx
So, the filter equation becomes [29]:

ho = (δ/2) I−1mx (9)

where o denotes the optimal complex filter equation and
δ is a scaling factor. The values of the OT parameters α, β
and γ control the behavior of filter and their choice is not
obvious. When α ≈ 0 and β ≈ 0, the filter behaves as a
MACH filter which minimizes the ASM of the correlation
plane. When α ≈ 0 and γ ≈ 0, the filter behaves as a
MACE filter, which minimizes the ACE of the correlation
plane. Finally, when β ≈ 0 and γ ≈ 0, the filter behaves
as a MVSDF filter [29] (which is not being considered due
to very high computational complexity [18]). Until now, the
values of these parameters, as proposed by Bone et al., were
fixed as α = 0.01, β = 0.1 and γ = 0.3 for the MACH
filter [16]. As a result, the correlation filter did not always
provide optimal results. A novel approach has been proposed
in this work for optimization of the OT parameters to yield
the best possible filter response for a particular application.

III. PROPOSED METHODOLOGY
A combined framework of a correlation filter transfer func-
tion and an optimization algorithm has been proposed in this
work. Resulting correlation filters yield optimum results as
the OT parameters are optimized for specific target objects.
Results achieved through PSO and HPSO are compared for
an ATR application

A. PARTICLE SWARM OPTIMIZATION (PSO)
PSO algorithm is based upon animal social systems such as
birds flocking or fish schooling which is commonly used as
an optimization technique. There are several particles donat-
ing a set of optimization particles which search for the best
solution in a multi-dimensional search space. This algorithm
finds the best optimized value for each particle by conver-
gence. Optimized value is estimated using some cost function
which defines the best value for that fitness function. Each
particle has two main parameters: one is particle position,
x (i) and the second is particle velocity v (i) where i denotes
the iteration index. Afterwards the best values, attained from
all the particles, combine to get the best value for the whole
swarm. For a swarm ofN particles traversing aD-dimensional
space, the velocity and position of each particle are updated
as:

vdk (i+ 1) = vdk (i)+ c1 · r1,k (i) ·
(
pdk − x

d
k (i)

)
+ c2 · r2,k (i) ·

(
gd − xdk (i)

)
(10)

xdk (i+ 1) = xdk (i)+ v
d
k (i+ 1) , (11)
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where d = 1, . . . ,D denotes the dimension of the par-
ticles and is the k = 1, . . . ,N particle index. The con-
stants c1 and c2 are called cognitive and social parameters.
Variables vdk and xdk are velocity and position of the k-th
particle corresponding to its d-th dimension while gd and pdk
are the swarms global best positions and particles local best
positions for the d-th dimension, respectively. The variables
r1,k and r2,k are drawn from a uniform random distribution
[0, 1] and source of randomness in the search behavior of the
swarm.

Eberhart and Shi proposed one of the variants of PSO
containing an inertia-weight model [20], which multiplies the
velocity of current iteration with a factor, known as the inertia
weight:

vdk (i+ 1) = w.vdk (i)+ c1 · r1,k (i) ·
(
pdk − x

d
k (i)

)
+ c2 · r2,k (i) ·

(
gd − xdk (i)

)
, (12)

Inertia weight w ∈ [0, 1] converges and controls momen-
tum of the particle. If value of w is too small, very little
momentum is preserved from the previous iteration which
quickly changes the direction, whereas a large value of w
gives a delayed change in direction of a particle and slow
convergence. If w = 0, the particle moves without knowing
the past velocity value. This particular variant of the PSO is
now commonly referred as the Standard PSO [30], [31].

