
SPECIAL SECTION ON INTELLIGENT SYSTEMS FOR THE INTERNET OF THINGS

Received August 31, 2017, accepted September 28, 2017, date of publication October 30, 2017,
date of current version December 22, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2767701

A Secure Collaborative Spectrum Sensing
Strategy in Cyber-Physical Systems
HUI LIN1, JIA HU 2, JIANFENG MA3, (Member, IEEE), LI XU1, (Member, IEEE),
AND ZHENGXIN YU2
1College of Mathematics and Informatics, Fujian Normal University, Fuzhou 350117002C China
2College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX44QF, U.K.
3School of Cyber Engineering, Xidian University, Xi’an 710071, China

Corresponding author: Jia Hu (j.hu@exeter.ac.uk)

This work was supported in part by the National Natural Science Foundation of China under Grant 61363068, Grant 61472083,
and Grant 61402110, in part by the Pilot Project of Fujian Province (formal industry key project) under Grant 2016Y0031,
and in part by the Foundation of Science and Technology on Information Assurance Laboratory under Grant KJ-14-109.

ABSTRACT Cyber-physical systems (CPS) have the great potential to transform people’s lives. Smart
cities, smart homes, robot assisted living, and intelligent transportation systems are examples of popular
CPS systems and applications. It is an essential but challenging requirement to offer secure and trustworthy
real-time feedback to CPS users using spectrum sharing wireless networks. This requirement can be satisfied
using collaborative spectrum sensing technology of cognitive radio networks. Despite its promising benefits,
collaborative spectrum sensing introduces new security threats especially internal attacks (i.e., attacks
launched by internal nodes) that can degrade the efficiency of spectrum sensing. To tackle this challenge,
we propose a new transferring reputation mechanism and dynamic game model-based secure collaborative
spectrum sensing strategy (TRDG).More specifically, a location-aware transferring reputation mechanism is
proposed to resolve the reputation loss problem caused by user mobility. Furthermore, a dynamic game-based
recommendation incentive strategy is built to incentivize secondary users to provide honest information. The
simulation experiments show that the TRDG enhances the accuracy of spectrum sensing and defends against
the internal attacks effectively without relying on a central authority.

INDEX TERMS Cyber-physical systems, cognitive radio networks, dynamic game theory, reputation
mechanism, spectrum sensing.

I. INTRODUCTION
Due to the rapid proliferation of mobile devices such as smart
phones and various things equipped with built-in sensors
and processors, Cyber-Physical Systems (CPS) have been
attracting wide attention in both academia and industry [1].
CPS is a system featuring a combination of computational
and physical elements, all of which are capable of interacting,
reflecting and influencing each other [2]. The emergence of
the CPS will significantly change the way we see the world.
In the meantime, the convergence of the physical and cyber
spaces will exhibit a variety of complicated characteristics,
which brings more open issues and challenges for research
communities. Especially, how to provide secure and trustwor-
thy real-time feedback relied on the existing wireless com-
munication networks with limited spectrum resource is an
essential and challenging requirement in CPS [2]. To tackle
this challenge, as an efficient emerging technology, Cognitive
radio network (CRN) based collabrative spectrum sensing

(CSS) is introduced into the CPS to solve the spectrum
scarcity problem and provide reliable and secure real-time
communication [3], [4], where unlicensed users access idle
channels opportunistically based on the dynamic channels’
sensing information, without creating any harmful interfer-
ence to primary users (PU) [4]. This method will also help to
incorporate billions of wireless devices for different applica-
tions such as Internet-of-Things (IoT), CPS, smart grids, etc.
These channels could be highly congested and may not be
able to provide secure and reliable communications in urban
areas [5].

CSS can improve the efficiency of spectrum usage, but it
also introduces new security threats including internal attacks
during the spectrum sensing process, which can degrade the
effectiveness of spectrum sensing dramatically. For example,
an adversary may launch spectrum sensing data falsification
(SSDF) attacks, where the adversary corrupts a subset of
secondary users (SUs) as illustrated in the Fig. 1 to report
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FIGURE 1. SSDF attacks model.

falsified information, aiming to affect the final group deci-
sion [6]. Moreover, an adversary may also launch internal
Mobile attacks by moving position as shown in the Fig.2 to
implement a new round interaction with the other secondary
users as an initial secondary user.

Many papers [7]–[12] propose various methods to improve
the security in spectrum sensing. These solutions are usu-
ally based on a centralized infrastructure, where a central
authority plays an essential role in coordinating the attack
defending. However, the centralized schemes will incur
heavy communication overheads, and the malicious nodes
can compromise the central authority to paralyze the entire
system. Different distributed sensing schemes have also
been proposed [13]–[17], using game theory [13], incentive
design [14], consensus algorithm [15], [18], outlier detection
and computation verification [17], etc. Most of the existing
works ignore the internal SSDF attacks and Mobile attacks
launched by an inside attacker that has the legal identity.

In CPS, most client users are mobile and they access
the CPS opportunistically. Therefore, there is an urgent
need for a new secure and reliable CSS strategy to address
above-mentioned limitations of existing methods by taking
in account the characteristics of CPS. To design a new secure
and reliable CSS strategy, it is necessary to analyze the
trustworthiness of the users. Thus, reputation based CSS
has been introduced into CPS to implement secure spectrum
sensing [9], [12], [16], [18]–[24].

Although some reputation based CSS strategies have been
proposed in the literatures, most of them were based on the
trusted third party and traditional cryptographic encryption
and authentication techniques, thus ignoring internal attacks
launched by an inside attacker that has the legal identity and
dishonest recommendations used to frame up good parties
and/or boost trust values of malicious peers. Moreover, they
did not consider Mobile attacks and information leak.

