
SPECIAL SECTION ON SEQUENTIAL DATA MODELING AND ITS EMERGING APPLICATIONS

Received September 20, 2017, accepted October 16, 2017, date of publication October 26, 2017,
date of current version November 14, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2766667

Efficient Sequential Data Migration Scheme
Considering Dying Data for HDD/SSD Hybrid
Storage Systems
MINGWEI LIN 1, RIQING CHEN2, JINBO XIONG1, XUAN LI1, AND ZHIQIANG YAO1
1College of Mathematics and Informatics, Fujian Normal University, Fuzhou 350117, China
2Institute of Big Data for Agriculture and Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Corresponding author: Riqing Chen (riqing.chen@fafu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61502102 and Grant 61402109,
in part by the Natural Science Foundation of Fujian province, China, under Grant 2016J05149 and Grant 2015J05120, and in part by
the Distinguished Young Scientific Research Talent Training Plan in Universities of Fujian province (2017, 2015).

ABSTRACT Because the solid-state drive (SSD) shows high access performance, it is usually integrated
into existing hard disk drive (HDD)-based storage hierarchy to form HDD/SSD hybrid storage systems. To
further improve the performance of HDD/SSD hybrid storage systems, data migration schemes have been
put forward to migrate the sequential data between HDD and SSD. However, the existing schemes cannot
be aware of dirty data in the buffer and then incur a large number of unnecessary page migrations. In this
paper, we devise an efficient data migration scheme considering dying data for HDD/SSD hybrid storage
systems. In this scheme, a new liveness state, called the dying state, is utilized to identify the live data, which
will become dead shortly due to its corresponding dirty version in the buffer. To decrease the page migration
count, this scheme uses the benefit-to-cost ratio to select a block for data migration and copies the up-to-date
version of dying data into the free space instead of migrating the dying data. Our experimental results show
that our proposed scheme can perform better than existing data migration schemes that are not aware of
dying data under various benchmarks.

INDEX TERMS Data migration, dying data, hard disk, hybrid storage systems, solid-state drive.

I. INTRODUCTION
Because hard disk drive (HDD) shows non-volatility, high
storage capacity, and low cost, it has been the dominant data
storage device in computer systems for decades. However,
because of the mechanical components of HDD, the I/O
access performance of the HDD-based storage systems could
not be improved further and the performance gap between the
storage system and CPU is becoming much greater [1]–[3].

NAND flash memory is also a kind of non-volatile stor-
age media, which can retain data even when it is powered
off. It has several attractive advantages, such as low power
consumption, strong shock resistance, small size, and fast
access speed, so it has been widely utilized as the sec-
ondary storage devices for consumer electronics. For exam-
ple, mobile phones and tablet computers are usually equipped
with NAND flash memory as their data storage devices. With
the quick development of the semi-conductor technology, the
storage capacity of a single NAND flash memory chip has

been increasing dramatically, while its cost-per-bit has been
decreasing. Hence, NAND flash memory based solid-state
drives (SSD) have emerged [4]–[6].

Since SSD inherits the outstanding advantages, it is usually
used to integrate into existing HDD-based storage hierar-
chy to improve the access performance of storage systems.
Although SSD and HDD share the same logical and physical
interfaces. However, SSD has very different physical charac-
teristics from HDD. SSD is based on NAND flash memory,
which has many unique characteristics. SSD has three basic
I/O operations that are read, write, and erase, respectively.
Read operation reads data from a target page, which write
operation writes data to a target page. Therefore, their basic
access unit is a page. Erase operation erases a block whose
valid data have been moved to the free space of NAND flash
memory. Hence, its basic access unit is a block [7]. SSD also
shows asymmetric costs for basic I/O operations. Its read
operation cost is lower than the write operation cost, while

23366
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 5, 2017

https://orcid.org/0000-0003-2026-7178


M. Lin et al.: Efficient Sequential Data Migration Scheme Considering Dying Data

the write operation cost is lower than the erase operation cost.
Thirdly, SSD owns an erase-before-write hardware constraint
that requires a block to be erased before it is written [8].
Finally, SSD has high read performance, while HDD shows
fast write speed [9].

To fully combine their respective advantages and also hide
their different physical characteristics, several hybrid storage
systems have been put forward to maximize the performance.
These hybrid storage systems present both SSD and HDD as
a single block device to upper-level system components such
as file systems [10]–[13]. To further improve the performance
of HDD/SSD hybrid storage systems, they often migrate hot
data from HDD to SSD and cold data from SSD to HDD.
However, existing data migration schemes simply classify all
the data in the HDD/SSD hybrid storage systems into two
states: live and dead. They focus on the correct identification
of hot and cold data in the live data and are not aware of
a kind of special live data, which have dirty versions in the
buffer. This kind of live data will become dead shortly since
the buffer will flush them into the HDD/SSD hybrid storage
systems periodically so as to achieve the data consistency.
Hence, migrating this kind of live data will incur unnecessary
page migrations and then influence the I/O performance of
HDD/SSD hybrid storage systems.