There are several applications of optimization algorithms.
Grosan et al. proposed the application of PSO algorithm in
the data mining domain. [26] Grosan et al. used the par-
ticle swarm optimization algorithm for a cloud computing
application in which optimization of cloud resources was
done to schedule applications. This technique minimized the
computational and data transmission cost by three times as
compared to the best resource selection heuristic technique
and can be used for optimization of any number of tasks and
resources. [23]. Pandey et al. proposed the application of PSO
for data vector clustering. The PSO algorithm was used to
find the centorid of data clusters specified by a user. This opti-
mization algorithm was compared with k-means clustering
and produced minimized errors with the best convergence.
The proposed algorithm has been used for the refinement of
clusters formed by k-means [24]. Omran et al. also used this
optimization algorithm for image clustering in comparison
with k means clustering algorithm. Its application are in MRI
and satellite imaging. [25]

The most effective and commonly used variant of PSO is
the Self-Organizing Hierarchical PSO algorithm which has
time-varying acceleration coefficients (HPSO) [21]. Inertia
weight term is removed and only the acceleration coefficients
guide the movement of the particle towards the optimum
solution. Acceleration coefficients vary linearly with time.
Therefore if the velocity goes to zero at some point, the
particle is re-initialized using a predefined starting veloc-
ity. The HPSO algorithm achieves outstanding results due
to its self-organizing and self-restarting property. whereas
improvement of the acceleration coefficients enhances the

particles global capability of search in the earlier stages and
moves particles to the global optima at the end stage which
is how the capability of convergence is enhanced. Large cog-
nitive and small social parameters are used at the beginning
and small cognitive and large social parameters are used in
the latter stages in HPSO. The mathematical representation
of HPSO is given as follows:

vdk (i+ 1) = c1 · r1,k (i) ·
(
pdk − x

d
k (i)

)
+ c2 · r2,k (i) ·

(
gd − xdk (i)

)
, (13)

where

c1 =
(
c1f − c1i

)
×

k
max ITER

+ c1i (14)

c2 =
(
c2f − c2i

)
×

k
max ITER

+ c2i (15)

The velocity and position of the k-th particle are updated
using eqn. (13) and (11), respectively.

B. OPTIMIZATION ALGORITHMS FOR CORRELATION
FILTER DESIGN
OT correlation filters are implemented by the complex filter
equation which depends on the selection of OT parameter
values. Values employed was determined through experi-
ments by several researchers. For example, fixed values of
OT parameters was used in the work of Bone et al. [16]. The
choice of selecting the most suitable values for specific target
recognition applications was not obvious. A novel framework
is proposed in this paper for the selection of the most suitable
values of OT parameters corresponding to the filter response,
given in Tables 1 and 2. The value of parameter α is updated
using the equation 11

αk (t + 1) = αk (t)+ vk,α (t + 1) (16)

Using equations 11 and 13, similar updated equations for
β and γ are formed for optimization purposes. HPSO finds
the best values of OT parameters by convergence of the
fitness function for a specific object recognition application
Correlation Output Peak Intensity (COPI) and Peak to Cor-
relation Energy (PCE) are performance measures used for
characterizing correlation plane [32]:

COPI = max{|C(x, y)|2} (17)

C(x,y) is the correlation peak output at the location of (x,y)
and:

PCE =
COPI − |C(x, y)|2{∑ [
|C(x,y)|2−|C(x,y)|2

]2
NxNy−1

}1/2 (18)

where |C(x, y)|2 =
∑
|C(x, y)|2/NxNy is the average value

of the correlation output plane intensity.
The MACE filter minimizes the Average Correlation

Energy (ACE) of the correlation plane so the value of PCE
maximizes. The MACH filter minimizes Average Similarity
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TABLE 1. Summary of the steps for correlation filter parameter
optimization via PSO.

TABLE 2. Summary of the steps for correlation filter parameter
optimization via HPSO.

Matrix (ASM) due to which the height of the correlation
peak maximizes. The correlation peak height and peak to
correlation energy values have been used as a fitness function
in the optimization algorithms. A summary of these steps
in the implementation of optimization algorithms is given
below.

IV. RESULTS AND DISCUSSION
Publically available dataset of the Amsterdam library has
been used for experimentation [33]. Ten different datasets
of size 128×128 are used for comparing the results of
the optimization algorithms with those available in the
literature [16].