To overcome the above-mentioned problems, a transfer-
ring reputation mechanism and dynamic game model based
secure collaborative spectrum sensing strategy (TRDG) is
proposed in this paper. In TRDG, a transferring reputation
mechanism is firstly proposed. Then, a dynamic game based

FIGURE 2. Mobile attacks model.

recommendation incentive strategy (DGRIS) is built. Finally,
a secure collaborative spectrum sensing strategy TRDG is
proposed based on the transferring reputation mechanism
and the DGRIS. The major contributions of this work
include:

(1) A location aware transferring reputation mechanism is
proposed to resolve the reputation loss problem during the
moving process of the SU. The proposed mechanismmakes it
possible to transfer the SUs’ reputation to the new interaction
area, which can better reflect the real-world nature of CPS,
and defend against the internal Mobile attacks.

(2) A dynamic game based recommendation incentive
strategy (DGRIS) is built to incentive the SUs to provide
honest information. The DGRIS makes the attacks’ utility
below cost, which decreases the motivations of the rational
malicious adversaries and thus can defend against the internal
SSDF attacks.

(3) A transferring reputation mechanism and dynamic
game model based secure collaborative spectrum sensing
strategy (TRDG) is designed to help secondary users (SUs)
sense the spectrum state and decide. SUs iteratively update
their local values to arrive at consensus, without help from
any central authority.

(4) Simulation experiments demonstrate that the TRDG
can provide an effective, secure and trustworthy spectrum
sensing countermeasure against the internal SSDF attacks
and Mobile attacks without relying on a central authority.

The remainder of this paper is organized as follows.
Section II presents a brief review of the related work;
Section III describes the network and adversary models;
Section IV introduces the implementation details of the
TRDG strategy; Section V presents the performance evalu-
ation of the TRDG; Finally, Section VI concludes the paper
and discusses some future work.

II. RELATED WORK
In this section, we provide a literature review on the concepts
of collaborative spectrum sensing. Spectrum sensing in CRN
have been widely studied, using game theory [13], incentive
design [14], consensus algorithm [18], outlier detection and
computation verification [17], and etc.
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For instance, Mukherjee [13] discussed cooperative sens-
ing problem in distributed CRN with the game-theoretic
models. Mukherjee considered the utility function for sec-
ondary users as improved sensing accuracy and examined
the impact of various sensing parameters. Li et al. [14] first
identified a new selfishness model named entropy selfishness
in distributed CRN. They further proposed YouSense, a one-
time pad based incentive design in which sensing reports
were encrypted before sharing, to prevent the entropy self-
ish users from learning the sensing reports, but the hon-
est user can recover this plaintext by spectrum sensing.
Zhang et al. [18] proposed a distributed and scalable cooper-
ative spectrum-sensing scheme based on recent advances in
consensus algorithms. In the proposed scheme, the secondary
users can maintain coordination based on only local infor-
mation exchange without a centralized common receiver and
the proposed scheme used the consensus of secondary users
to make the final decision. Zhang et al. [6], [16] designed a
fully distributed security scheme ReDiSen to counter attacks
in cooperative sensing. ReDiSen applied the reputation gen-
erated from exchanged sensing results as an aid to restrict the
impact of the malicious behaviours. Yan et al. [17] proposed
a robust distributed outlier detection scheme with adaptive
local threshold to counter covert adaptive attacks by exploit-
ing the state convergence property. In addition, they also
presented a hash-based computation verification scheme to
effectively defend against colluding attackers.

Amjad et al. [21] proposed a framework for trustworthy
collaboration in spectrum sensing for ad hoc CRNs. The
framework incorporates a semi-supervised spatio-spectral
anomaly/outlier detection system and a reputation system,
both designed to detect byzantine attacks in the form of
SSDF from malicious nodes within the CRN. Sun et al. [25]
proposed hard and soft fusion collaborative spectrum sensing
schemes based on online hidden bivariate Markov chain
modeling of the signals received by secondary users. The
proposed schemes do not rely on precomputed thresholds or
weights, and provide predictive information that can be used
to improve the performance of dynamic spectrum access.
Sharifi et.al proposed attack-aware CSS (ACSS) scheme to
against SSDF attack in literatures [26] and [27], respectively.
The ACSS proposed in [26] estimates attack strength and
applies it in the k-out-N rule to obtain the optimum value
of k that minimizes the Bayes risk. And, the ACSS pro-
posed in [27] estimates the credit value of each cognitive
radio user and identifies the malicious attackers along with
their attack strategies by allocating an appropriate collabo-
rative weight for each user, which improves the CSS per-
formance effectively. Hsieh et.al [28] proposed a coalition-
based model for the Interference-aware spectrum sensing
to maximize the utility sum of all secondary users while
observing the protection requirement of the primary user. The
proposed model first formulates a joint threshold detection
and coalition formation problem under the target cooperative
model, and then explore important properties of the target
problem.

FIGURE 3. Architecture of CRN-CPS.

Overall, existing collaborative spectrum sensing methods
are usually based on a centralized infrastructure in which
a central entity coordinates the operations of the spectrum
sensing and sensing information collection, thus brings heavy
communication overheads and the issue that central authority
may be compromised by attackers. On the one hand, they
overlook the internal attacks launched by an inside attacker
that has the legal identity whose presence is likely in the
CRN and CPS environment. Consequently, it is still an open
problem and a challenging task to design secure and dis-
tributed spectrum sensing allocation schemes in CRN to resist
the internal attacks and provide sensing information security
protection.