To address the above mentioned problem, an efficient
data migration scheme is put forward for HDD/SSD hybrid
storage systems. In this scheme, a new liveness state named
the dying state is introduced to reclassify the live data. It is
observed that the data generated by applications are tem-
porarily placed in the buffer so as to improve the access
performance. If the buffered data has an old version in the
hybrid storage system, then it is usually called the dirty
data that will be flushed into the hybrid storage system for
achieving data consistency. In this case, the live data in the
hybrid storage system having a dirty version in the buffer will
become dead when the dirty version is flushed. In the data
migration scheme, this kind of live data that will be dead soon
due to its corresponding dirty version in the buffer is called
dying data.

This scheme prefers to choose a block containing no dying
data or the least dying data for migrating so as to decrease
the unnecessary page migrations. Distinguishing these dying
data from the real live data provides a new idea for improving
the performance of HDD/SSD hybrid storage systems. To the
best of our knowledge, this work is the first study to improve
the performance of HDD/SSD hybrid storage systems by
utilizing the dying data.

It is simple, but really effective for HDD/SSD hybrid stor-
age systems. A series of experiments have been conducted
with the TPC-C and OLTP workloads and the experiment
results shows that the proposed data migration scheme is
superior to existing HDD/SSD hybrid storage systems in
terms of the response time and the number of pagemigrations.

The rest of this paper is organized as follows. The existing
work is briefly reviewed in Section II. Section III describes
the proposed data migration scheme. The experimental

evaluation is given in Section IV. Section V concludes this
paper.

II. RELATED WORK
To shorten the performance gap between the storage system
and CPU, SSD is integrated into existing storage hierarchy
due to its high read performance. HDD/SSD hybrid storage
systems can be categorized into two types: SSD-based buffer
for HDD and HDD and SSD as the same level of the mem-
ory hierarchy. Existing works concerning HDD/SSD hybrid
storage systems will be briefly reviewed in this section.

A. SSD-BASED BUFFER FOR HDD
Zhang et al. put forward iTransformer, which utilizes a small
SSD to schedule requests for the data on disk. To achieve
high disk efficiency, it buffers dirty data before writing them
back into the disk and prefetches some data in a batch
into the SSD [14]. Kim et al. proposed to use flash mem-
ory as a non-volatile cache for hybrid storage systems and
designed an intelligent pinning policy to improve its I/O per-
formance [15]. Yoon et al. used the Fully Associated Sector
Translation (FAST) method to manage the hybrid storage
system. In this storage system, flash memory is utilized as
a buffer space [16]. Bisson et al. utilized flash memory as
a buffer of hybrid storage systems to increase the I/O per-
formance and decrease the disk power consumption [17].
Hsu et al. proposed to employ NAND flash memory as a
second level cache for hybrid storage system in order to store
the frequently used programs [18]. Ryu et al. proposed a data
prefetching scheme, which prefetches a piece of data into
flash memory to reduce the disk energy consumption, for
HDD/SSD hybrid disk drives [19]. Shim et al. put forward
to employ flash memory to cache the write requests [20].
Lv et al. put forward a hotness-aware buffer manage-
ment called HAT for flash-based hybrid storage systems.
It adopts SSD as a data buffer between main memory and
HDD [21], [22]. Han et al. utilized SSD as a buffer for SSD
and put forward a new SSD caching scheme to migrate data
blocks from HDD to SSD [23].

B. HDD AND SSD AT THE SAME LEVEL OF THE
MEMORY HIERARCHY
Xie et al. combined the hard disks and flash disks and then
proposed a hybrid disk array for data-intensive applications.
In this work, a self-adaptive file reallocation strategy is
designed to adapt to dynamically changed file access patterns
[24]–[26]. Suk et al. proposed a hybrid file system, named
HybridFS, for hybrid storage systems, which stores the data
blocks of a large regular file in HDD and places the metadata
in SSD [27]. Jo et al. presented a hybrid copy-on-write stor-
age system for virtual environments, which stores read-only
template disk images in SSD and remaps write operations
into HDD [28]. Fisher et al. put forward a new hybrid storage
system, which combines the fast random read speed of SSD
with the high sequential access speed and the large data stor-
age capacity of HDD [29]. Bai et al. put forward an unified