A. PARAMETER SETTINGS
Experiments are carried out for the correlation filters in order
to evaluate the optimum values for the OT parameters through

both the PSO and HPSO algorithms. Parameters chosen for
the simulations are given in table 3.

TABLE 3. Parameter values for PSO.

Correlation filters have been implemented with a slight
modification. Due to the possibility of a particle giving a
negative value for a particular parameter, only the magnitude
of the value has been considered while the sign has been
ignored. Lower limit has not been set to 0 as even the mag-
nitude of the negative value could be significant. The results
show this assertion to be justified.

B. RESULTS FOR COMPARISON OF PSO AND HPSO
Ten different publically available datasets, examples of which
are shown in Fig. 1, have been taken to compare the results of
the optimization algorithms in order to analyze the optimized
values corresponding to the dataset. The out-of-plane rotated
0–40 training images have been used with a difference of
10 between images. The test images are taken within this
range. Cost function has been selected on the basis of targeted
requirement. The PCE and COPI values have been taken as
cost functions separately to compare the results of HPSO and
PSO with the values suggested by Bone [16].

FIGURE 1. Example images from the ten datasets from the Amsterdam
library of object images.

Test images for different rotations and from different
data sets are used in experiments to analyze the pattern of
optimized values. The values of α, β and γ for the COPI cost
function are 0.01, 0.1 and 0.3, respectively, as proposed by
Bone et al. [16]. In Table 4, comparison of COPI values has
made for the optimized values and Bones proposed values.
From these results, it can be seen that the height of the corre-
lation peaks generated by the HPSO optimization algorithm
is better for values obtained with the PSO and Bones values.
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TABLE 4. The value of COPI from PSO, HPSO optimized values and existing values.

Correlation planes from the optimization algorithms and
the values proposed by Bone et al. have been analyzed for
one of the datasets from Table 4. Cost function for the opti-
mization algorithms in this case is the COPI value. Optimized
values from HPSO give the best performance in terms of
COPI as compared to PSO and Bones work [16], as shown
in Fig. 2. Test image is 15o out plane rotated. The values
of the COPI in the cases of PSO, HPSO and Bones values
are: 9.51E − 05, 3.42E − 02 and 1.43E − 05 respectively.
In Fig. 2 (a) and (b), the peaks of Bone’s values and
PSO optimized values are apparently the same but the
results of applying PSO are better than from those achieved
from the parameter values proposed by Bone et al. COPI

FIGURE 2. (a) Correlation plane resulting from Bone’s [16] choice of
values: α = 0.01, β = 0.1, γ = 0.3; (b) Correlation plane using PSO
optimized values α = 0.0035, β = 0.0402, γ = 0.0461; (c) Correlation
plane using HPSO optimized values α = 4.52E − 05, β = 0.1097,
γ = 0.221; (d) test image employed.

result obtained from HPSO optimized values is better
than both Bone’s result and the PSO optimized result
as shown in fig. 2 (c). The results of HPSO are bet-
ter as compared to Bone’s work and PSO optimized
results for other performance measures also, as shown in
fig. 3, 4 and 5

In Fig. 3, the test image is 45o out of plane rotated. The
values of the COPI from the PSO, HPSO and Bones choice
of values are: 5.46E − 05, 4.11E − 02 and 8.36E − 06,
respectively. The reason for the side lobes present in the
correlation plane resulting from the HPSO optimized values
is due to the small contribution of the ONV term and the
full correlation that has been used in the experimentation i.e.

FIGURE 3. (a) Correlation plane resulting from Bones [16] value choice of
values: α = 0.01, β = 0.1, γ = 0.3 (b) Correlation plane using PSO
optimized values α = 0.0039, β = 0.0413, γ = 0.0434 (c) Correlation
plane using HPSO optimized values α = 6.30E − 08, β = 0.1024,
γ = 0.1877 (d) example test image employed.
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TABLE 5. The values of PCE resulting from the PSO and HPSO optimized parameters and their unoptimized values.