III. SYSTEM AND ADVERSARY MODEL
A. SYSTEM MODEL
In this paper, we focus on the network environment of CRN
based CPS (CRN-CPS), which is a viable solution to imple-
ment fast and large-scale CPS applications [2], [4]. The
typical CRN-CPS architecture is depicted in Fig. 3, which
adopts the CRN as the access network. As shown in fig.3,
the CRN in the CRN-CPS is consist of a PU network and
a SU network. We suppose that each SU is equipped with a
cognitive radio and they utilize omnidirectional antennas to
communicate with each other. Meanwhile, SUs are located
within the transmission range of the PUs, and can individ-
ually sense the environment to detect the existence of the
Pus [16], [18]. In the CSS process, we use the energy sensing
method for a SU to detect PUs’ presence. We also assume
that an adversary can compromise a subset of honest SUs.
A SUmay provide incorrect information (including attacking
malicious SUs and honest SUs that sense incorrectly due
to severe fading or system failure) or correct information
(including honest SUs that sense correctly and non-attacking
malicious SUs). An honest SU has no a priori information
on which of its neighbors are malicious. If the final sensing
results indicate that the PUs are not transmitting on certain
channels, the SUs use the spectrum allocation scheme to
allocate and transmit on these channels.

B. ADVERSARY MODEL
In this paper, we focus on the internal attacks launched
by an inside legal and certificated user, which makes the
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FIGURE 4. The TRDG system structure.

traditional encryption and authentication techniques no
longer effective. In the internal attacks, the attackers may
or may not participate in the cooperative sensing process,
and may report falsified values when participating. Further-
more, we assume, in spectrum sensing, the following internal
attacks will be launched by the inside malicious SU:
• SSDF attacks: attackers corrupt a subset of SUs and

strategically report falsified sensing results, aiming at
incurring interference between the PUs and legitimate
SUs and affect the final group decision.

• Mobile attacks: attackers move to other position and
disguised as an initial or normal SU to implement a new
round interaction with the other SUs.

IV. TRANSFERRING REPUTATION MECHANISM AND
DYNAMIC GAME MODEL BASED SECURE
COLLABORATIVE SPECTRUM SENSING STRATEGY (TRDG)
In this section, a novel transferring reputation mechanism
and dynamic game model based secure collaborative spec-
trum sensing strategy (TRDG) is extended from our previ-
ous work [23], [24]. The TRDG integrates the collaborative
spectrum sensing with multi-level security, reputation mech-
anism and dynamic game theory to defend against the insider
threat and enhance the security and efficiency of spectrum
sensing in distributed CRN based CPS. The system structure
of TRDG is shown in figure 4, and the details of the TRDG
are described as follows.

A. DYNAMIC GAME BASED RECOMMENDATION
INCENTIVE STRATEGY (DGRIS)
Traditional reputation mechanisms improve the trustworthi-
ness of recommendations through weighted summation of
recommendations from different recommenders. However, in
the open network environment such as CPS, these mecha-
nismsmust face the significant problems caused by the selfish
and malicious users who refuse to render the recommenda-
tions in order to avoid consuming limited resources or provide
dishonest recommendations so as to launch attacks. To over-
come the above shortcomings, in this subsection, we first
propose a dynamic game based recommendation incentive
strategy (DGRIS). Then the DGRIS is incorporated into the

recommend reputation evaluation tomotivate users to provide
honest recommendations.

In DGRIS, the principal agent theory [29], [30] is used
to incent recommenders to provide the honest information
during the recommend reputation evaluation process. In this
paper, we assume that the agent could take an action like
S = {honest response (h), fake response (f)} after principal
sends the request of cooperative spectrum sensing. Based on
the dynamic game theory that is proposed in this paper, for
example, if the neighbour secondary user replies with false
information, its reputation will be reduced as punishment.
When the value of reputation is lower than a threshold, no one
would be provided cooperative to this user. If the secondary
user SUa replies honestly, the payoff is Ua. The formula for
calculation is as follows:

Ua = 2 ∗ A ∗ Pd ∗ R (1)

A is the reward for secondary user of cooperative sensing
from requesting cooperative sensing secondary user. R is a
comprehensive value, according to the reputation valuewhich
passed by multipath and the requester’s reputation value from
local database. The more incentivize involvement of cooper-
ative sensing, the greater value would be. P is the detection
rate of spectrum sensing that is the probability of principal
exist with correct judgment, Pd = 1 − Pf , P will provide a
relative accurate sensing response.

The secondary user is rational. If the secondary user who
offer collaboration provides an honest response, its own giv-
ing a fake response to other secondary users. The payoff is 3A
and the other’s is –A; Both secondary users provide an honest
response, then the payoff is 2A for each; They will receive 0 if
two sides all offer fake response.

As for the i-way interaction process of cooperative spec-
trum sensing, it can be divided into the following situations.