VOLUME 5, 2017 23367



M. Lin et al.: Efficient Sequential Data Migration Scheme Considering Dying Data

flash memory and hard disk translation layer, named FDTL,
to manage both HDD and SSD [30]. No et al. proposed a
new form of file system, called N-hybrid, which can support
both HDD and SSD [31]. Yang et al. put forward a time-
sensitive hybrid storage model. It is designed to map hot and
read-intensive pages into SSD and cold or write-intensive
pages into HDD [32]. Xiao et al. put forward a hybrid storage
system, called PASS, to tradeoff between the I/O perfor-
mance and data discrepancy between the SSD and HDD [33].
Hui et al. tried to put forward an energy-efficient hybrid
storage system, called E-HASH, which consists of a SSD and
multiple HDDs. E-HASH adopts the SSD to store the most
frequently read data and HDDs to reserve a log of update
distance between currently accessed I/O blocks and their
corresponding original I/O blocks and handle all the write
requests [34]. Chen et al. put forward a high performance
hybrid storage system, called Hystor, which identifies critical
blocks that can incur long latencies or are the file system
metadata and stores them into SSD [35]. Kim et al. studied
a hybrid data storage system called HybridStore, which can
help administrators improve the capacity planning and its per-
formance [36]. Lv et al. put forward a novel probabilistic data
replacement scheme, called HyPro, for flash-based hybrid
storage system, which moves the data between HDD and
SSD probabilistically based on the dynamically changed data
access pattern [37]. Koltsidas et al. designed to use the SSD
and HDD at the same level of memory hierarchy and map
a data page to only one of these two disks according to the
workload [38]. The storage architecture places read-intensive
pages into the flash disk andmapswrite-intensive pages to the
hard disk.Wu et al. exploited the access pattern for improving
the performance of flash and disk hybrid storage system [39].

The data migration, an important part in HDD/SSD hybrid
storage systems, has a great effect on the storage perfor-
mance. Hence, existing hybrid storage systems focus on how
to decide the data is hot or cold. Then they move cold data
to HDD and map hot data into SSD [32]. However, none of
them eliminate unnecessary page migrations by considering
the data that have corresponding new version in the buffer.

III. PROPOSED DATA MIGRATION SCHEME
In this section, our proposed data migration scheme will be
presented for hybrid storage systems. First, a concept of a new
liveness state, called dying state, will be presented to redefine
the live data in the hybrid storage systems. Then, the detailed
description of our data migration scheme will be given.

A. DYING DATA
In the existing hybrid storage systems, the data are simply
classified into two types: live and dead, as presented in Fig. 1.
When some data is written to the hybrid storage device for the
first time, the state of the data is set to be live. Later if the data
is updated and corresponding new data is written to the hybrid
storage device, then the original data will become dead.When
the live data is deleted from the hybrid storage device, its state
also becomes dead.

FIGURE 1. Transitions between live and dead states.

To improve the I/O performance for hybrid storage system,
it is observed that a buffer is widely utilized to cache a
portion of data that may be accessed by user applications
recently. When the host reads a file, the buffer stores the data,
which are read and/or prefetched from hybrid storage device.
When the host writes a file, the new data are temporarily
placed in the buffer instead of being written directly into the
hybrid storage device. The buffered new data will be flushed
to hybrid storage device by the virtual memory manager
of Linux operating system for keeping the data consistency
[40]–[42]. Our proposed efficient data migration scheme is
to distinguish the live data that have the up-to-date version in
the buffer from the live data, which do not have corresponding
copy in the buffer, and then exploit this buffer information to
improve the I/O access performance of hybrid storage system.

In this paper, a new liveness state, called the dying state,
is introduced for the data that are stored in hybrid storage
device. Therefore, the liveness states of the data depicted in
Fig. 1 are further categorized into three types of state, which
are the live, dead, and dying, respectively. The dying data
are special kind of live data in hybrid storage device, which
will become dead shortly when its corresponding up-to-date
version in the buffer is flushed into the hybrid storage device.
As depicted in Fig. 2, if the copy of the live data in the buffer is
modified, its state is changed to dying. If the modified copy is
later flushed into the hybrid storage device or the host deletes
the dying data, then it becomes dead. If the modified copy of
dying data in the buffer is lost because of the sudden power
failure of the host, its state becomes live. If the live data is
deleted by the host directly, its state is changed to dead.

As depicted in Fig. 2, it can be seen that the dying state is a
transient state between the live and dead states. The difference
between the dying data and live data is that the dying data will
become dead in the near future since its up-to-date copy in

FIGURE 2. Transitions between live, dead, and dying states.

23368 VOLUME 5, 2017



M. Lin et al.: Efficient Sequential Data Migration Scheme Considering Dying Data

the buffer will be flushed into the hybrid storage device. How
soon the up-to-date copy in the buffer will be flushed depends
on the buffer management strategy. In the Linux operating
system, the time interval is set to 30 seconds by default.