FIGURE 4. (a) Correlation plane resulting from Bones [16] choice of
values: α = 0.01, β = 0.3, γ = 0.1; (b) correlation plane using PSO
optimized values α = 0.0033, β = 0.7583, γ = 0.5106; (c) Correlation
plane using HPSO optimized values α = 7.52E − 06, β = 0.4861,
γ = 0.6633. (d) Test image employed.

the full test image has been correlated with the trained filter.
Results of the HPSO optimization are better as compared to
the results obtained with other values in terms of the COPI
performance measure.

The minimized value of ACE leads to the maximum value
of the PCE performance measure. It gives sharp and promi-
nent peaks as compared to the other filters examined. Test
images from different datasets with different out-of-plane
rotations have been used in the experimentation to analyze
the pattern of optimized values. The values of α, β and γ
for the PCE cost function are 0.01, 0.3 and 0.1, respec-
tively according to the values proposed by Bone et al. [16].
In Table 5, comparisons have been made between the PSO
and HPSO optimized values and the originally proposed
values by Bone [16] for the PCE cost function. As for the

FIGURE 5. Correlation plane resulting from use Bones [16] choice of
values: α = 0.01, β = 0.3, γ = 0.1; (b) Correlation plane using PSO
optimized values α = 0.0034, β = 0.7139, γ = 0.5433; (c) Correlation
plane using HPSO optimized values α = 2.38E − 07, β = 0.7199,
γ = 0.4175; (d) test image employed.

performance measure, the value of the PCE using HPSO
optimized parameter values is better than the PCE values
obtained using PSO and the originally starting value.

The correlation plane for the PCE cost function has
been analyzed for some datasets. In Fig. 4, the test image
is 45o out-of-plane rotated. The value of the PCE from
the PSO and HPSO optimized values and the values pro-
posed by Bone et al. [16] are: 7.27E + 01, 2.26E + 02
and 2.69E + 01, respectively. Again, the results obtained
using HPSO are better than those obtained from other val-
ues in terms of the PCE performance measure, optimiza-
tion is giving a sharper peak in comparison to the other
methods.

The test image is 15o out-of-plane rotated in Fig. 5. The
correlation peak from the optimized values obtained from
HPSO is sharper as compared to those obtained from PSO
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and Bones proposed values shown in Fig. 5. The values of the
PCE using PSO, HPSO and Bones parameter values [16] are
3.67E+02, 4.49E+03 and 1.18E+02, respectively. Thus the
results obtained using PSO optimization are also better than
those achieved from the values proposed by Bone et al. [16].
But again, the optimized value given from HPSO gives the
best result as compared to the PSO technique and Bones
proposed values for both the COPI and PCE cost functions.
Otimized values vary for all the datasets. The most suitable
value of the OT parameters depends on the dataset and cost
functions. Optimized value obtained using PSO can converge
to a local best value nevertheless, PSO still gives better results
than those obtainable using existing unoptimized parameter
values.

V. CONCLUSION
In this paper, a novel approach of combining OT correla-
tion filter and optimization algorithms has been proposed
to improve correlation filter results. The aim of this study
has been to optimize the optimal trade-off parameters of
correlation filters which has not accomplished in the past. The
optimized values obtained using the PSO and HPSOmethods
have been compared to parameter values that have been pre-
viously employed related to the cost functions for a specified
target detection application. The values of the optimal trade-
off parameters are not fixed for all applications and neither
are the cost functions but the selection of the values are varied
according to the requirements. The optimized values obtained
with HPSO suppress the output noise variance (ONV) factor.
The results obtained with this optimization algorithm are
more accurate than those achieved with optimized parameter
values obtained using PSO and previously suggested values.
The PSO algorithm is a relatively simple heuristic algorithm.
In future work, we will compare PSO and HPSO with other
advanced heuristic algorithms to attempt to further enhance
the performance of pattern recognition correlation filters.
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