(a) All secondary user provides honest response, so the
total payoff is as follows:

Ux = 2 ∗ A+ (
∞∑
i=2

Ua) ∗ R

= 2 ∗ A+ 2 ∗ A ∗ [R/(1− Pd ∗ R)] (2)

(b) The first round offers a fake response, then other rounds
give honest responses, the total payoff is as follows:

Uy = 3 ∗ A− A ∗ R+
∞∑
i=3

0 = 3 ∗ A− A ∗ R (3)

(c) The secondary user provides fake response continu-
ously. The first cooperation is likely to succeed, but from
the second-round other secondary users will not offer honest
response any more. The total payoff is as follow:

Uz = 3 ∗ A+
∞∑
i=2

0 = 3 ∗ A (4)
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(d) Providing an honest response first, then giving the fake
response. The total payoff is:

Uπ = 2 ∗ A+ 3 ∗ A ∗ R+
∞∑
i=3

0 = 2 ∗ A+ 3 ∗ A ∗ R (5)

In the situation of repeated games, the two situations com-
pared:

Situation (a) with situation (b), if Ux > Uy, then 2 ∗ A +
2 ∗ A ∗ R

1−Pd∗R
> 3 ∗ A − A ∗ R and 0 ≤ R ≤ 1, so

R ≥ 3+Pd−
√
(3+Pd )2−4Pd
2Pd

and R is monotonically increasing
with the value of Pd changes. Since 0 ≤ Pd ≤ 1, then
R ≥ 2−

√
3. Therefore, if R ≥ 2−

√
3, the total payoff of the

strategy with honest response is greater than the payoff from
deceive strategy (situation b). To summarize: if R ≥ 2−

√
3,

honest response strategy is a dominant strategy. Otherwise,
secondary user will provide fake response.

The next two situations compared: situation (a) with situ-
ation (c), if the payoff of honest response is greater than the

fake response‘s payoff, then Ux −Uz ≥ 0, that (
∞∑
i=2

Ua)∗R−

A = (2∗A∗R)/(1−Pd∗R)−A ≥ 0. SoR ≥ 1
2+Pd

andPd ≥ 0,
in other words, R ≥ 1/2. Considering it may be collaborated
again, the dominant strategy is choosing to response honestly.
If R ≥ 1/2. Otherwise, a fake response would be provided by
the secondary user.

Compared situation (a) with situation (d), if Ux > Uπ ,
since 2 ∗A+ 2 ∗A ∗ R

1−Pd∗R
> 2 ∗A+ 3 ∗A ∗R, so R > 1

3Pd
and 0 ≤ Pd ≤ 1 that R > 1

3 . Therefore, honest response is
a dominant strategy, if R > 1

3 . Otherwise, the secondary user
will provide a fake response.

To summarize what has been mentioned above, consider-
ing the long-term benefit, all secondary users expect to get
cooperative spectrum sensing. If R ≥ 1/2, both sides provide
honest response is Nash Equilibrium.

After the secondary user moved, if the secondary user
SUb doesn’t receive the collaborative report by its neighbor
secondary user SUa, SUb will broadcast the reputation value
of SUa to all other neighbor secondary users, in order to
generate the corresponding reputation history information
for SUa in the network. The safety of cooperative spectrum
sensing in the network would be improved if keeping the
value of reputation R ≥ 1/2. Using (2) to pass the value
of reputation, it can effectively accelerate convergence for
reputation value of SUa, which will provide incentive partici-
pant for moved secondary users in cooperation and reduce the
selfish behavior which only receive other’s cooperation and
not voluntarily contribute to desired cooperative sensing.

B. TRANSFERRING REPUTATION MECHANISM
In distributed CRN based CPS, the proposed transferring rep-
utation mechanism is run at each SU who stores its historical
opinion towards the others in the relevant local database.
And it consists of three components: direct reputation evalu-
ation, recommend reputation evaluation and final reputation
evaluation.

When a SU wants to request (or provide) a service from
(or to) another SU (including unknown SUs), it will send
a request message to all neighboring SUs. Each neighbor-
ing SU receiving the request will first verify whether the
requestor’s security level (sl) satisfies the security require-
ment. If it is, the neighboring SU will execute the direct
reputation evaluation to judge whether the requestor is a
malicious SU. Otherwise, the neighboring SU will ignore
the request. The security level computation and assignment
please refer to our previous work [31], [32].

If the direct reputation evaluation cannot lead to a decision,
the neighboring SU will further execute the recommended
reputation query using Algorithm 2 to query requestor’s rep-
utation from its neighbors. Afterwards, the neighboring SU
will evaluate the integrated recommended reputation combin-
ing the received replies of recommended reputations to the
query. Finally, it will evaluate the final reputation and decide
whether the requestor is a malicious SU or not.

Suppose SUx and SUy represent the requester and service
provider respectively. The final reputation of SUx and SUy,
denoted as RFinal , includes two components: One is the direct
reputation RDirect and the other is the recommendation repu-
tation RRec. The final evaluation results will be stored in the
local database of final reputation.

1) EVALUATION OF DIRECT REPUTATION
The direct reputation of SUx toward SUy is evaluated as
follows.

(1) If SUx is an unknown user, SUy will start the DGRIS
in 4.1 to ask for SUx’s reputation from its neighbors.
(2) Otherwise, the direct reputation evaluation between

SUx and SUy depends on the historical interaction and
dynamic real-time sensing information of the network, and
can be computed as (6).

RDirectTn = (IAs/IAtotal) ∗ϕTn
∗(1− ϕlocation) (6)

where IAs and IAtotal denote the successful interaction num-
ber of times and the total interaction number of times during
T time periods, respectively. ϕTn is the weight factor, which
determines how much the distribution of the interactions
affects the direct reputation evaluation at time Tn, which is
given by

ϕTn =
[
1− e ∧ (−NIATn/(m

∗n))
]
∗

n∑
l=1

(
NIAl
m
∗
l
n
) (7)

where m is the number of cycles in a time period, and n is
the number of time period. NIATn is the number of the cycles
that the interaction happens between SUx and SUy. NIAl is
the number of interaction in the l-st time period. ϕlocation
denotes how the real-time position change between SUx and
SUy affects the direct reputation evaluation at time Tn. The
larger the distance, the more untrusted the SUx .