B. DATA MIGRATION SCHEME
In this paper, the hybrid storage system is prototyped as
a kernel module in the Linux operating system with the
minimal changes. It presents both the HDD and SSD as a
single virtual block device and hides the different physical
characteristics of them from other system components such
as the file system. It divides the entire storage space of HDD
into a fixed number of blocks whose size is the same as that
of the block in SSD.

The dying data will be dead shortly after its corresponding
up-to-date version in the buffer is written back into the hybrid
storage device, so migrating the dying data will lead to a
large number of unnecessary page migrations. Hence, the
designing idea of our proposed data migration scheme is to
minimize the number of page migrations by considering the
dying data.

In our proposed data migration scheme, the data migration
procedure is composed of three steps, which are (1) selecting
a victim block to migrate data, (2) migrating data between
HDD and SSD, and (3) updating the device mapping table.
We try to improve the first two steps by considering the dying
data.

1) SELECTING A VICTIM BLOCK
Some of existing hybrid storage systems choose one file
for data migration according to the access pattern [24]–[26].
If the selected file is too large, then it will result in a large
number of page migrations. The rest ones usually select one
page for data migration based on its history access informa-
tion [32], [38], so the hybrid storage system has to utilize
a large amount of main memory to store the history access
information of all the pages.Moreover, none of them consider
the dying data in the buffer.

In this paper, our proposed data migration scheme sets the
granularity of page migration to a block and then computes
the benefit-to-cost ratio of migrating a block as follows:

benefit
cost

=
h̄ ∗

(
D−min

(
d, D2

))
2 (N − D)

(1)

where the term D represents the number of dead pages in
the block, the term d represents the number of dying pages
in the block, the term h represents the normalized hot degree
of the block, the term N represents the total number of pages
in the block. The term N −D denotes the number of live data,
which will be migrated, and the number of dying data whose
version in the buffer will be flushed. Since the live data should
be read first and then be written into other storage device such
as HDD or SSD, 2 (N − D) is defined as the cost of data
migration. The term h ∗

(
D−min

(
d, D2

))
is defined as the

benefit.

The hot degree of each block is calculated by utilizing the
exponentially weighted moving average method as follows:

h (i) = β ∗ (ti − ti−1)+ β ∗ h (i− 1)

= β ∗ (ti − ti−1)+ β ∗ (1− β) ∗ (ti−1 − ti−2)

+β ∗ (1− β)2 ∗ (ti−2 − ti−3)

+ · · · + β ∗ (1− β)i−2 ∗ (t2 − t1)+ (1− β)i−1

∗ h (1) (2)

with:

h (1) = t2 − t1 (3)

where {t1, t2, t3, · · · , ti} are the past update times of this
block, β is a coefficient and its value is set to [0,1].

When the data will be migrated from the HDD into SSD,
the normalized hot degree of the block is calculated as follows

h =
1
h

(4)

When the data will be migrated from the SSD into HDD,
the normalized hot degree of the block is obtained as h = h.

Hence, the block with the highest benefit-to-cost ratio will
be selected as a victim block for data migration.

2) MIGRATING DATA BETWEEN HDD AND SSD
Our proposed data migration scheme migrates the data in the
victim block as shown in Fig. 3.

FIGURE 3. The process for migrating data.

It first checks the status of each page in the victim block.
If the page is dead, it will not be migrated between HDD and
SSD. If it is dying, its up-to-date version in the buffer will be
flushed into the storage device to keep the data consistency.
Otherwise, it will be migrated between HDD and SSD.

To help the reader understand the migration process eas-
ily, an example is shownd to compare our proposed data
migration scheme with existing hybrid storage systems as
illustrated in Fig. 4 and Fig. 5.

As shown in Fig. 4, it can be seen that the existing hybrid
storage systems do not distinguish dying pages from live ones
and generate six page migrations. However, dying pages have
corresponding up-to-date data in the buffer. Hence, if they are
migrated, they will become dead since their up-to-date data in
the buffer will be flushed to the hybrid storage device shortly.
In this case, migrating dying pages will result in unnecessary

VOLUME 5, 2017 23369



M. Lin et al.: Efficient Sequential Data Migration Scheme Considering Dying Data

FIGURE 4. The process of page migration for existing HDD/SSD hybrid
storage systems.

FIGURE 5. The process of page migration in our proposed data migration
scheme.

page migrations. Be aware of this information, dying pages
in the hybrid storage device are distinguished from live pages
by our proposed data migration scheme, which does not
migrate the dying pages during the page migration process.
As depicted in Fig. 5, it results in only three page migrations
and other three unnecessary page migrations are eliminated.

IV. PERFORMANCE EVALUATION
In this section, we first show the experiment setup and then
the experimental results for various HDD/SSD hybrid storage
systems are presented.

A. EXPERIMENT SETUP
We implemented a prototype system and then conducted a
series of experiments to evaluate our proposed data migration
scheme. This prototype system consists of a storage manager,
which uses the B+-tree to manage the data stored in the
hybrid storage device, and a buffer manager, which utilizes
the Least Recently Used (LRU) algorithm for managing the

data cached in the buffer. This prototype system is developed
in C++ and running on a machine, which is equipped with a
2.66GHz Intel processor and 4 GB of main memory. We use
Ubuntu 16.04 LTS with the Linux kernel 4.40 and Ext3 file
system with the default configurations. In order to minimize
the interference, Ubuntu operating system and its home direc-
tory are stored in a dependent hard disk. Another two disks,
which are a flash disk and a hard disk, are used to place the
user data. The flash disk is a 32 GB Intel X25-E SSD, while
the hard disk is a Seagate Cheetah 15K.5 HDD. TABLE I lists
the specifications of these two disks in detailed. The HDD is
connected to the host by using the SAS interface and the SSD
uses the SATA interface.

TABLE 1. Specifications of HDD and SSD in our experiments.

Our proposed data migration scheme is evaluated by using
two workloads, which are the TPC-C and OLTP, respectively.
The detailed specifications of these two workloads are listed
in TABLE II. The hybrid storage systems in our experiments
are Koltsidas’s work [38], Yang’s work [32], our proposed
data migration scheme. The coefficient β is set to 0.5.

TABLE 2. Specifications of TPC-C and OLTP.

B. EXPERIMENTAL RESULTS
Fig. 6 and Fig. 7 depict the response times of three hybrid
storage systems under TPC-C and OLTP benchmark. It
can be seen that our work consumes less response time
than other two hybrid storage systems. That is because
our work employs the exponentially weighted moving aver-
age (EWMA) method for calculating the hot degree of each

FIGURE 6. The response times of three hybrid storage systems for TPC-C.

23370 VOLUME 5, 2017



M. Lin et al.: Efficient Sequential Data Migration Scheme Considering Dying Data

FIGURE 7. The response times of three hybrid storage systems for OLTP.

block and then it can predict the block accurately, which will
be accessed in the near future.

Compared with Yang’s work, our work reduces the
response time by at least 16.7% under the TPC-C benchmark
and 8.7% under the OLTP benchmark.

FIGURE 8. The number of page migrations of various hybrid storage
systems for TPC-C.

FIGURE 9. The number of page migarations of various hybrid storage
systems for OLTP.

Fig. 8 and Fig. 9 illustrate the number of pagemigrations of
various hybrid storage systems under the TPC-C and OLTP
benchmark. It can be seen that our work can result in the least
number of pagemigrations. That is because our work is aware
of distinguishing the dying data from the live data and do not
migrate the dying data. Hence, a large number of unnecessary
page migration are eliminated in our work.

Compared with Yang’s work, our work reduces the number
of page migrations by up to 8.6% under the TPC-C bench-
mark and 4.4% under the OLTP benchmark.

V. CONCLUSIONS
To reduce unnecessary page migrations for hybrid storage
systems, we put forward an efficient data migration scheme
in this paper. It categorizes all data in the hybrid storage
systems into three types: live data, dead data, and dying data.
The live data, which has corresponding up-to-date version
in the buffer, is defined as the dying data. The dying data
will become dead shortly when its up-to-date version in the
buffer is flushed into the hybrid storage device. It exploits
the information of dying data to compute the benefit-to-cost
ratio of all the blocks in the hybrid storage system and choose
the block with the largest benefit-to-cost ratio as a victim
for migrating data. During the data migration process, our
proposed data migration scheme does not copy the dying
data from one device to another device. To achieve high
data consistency, the up-to-date version of the dying data is
flushed into the storage device. Experiments are conducted
with the TPC-C and OLTP benchmarks and results show that
our proposed data migration scheme can reduce the response
time and the number of page migrations efficiently.

REFERENCES
[1] Y. Xia, Y. Liu, J. Liu, and Q. Zhu, ‘‘Modeling and performance evalu-

ation of BPEL processes: A stochastic-Petri-net-based approach,’’ IEEE
Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 42, no. 2, pp. 503–510,
Mar. 2012.

[2] Y. Xia, M. Zhou, X. Luo, S. Pang, and Q. Zhu, ‘‘A stochastic approach
to analysis of energy-aware DVS-enabled cloud datacenters,’’ IEEE Trans.
Syst., Man, Cybern., Syst., vol. 45, no. 1, pp. 73–83, Jan. 2015.