ϕlocation = e−Elocation∗βlocation ∗ (1− e−|L−L
′
|∗βlocation ) (8)

In (8), the real-time position and the most recent position
is denoted as L and L’, respectively. We define |L-L’| as the
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distance between them. We also define Elocation as the error
of location sensing and βlocation is the parameter that controls
the weight of the location factor’s influence on the reputation.

The details of the unidirectional direct reputation evalua-
tion are shown in Algorithm 1.

Algorithm 1 Direct Reputation Evaluation
Input: Requester SU ′xs information
Output: Whether SUx is a malicious node or not
1. Begin
2. Requester SUx sends a Request message;
3. SU ′xs neighbor SU such as SUy receives the Request

message;
4. If

(
SU ′xsl > Securitylevelrequirement

)
then

5. SUy executes the Direct Reputation Evaluation and
returns the result as:

6. RDirect=Direct_reputation (SUx);
7. Else
8. SUy drops the Request message;
9. End if
10. If (RDirect > THupper

direct ) then
11. RFinal = RDirect ;
12. Else if (THdown

direct < RDirect < THupper
direct ) then

13. SUy executes the Recommendation Reputation
Query;

14. SUy executes the Recommendation Reputation
Evaluation;

15. SUy executes the Final Reputation Evaluation and
gets the RFinal ;

16. Else
17. RFinal = −1;
18. End if
19. If (RFinal < THdown

final ) then
20. SUx is considered as a malicious node and will be

isolated;
21. Else if (THdown

final < RFinal < THupper
final ) then

22. SUx will be punished by decreasing its reputation
value;

23. Else
24. SUx is considered as a trustworthy node;
25. SUy sends Accept message to SUx ;
26. End if
27. End

2) EVALUATION OF RECOMMENDATION REPUTATION
If the direct reputation computation cannot lead to a decision,
SUy will first execute the recommended reputation query
using Algorithm 2 to query SUx’s reputation and security
level from its neighbors. Afterwards, SUy will compute the
integrated recommended reputation combining the received
replies of recommended reputations to the query, which will
be described in the following.

Suppose SUy receives n (n>1) direct recommendation
opinions and m (m>1) transferring path based recommenda-
tion opinions, then the integrated recommendation reputation,

Algorithm 2 Recommendation Opinion Query
Input: Requester SU ′xs mac address, ID
Output: SU ′xs reputation and security level
1. Begin
2. SUy broadcasts a query message;
3. Wait (3-5seconds);
4. SU ′ys neighbor SUk receives the query message;

5. If
(
SU ′ysl > Securitylevelrequirement

)
then

6. {
7. If (there has the direct reputation and security level

opinions about SUx) then
8. SUk evaluates the direct recommend reputation

RDir-RecTn ;
9. Else
10. {
11. SUk ask neighbor s to provide the reputation

and security level
12. opinions about SUx ;
13. SUk evaluates the transferring path based

recommendation
14. reputation RPath-RecTn ;
15. }
16. SUk evaluates the integrated recommendation

reputation RRecTn ;
17. SUk executes the DGRIS and returns the RRecTn and

security level
18. opinions to SUy;
19. }
20. Else
21. SUk drops the query message;
22. End

RRecTn , can be computed as follows.{
RRecTn = η1 ∗ R

Dir-Rec
Tn + η2 ∗ RPath-RecTn

η1 + η2 = 1, η1, η2 ∈ [0, 1]
(9)

where η1, η2 are the weight factors, which determine how
much the direct recommendation opinions RDir-RecTn and trans-
ferring path based recommendation opinions RPath-RecTn affect
the final recommendation reputation evaluation, respec-
tively. The RDir-RecTn is from the direct recommenders
who has the reputation opinion about the SUx on its
local reputation database, and the RPath-RecTn is provided
by the transferring recommenders who provide the repu-
tation opinion about the SUx with the opinion from their
neighbors.

Let DirR = {dir − reci |i = 1 . . . n } and PathR ={
path− recj |j = 1 . . .m

}
be the direct recommenders set

and the transferring recommenders set, respectively. The
RDir-RecTn can be given by

RDir-RecTn =
1
n
∗

n∑
j=1,j∈DirR

(
slj
slmax

∗ RDirectj:x

)
(10)
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where slmax is the maximal security level. RDirectj:x is the direct
recommend opinion about SUx provided by SUj.
For a transferring recommender SUk , SUk ∈ PathR, if

there are many recommend opinion about SUx coming from
different paths, the most reliable path denoted as Rk:path
is chosen based on the rules below. Here, we assume L(i),
(i = 1, . . . , n) is the set of the recommend paths and each
path includes j SUs.

Rk:path = Max (ζ1 ∗ RL(i) + ζ2 ∗ SLL(i)), i = 1..n

s.t. ζ1 + ζ2 = 1

Th1 < EL(i) < Th2 (11)

where ζ1 and ζ2 are the weight factors corresponding to
the opinion and security level of path L(i) respectively. Th1
and Th2 are the thresholds of EL(i). RL(i) and SLL(i) are the
opinion and security level of path L(i) respectively. EL(i) is the
energy consumption of path L(i). RL(i), SLL(i) and EL(i) can be
computed as:

RL(i) = Min(
m∑
j=1

Rij/m,min(Rij))

SLL(i) = Min(SL ij )

EL(i) = m ∗Max(
m∑
j=1

E ij/m,max(E ij ))

(12)

where Rij and SL
i
j are the opinion and security level of SUi

in the j-th path, respectively. E ij is the energy consumption of
SUi in the j-th path. SL ij is the security level assigned to the
SUi in the j-th path according to the SU’s reputation value.
And then, the RPath-RecTn can be computed as

RPath-RecTn =
1
m
∗

m∑
k=1,k∈PathR

×

[
Rk:path ∗ RDirectk:x ∗ (1− ϕy:k,location)

]
(13)

where ϕy:k,location ∈ [0, 1] is the influence factor of
the location between the SUy and the recommender SUk .
Algorithm 3 gives the details of the integrated recommended
reputation computation.

3) EVALUATION OF FINAL REPUTATION
After getting the direct and recommended reputation, the final
reputation can be computed as:{

RFinaly:x = α1 ∗ R
Direc
Tn + α2 ∗ RRecTn

α1 + α2 = 1, α1, α2 ∈ [0, 1]
(14)

where α1, α2 are the weight factors for the direct reputation
and integrated recommended reputation, respectively.

C. SECURE COLLABORATIVE SPECTRUM SENSING
STRATEGY (TRDG)
CSS implements spectrum sensing through the SUs in a
wide area. In CSS, each SU obtains a local measurement

Algorithm 3 Integrated Recommended Reputation Evalua-
tion
Input: N direct recommendation information andM trans-
ferring recommendation information
Output: Integrated recommended reputation value
1. Begin
2. SUy receives n+ m Reply messages with the direct

and transferring recommendation information about
SUx ;

3. SUy executes the recommenders selection process;
4. For (i = 1; i <= n+ m; i++)
5. {
6. If

(
SU ′i sl > Securitylevelrequirement

)
then

7. {
8. If (SUi is a direct recommender) then
9. Put SUi into the recommenders set DirR;
10. Else
11. Put SUi into the recommenders set PathR;
12. }
13. Else
14. SUy drops the Reply message;
15. End if
16. }
17. SUy computes the RDir-RecTn , Rk:path and RPath-RecTn with

DirR and PathR;
18. SUy executes the integrated recommendation

reputation evaluation and returns the result as RRecTn ;
19. End

in a time interval. After a sensing session, a series of value
update sessions are executed by the secondary users. All
SUs exchange their local spectrum sensing results with their
neighbors within its communication range, and update their
own values based on the received values. Since CSS can
enhance sensing accuracy, while reducing the need for sen-
sitive and expensive sensing technology, it is proposed to
enhance the sensing performance [16], [18]. However, it is
vulnerable to the internal attacks threats, which will make the
performance of CSS degrade significantly.

To solve the above-mentioned problems, based on trans-
ferring reputation mechanism, dynamic game based recom-
mendation incentive strategy (DGRIS) and combining with
the characteristics of CRN, a secure collaborative spectrum
sensing strategy TRDG is proposed to improve the accuracy
and reliability of the sensing results, and defend against the
internal SSDF and Mobile attacks. In TRDG, a secondary
user combines its sensing results with the results of collabora-
tive group members to evaluate the true state of the channel to
improve the accuracy of sensing. Moreover, TRDG can also
punish the untrustworthy user to reduce the influence of the
false information to the network.

During the sensing data fusion and decision process, the
final reputation is put into (15) to compute the sensing data
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fusion result.

8s
d = (

γ∑
i=1,i 6=d

RFinald :i ×9i)/
γ∑

i=1,i 6=d

RFinald :i (15)

where8s
d is the sensing data fusion result when SUd requests

the channel s. γ is the total number of the sensing result fed
back by the other SUs. 9i is the state of the channel s sensed
by the SUi, which is defined as

9i =

{
0, s is busy
1, s is idle

(16)

Then, the decision Osd can be made by

Osd =

{
1 s is idle, 8s

d ≥ λ

0 s is busy, otherwise
(17)

where λ is the threshold of the channel being idle.
The details of the TRDG are described in Algorithm 4. It is

worth noting that DBlocalX is SU’s local reputation table. The
size of the table is 1Mb-10 Mb depending on the number of
cycles in the simulation, so the memory overhead is not much
considering the memory size of modern devices.

V. PERFORMANCE EVALUATION
In this section, we implement our strategy and conduct simu-
lation experiments usingMATLAB and compare TRDGwith
RCSS in [21], JSSRA in [22], and ICS in [33].

For evaluating our proposed framework for defending
against aforementioned SSDF attacks andMobile attacks, we
have considered an CRN of size 1000 m x 1000 m and the PU
and the SUs whether honest or malicious, are mobile with
their speed varying between 0 and 4 m/s which represents a
CRN user moving around on foot. The maximum transmis-
sion range s for both the PU and the SUs is 200 m. We have
carried out simulations for both dense (100 secondary users)
network configurations and the number of detectable chan-
nels of each secondary user is 6. The parameters η1, η2, α1,
α2, ζ1, ζ2, Ethreshold , are 0.4, 0.6, 0.3, 0.7, 0.5, 0.5, 0.5, which
are empirical values obtained frommultiple experiments. The
number of time period is 6, the number of cycle in a time
period is 10, and the time period is 1s. All the graphs represent
results that are averaged over 100 simulation runs.

Because the Attack Ratio (AR) and Malicious SU Detec-
tion Accuracy (MDA) are the common metrics to evaluate
the performance of the reputation mechanism and incentive
strategy, while the Spectrum Decision Accuracy Ratio (SDA)
and False Spectrum Decision Ratio (FSDR) are the important
and frequently used metrics to evaluate the feasibility and
availability of the spectrum sensing strategy, they are chosen
as the metrics in the performance evaluation when internal
SSDF attacks and Mobile attacks are present. These perfor-
mance metrics are defined as follows.
â Attack Ratio (AR): The rate of the number of malicious

users who launch attacks to the total number of mali-
cious users.