[3] Y. Xia, M. Zhou, X. Luo, S. Pang, and Q. Zhu, ‘‘Stochastic modeling and
performance analysis of migration-enabled and error-prone clouds,’’ IEEE
Trans. Ind. Informat., vol. 11, no. 2, pp. 495–504, Apr. 2015.

[4] Y. Lu, J. Shu, J. Guo, and P. Zhu, ‘‘Supporting system consistency with dif-
ferential transactions in flash-based SSDs,’’ IEEE Trans. Comput., vol. 65,
no. 2, pp. 627–639, Feb. 2016.

[5] C. Matsui, A. Arakawa, C. Sun, and K. Takeuchi, ‘‘Write order-based
garbage collection scheme for an LBA scrambler integrated SSD,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 2, pp. 510–519,
Feb. 2017.

[6] B. Van Houdt, ‘‘On the power of asymmetry and memory in flash-based
SSD garbage collection,’’ Perform. Eval., vol. 97, pp. 1–15, Mar. 2016.

[7] S. Lee and J. Kim, ‘‘Effective lifetime-aware dynamic throttling for NAND
flash-based SSDs,’’ IEEE Trans. Comput., vol. 65, no. 4, pp. 1075–1089,
Apr. 2016.

[8] J. K. Park, J.-Y. Lee, and S. H. Noh, ‘‘Divided disk cache and SSD FTL
for improving performance in storage,’’ J. Semicond. Technol. Sci., vol. 17,
no. 1, pp. 15–22, 2017.

[9] W.-H. Kang, S.-W. Lee, and B.Moon, ‘‘Flash as cache extension for online
transactional workloads,’’ VLDB J., vol. 25, no. 5, pp. 673–694, 2016.

[10] Z. Feng, Z. Feng, X. Wang, G. Rao, Y. Wei, and Z. Li, ‘‘HDStore:
An SSD/HDD hybrid distributed storage scheme for large-scale data,’’ in
Web-Age Information Management (Lecture Notes in Computer Science),
vol. 8597. Heidelberg, Germany: Springer-Verlag, 2014, pp. 209–220.

[11] P. Yang, P. Jin, S. Wan, and L. Yue, ‘‘HB-storage: Optimizing SSDs with a
HDD write buffer,’’ in Web-Age Information Management (Lecture Notes
in Computer Science), vol. 7901. Heidelberg, Germany: Springer-Verlag,
2013, pp. 28–39.

[12] Z. Chen, N. Xiao, F. Liu, and Y. Du, ‘‘A high performance reliable storage
system using HDDs as the backup of SSDs,’’ J. Comput. Res. Develop.,
vol. 50, no. 1, pp. 80–89, 2013.

VOLUME 5, 2017 23371



M. Lin et al.: Efficient Sequential Data Migration Scheme Considering Dying Data

[13] P. Yang, P. Jin, and L. Yue, ‘‘SH-Sim: A flexible simulation platform
for hybrid storage systems,’’ Int. J. Grid Distrib. Comput., vol. 7, no. 3,
pp. 61–70, 2014.

[14] X. Zhang, K. Davis, and S. Jiang, ‘‘iTransformer: Using SSD to improve
disk scheduling for high-performance I/O,’’ in Proc. IEEE 26th Int.
Parallel Distrib. Process. Symp., May 2012, pp. 715–726.

[15] Y. J. Kim, S. J. Lee, K. Zhang, and J. Kim, ‘‘I/O performance optimization
techniques for hybrid hard disk-based mobile consumer devices,’’ IEEE
Trans. Consum. Electron., vol. 53, no. 4, pp. 1469–1476, Nov. 2007.

[16] U.-K. Yoon, H.-J. Kim, and J.-Y. Chang, ‘‘Intelligent data prefetching for
hybrid flash-disk storage using sequential pattern mining technique,’’ in
Proc. 9th IEEE/ACIS Int. Conf. Comput. Inf. Sci., Aug. 2010, pp. 280–285.

[17] T. Bisson and S. A. Brandt, ‘‘Reducing hybrid disk write latencywith flash-
backed I/O requests,’’ in Proc. 15th Int. Symp. Modeling, Anal., Simulation
Comput. Telecommun. Syst., Oct. 2007, pp. 402–409.

[18] H.-T. Hsu and Y.-W. Bai, ‘‘Using NAND flash memory to improve the
performance of HDDs,’’ in Proc. 3rd Can. Conf. Elect. Comput. Eng.,
May 2010, pp. 1–6.

[19] W. Ryu andM. Song, ‘‘Design and implementation of a disk energy saving
scheme for media players which use hybrid disks,’’ IEEE Trans. Consum.
Electron., vol. 56, no. 4, pp. 2382–2386, Nov. 2010.