Algorithm 4 Secure Collaborative Spectrum Sensing Strat-
egy (TRDG)
Input: Wireless channel set C, detectable channel set CX ,
Output: Most trustworthy secondary users set, TSU
untrustworthy secondary users set UTSU and the sensing
data fusion result
1. Begin
2. The SUs wanting to transfer data setups the spectrum

collaborative detection secondary users set �N by
broadcasts the REQestablish message on the common
control channel (CCC);

3. Any SU who receives the message and wants to
collaboration feeds back a RESPestablish and joins
the �N ;

4. SUs and all members in the �N initialize the
parameters of reputationmechanism, DGRIS, TRDG,
the reputation threshold (Ethreshold ), and detection
period of (T );

5. SUs broadcasts the collaborative request to the
members in �N ;

6. The member in �N receiving the request executes
the DGRIS and makes a decision whether to
participate in the collaboration and provide the honest
sensing results;

7. SUs monitors the CCC during [tstart , tstart + T ];
8. After receives the feedback messages, SUs executes

the following steps:
9. SUs selects the collaborative SUswhose security level

satisfies the security requirement and setup a new
collaborative SUs set �′N ;

10. SUs executes transferring reputation mechanism to

evaluate the reputation of the members in �′N ;
11. SUs sets up the most trustworthy secondary users set

TSU;
12. SUs sets up the untrustworthy secondary users set

UTSU;
13. SUs executes the TRDG to compute the sensing data

fusion result;
14. SUs executes the channel search scheme(CSS):

CSS(TSU);
15. SUs update the reputation of the member in TSU and

UTSU and broadcasts it on the CCC;
16. SUs punishes(UTSU);
17. SUs transfers the reputation of those members in

�N that do not feedback any sensing information

to the neighbors within one-hop communication

distance;
18. End

â Malicious SU Detection Accuracy (MDA): The per-
cent of malicious SUs that is correctly identified by the
reputation management system.
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FIGURE 5. Attack ratio of TRDG with DGRIS and TRDG without DGRIS.

â Spectrum Decision Accuracy Ratio (SDA): The per-
cent of decision made by the proposed spectrum sensing
strategy is the same as the actual state of the channel.

â False Spectrum Decision Ratio (FSDR): Percent of
state of the channel misidentified by the proposed spec-
trum sensing strategy.

1) ATTACK RATIO (AR)
First, we compare the AR of TRDG with DGRIS with the
TRDGwithout DGRIS and theAR performance of the TRDG
with that of the ICS to investigate the influence of the incen-
tive mechanism on the attacks defense. In the simulation,
we set a hostile network environment with 50 percent of
the malicious SUs, and the estimated value is converged to
constant values after applying almost 100 rounds of sensing.

In Fig. 5, the simulation results show that the AR of
the TRDG without DGRIS is higher than the TRDG with
DGRIS. For the TRDG with DGRIS, the incentive mech-
anism DGRIS makes the attacks utility below cost, which
effectively decreases the attack wishes of the malicious SUs
and leads to the AR of TRDG with DGRIS decreases with
the simulation rounds increases. But for the TRDG without
DGRIS, there has no incentive mechanism to incentive SUs
to provide true information and punish the SUs who provide
the false information, so the malicious SUs will continue
launching attacks and its AR maintains a stable state.

The AR comparison results between TRDG and ICS
considering the SSDF and Mobile attacks are shown
in Fig. 6(a) and (b), respectively. In Fig. 6(a), we consider
the SSDF attacks, as expected, the AR of both ICS and TRDG
decreases with the simulation round increases, which demon-
strate that both the ICS and TRDG can effectively defend
against the SSDF attacks. Because both ICS and TRDG adopt
reputation mechanism to judge whether a SU is a malicious
user according to its reputation, and also adopt incentive
mechanism to decreases the attack wishes of the rational
malicious adversaries, so the rational malicious attackers will
give up attacks to avoid being punished and costing more, and
leading to the AR decrease.

In Fig. 6(b), we consider the Mobile attacks, from the
results we can find that different from the SSDF attacks, the
AR of TRDG is lower than that of the ICS, which means that
the Mobile attacks affects the ICS more than for the TRDG.
In ICS, it connects sensing participation to the reputation
through a user-dependent pricing function to offer stronger

FIGURE 6. Attack ratio (a) with SSDF attacks (b) with mobile attacks.

FIGURE 7. Malicious SU detection accuracy (a) with SSDF attacks (b) with
mobile attacks.

incentives for honest SUs to participate in the CSS. How-
ever, it ignores the Mobile attacks, and cannot transfer the
reputation of the mobile malicious SUs to the new interaction
area, which makes it cannot avoid the reputation loss problem
during the moving process of the SU. And then, the malicious
SUs in the new interaction area will be disguised as an initial
or normal SU and been design an initial reputation to execute
a new round interaction with the new neighbors. So, although
the AR of the ICS decreases with the simulation round
increases, it will finally maintain a relatively stable state and
it is much higher than the AR of the TRDG. In TRDG, a
transferring reputation mechanism is proposed to make the
reputation transmission possible, which makes the mobile
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malicious SUs cannot veil its previous malicious behaviors,
and defend against the internal Mobile attacks effectively.
Thus, the AR performance of the TRDG is better than the
ICS.

2) MALICIOUS SU DETECTION ACCURACY (MDA)
Next, we will evaluate the effectiveness and reliability of the
three strategies by comparing theirMDAperformance to each
other in the presence of SSDF and Mobile attacks.

The results in Fig. 7(a) and (b) show the MDA of the
three strategies increase with the simulation rounds increase
in the presence of the SSDF and Mobile attacks. This is
because that all of the three strategies adopt the reputation
model to evaluate the trustworthiness of a SU according to its
reputation value. When a malicious SU launches attacks, its
reputation value will be reduced, and if the reputation value of
a SU is below a threshold, it will be identified as a malicious
user. Since the more attacks the malicious SU launches, the
lower its reputation value, which makes it more likely to be
identified, so the MDA of the three strategies increase with
more malicious users launch attacks.

Moreover, it is also observed that the MDA of the TRDG
is the highest among all the three strategies in the presence of
the SSDF and Mobile attacks.

The reason lies in that the integrated combination of the
analysis of the distribution of interaction, real-time position
information collection and multi-security scheme improves
the accuracy, efficiency, and reliability of both the direct and
recommendation reputation evaluation, and thus enhances the
MDA of TRDG. Although the other strategies also adopt
related technologies to improve the accuracy and reliability
of reputation evaluation, they do not take all the above-
mentioned influence factors into account. Meanwhile, they
either consider only the improvement of the direct reputation
evaluation, or just the improvement of the recommended rep-
utation evaluation. Therefore, their MDA is lower than that of
the TRDG.Moreover, both RCCS and JSSRAdo not consider
the mobile attacks and cannot transfer malicious attackers’
reputation value, which influence the MDA performance of
them. Thus, the MDA performance of the TRDG is much
better than of the RCCS and JSSRA.

3) SPECTRUM DECISION ACCURACY RATIO (SDA)
We also evaluate the effectiveness and reliability of the three
spectrum sensing strategies by comparing their SDA perfor-
mance to each other in the presence of SSDF and Mobile
attacks.

The results in Fig. 8(a) show that the SDA of the three
strategies keep a relative stable high value in the presence
of the SSDF attacks. This is because that all of the three
strategies use the reputation and incentive mechanisms to
incentive the user to provide true sensing information, and
thus reduce the probability of the attack and increase the SDA
of all the three strategies. For TRDG, the higher accuracy,
efficiency, and reliability of the reputation mechanism leads
to a better MDA performance than of the RCCS and JSSRA,

FIGURE 8. Spectrum decision accuracy (a) with SSDF attacks (b) with
mobile attacks.

which makes the sensing information more accuracy and
improve the SDA of the TRDG. So, the SDA of the TRDG is
the highest among all the three strategies.

Comparing to the results in Fig. 8(a), in Fig. 8(b) where the
Mobile attacks are present, the SDAs of TRDG, JSSRA and
RCCS decrease by 6%, 10% and 12%, respectively. The com-
parison results show that theMobile attacks have a big impact
on the effectiveness and reliability of the SDAs of JSSRA and
RCCS. The much less decline rate of TRDG makes TRDG
keeping the highest SDA among all the three strategies in the
presence of the Mobile attacks. The reason is that the JSSRA
and RCCS lack of effective Mobile attack defense scheme, so
the trustworthiness and reliability of the sensing information
they collected are less than that of the TRDG, which makes
their SDAs are worse than that of the TRDG.

4) FALSE SPECTRUM DECISION RATIO (FSDR)
Finally, we analyze the false spectrum decision ratio of the
three spectrum sensing strategies in the presence of SSDF and
Mobile attacks.

The results in Fig. 9(a) show that the FSDR of all the
three strategies are less than 40%, which demonstrates that
all of them have a good FSDR performance in the presence
of SSDF attacks. This is because the proposed reputation
and incentive mechanisms in all the three strategies improve
the accuracy and reliability of the collected spectrum sens-
ing information, enhance the ability of resistance to SSDF
attacks, and then reduce the false ratio of the spectrum
decision. For TRDG, the proposed reputation mechanism
has greater accuracy and reliability than those of the other
strategies, and the proposed incentive mechanism is dynamic
and tightly coupled with reputation, all of these leads to a
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FIGURE 9. False spectrum decision ratio (a) with SSDF attacks (b) with
mobile attacks.

better FSDR performance than of the RCCS and JSSRA. So,
the FSDR of the TRDG is the lowest among all the three
strategies.

Comparing to the results in Fig. 9(a), in Fig. 9(b) where the
Mobile attacks are present, the FSDR of TRDG, JSSRA and
RCCS increase by 2%, 5% and 6%, respectively. The compar-
ison results show that theMobile attacks have a big impact on
accuracy of spectrum decision. However, the TRDG still have
a best FSDR performance among all the three strategies. The
reason is that the JSSRA and RCCS lack of effective Mobile
attack defense scheme, so the accuracy, trustworthiness and
reliability of the sensing information they collected are less
than that of the TRDG, which makes their FSDRs are worse
than that of the TRDG.

VI. CONCLUSIONS
In this paper, we investigated the challenging problem of
protecting against internal SSDF and Mobile attacks for
enhancing the security and accuracy of the collaborative
spectrum sensing (CSS) in CRN based CPS (CRN-CPS).
A new transferring reputation mechanism and dynamic game
model based secure collaborative spectrum sensing strategy
(TRDG) has been proposed, which incorporates innovative
technologies in terms of the reputation value transferring,
recommendation incentive and location sensing. The simula-
tion experiments and performance analysis have verified that
the TRDG is effective and efficient. More specifically, in the
presence of SSDF attacks andMobile attacks, the attack ratio,
the malicious SU detection accuracy, the spectrum decision
accuracy ratio, and the false spectrum decision ratio of the
proposed TRDG are better than those of the existing ICS,
JSSRA and RCSS strategies. For the future work, we plan to

introduce the encryption or signature based privacy preserv-
ing technology into the reputation mechanism and spectrum
collaborative sensing process to improve the performance of
privacy preserving.
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