[20] H. Shim, J.-S. Kim, and S. Maeng, ‘‘BEST: Best-effort energy saving
techniques for NAND flash-based hybrid storage,’’ IEEE Trans. Consum.
Electron., vol. 58, no. 3, pp. 841–848, Aug. 2012.

[21] Y. Lv, B. Cui, X. Chen, and J. Li, ‘‘Hotness-aware buffer management for
flash-based hybrid storage systems,’’ in Proc. 22nd ACM Int. Conf. Inf.
Knowl. Manage., 2013, pp. 1631–1636.

[22] Y. Lv, B. Cui, X. Chen, and J. Li, ‘‘HAT: An efficient buffer management
method for flash-based hybrid storage systems,’’ Front. Comput. Sci.,
vol. 8, no. 3, pp. 440–455, 2014.

[23] C. Han, J. Ryu, D. Lee, J. Lee, K. Kang, and H. Shin, ‘‘File-system-
level flash caching for improving application launch time on logical
hybrid disks,’’ in Proc. IEEE 33rd Int. Perform. Comput. Commun. Conf.,
Dec. 2014, pp. 1–2.

[24] T. Xie and D. Madathil, ‘‘SAIL: Self-adaptive file reallocation on hybrid
disk arrays,’’ in High Performance Computing (Lecture Notes in Com-
puter Science), vol. 5374. Heidelberg, Germany: Springer-Verlag, 2008,
pp. 529–540.

[25] T. Xie andY. Sun, ‘‘Dynamic data reallocation in hybrid disk arrays,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 21, no. 9, pp. 1330–1341, Sep. 2010.

[26] T. Xie and Y. Sun, ‘‘PEARL: Performance, energy, and reliability bal-
anced dynamic data redistribution for next generation disk arrays,’’ in
Proc. IEEE Int. Symp. Modeling, Anal. Simulation Comput. Telecommun.
Syst. (MASCOTS), Sep. 2008, pp. 1–8.

[27] J. Suk and J. No, ‘‘Performance analysis of NAND flash-based SSD
for designing a hybrid filesystem,’’ in Proc. 11th IEEE Int. Conf. High
Perform. Comput. Commun., Jun. 2009, pp. 539–544.

[28] H. Jo, Y. Kwon, H. Kim, E. Seo, J. Lee, and S. Maeng, ‘‘SSD-HDD-
hybrid virtual disk in consolidated environments,’’ in Proc. Eur. Conf.
Parallel Process., vol. 6043. Heidelberg, Germany: Springer-Verlag, 2010,
pp. 375–384.

[29] N. Fisher, Z. He, and M. McCarthy, ‘‘A hybrid filesystem for hard
disk drives in tandem with flash memory,’’ Computing, vol. 94, no. 1,
pp. 21–68, 2012.

[30] S. Bai, J. Yin, G. Tan, Y.-P. Wang, and S.-M. Hu, ‘‘FDTL: A unified flash
memory and hard disk translation layer,’’ IEEE Trans. Consum. Electron.,
vol. 57, no. 4, pp. 1719–1727, Nov. 2011.

[31] J. No, ‘‘NAND flash memory-based hybrid file system for high I/O per-
formance,’’ J. Parallel Distrib. Comput., vol. 72, no. 12, pp. 1680–1695,
2012.

[32] P.-Y. Yang, P.-Q. Jin, and L.-H. Yue, ‘‘A time-sensitive and efficient hybrid
storage model involving SSD and HDD,’’Chin. J. Comput., vol. 35, no. 11,
pp. 2294–2305, 2012.

[33] W. Xiao, X. Lei, R. Li, N. Park, and D. J. Lilja, ‘‘PASS: A hybrid
storage system for performance-synchronization tradeoffs using SSDs,’’
in Proc. 10th IEEE Int. Symp. Parallel Distrib. Process. Appl., Jul. 2012,
pp. 403–410.

[34] J. Hui, X. Ge, X. Huang, Y. Liu, and Q. Ran, ‘‘E-HASH: An energy-
efficient hybrid storage system composed of one SSD and multiple
HDDs,’’ in Advances in Swarm Intelligence (Lecture Notes in Com-
puter Science), vol. 7332. Heidelberg, Germany: Springer-Verlag, 2012,
pp. 527–534.

[35] F. Chen, D. A. Koufaty, and X. Zhang, ‘‘Hystor: Making the best use of
solid state drives in high performance storage systems,’’ in Proc. Int. Conf.
Supercomput., 2011, pp. 22–32.

[36] Y. Kim, A. Gupta, B. Urgaonkar, P. Berman, and A. Sivasubramaniam,
‘‘HybridStore: A cost-efficient, high-performance storage system com-
bining SSDs and HDDs,’’ in Proc. 19th Annu. IEEE/ACM Int. Symp.
Modeling, Anal., Simulation Comput. Telecommun. Syst., Jul. 2011,
pp. 227–236.

[37] Y. Lv, X. Chen, G. Sun, and B. Cui, ‘‘A probabilistic data replacement
strategy for flash-based hybrid storage system,’’ in Web Technologies and
Applications (Lectors Notes in Computer Science), vol. 7808. Heidelberg,
Germany: Springer-Verlag, 2013, pp. 360–371.

[38] I. Koltsidas and S. D. Viglas, ‘‘Flashing up the storage layer,’’ Proc. VLDB
Endowment, vol. 1, no. 1, pp. 514–525, 2008.

[39] X. Wu and A. L. N. Reddy, ‘‘Managing storage space in a flash and
disk hybrid storage system,’’ in Proc. IEEE Int. Symp. Modeling, Anal.
Simulation Comput. Telecommun. Syst., Sep. 2009, pp. 610–613.

[40] M. Lin, S. Chen, G. Wang, and T. Wu, ‘‘HDC: An adaptive buffer replace-
ment algorithm for NAND flash memory-based databases,’’ Optik-Int.
J. Light Electron Opt., vol. 125, no. 3, pp. 1167–1176, 2014.

[41] M. Lin, Z. Yao, and T. Huang, ‘‘F-LRU: An efficient buffer replacement
algorithm for NAND flash-based databases,’’ Optik-Int. J. Light Electron
Opt., vol. 127, no. 2, pp. 663–667, 2016.

[42] X.-L. Liao and S.-M. Hu, ‘‘Bridging the information gap between buffer
and flash translation layer for flash memory,’’ IEEE Trans. Consum.
Electron., vol. 57, no. 4, pp. 1765–1773, Nov. 2011.

MINGWEI LIN received the B.S. degree in soft-
ware engineering and Ph.D. degree in computer
science and technology from Chongqing Univer-
sity, Chongqing, China, in 2009 and 2014, respec-
tively. From 2015 to 2016, he was a Lecturer with
the Faculty of Software, Fujian Normal University,
Fuzhou, China. Since 2017, he has been an Asso-
ciate Professor with the College of Mathematics
and Informatics, Fujian Normal University. He has
authored or co-authored over 20 research papers

as the lead author in international journals and conference proceedings. His
research interests include storage systems and embedded systems. Hewas the
recipient of the CSC-IBM Chinese Excellent Student Scholarship in 2012.

RIQING CHEN received the B.Eng. degree in
communication engineering from Tongji Univer-
sity, Shanghai, China, in 2001, the M.Sc. degree
in communications and signal processing from
Imperial College London, London, U.K., in 2004,
and the Ph.D. degree in engineering science from
the University of Oxford, Oxford, U.K., in 2010.
Since 2014, he has been a Full Professor with
the Faculty of Computer and Information Sci-
ences, Fujian Agriculture and Forestry University,

Fuzhou, China. His research interests include big data and visualization,
cloud computing, consumer electronics, flash memory, and wireless sensor
networking.

JINBO XIONG received the B.S. degree in elec-
tronics and information engineering from the
Hebei University of Engineering, Handan, China,
2003, the M.S. degree in communication and
information systems from the Chongqing Univer-
sity of Posts and Telecommunications, Chongqing,
China, in 2006, and the Ph.D. degree in computer
system architecture fromXidian University, Xi’an,
China, in 2013. Since 2006, he has been with
Fujian Normal University, Fuzhou, China, where

he is currently an Associate Professor. His research interests include NAND
flash memory, mobile data security, and big data security.

23372 VOLUME 5, 2017



M. Lin et al.: Efficient Sequential Data Migration Scheme Considering Dying Data

XUAN LI received the B.S. degree in mathematics
and applied mathematics and Ph.D. degree in com-
puter science and technology from the South China
University of Technology, Guangzhou, China, in
2007 and 2012, respectively. From 2012 to 2014,
she was a Lecturer with the Information Sci-
ence School, Guangdong University of Finance
and Economics, Guangzhou. Since 2015, she has
been an Associate Professor with Fujian Normal
University, Fuzhou, China. Her research interests

include consumer electronics and computer security.

ZHIQIANG YAO received the B.S. degree in
mathematics from Fujian Normal University,
Fuzhou, China, in 1989, the M.S. degree in
mathematics from East China Normal University,
Shanghai, China, in 1992, and the Ph.D. degree
in computer system architecture from Xidian Uni-
versity, Xi’an, China, in 2014. Since 1992, he has
been with Fujian Normal University, where he is
currently a Professor. His current research inter-
ests include multimedia security and NAND flash
memory.

VOLUME 5, 2017 23373


	INTRODUCTION
	RELATED WORK
	SSD-BASED BUFFER FOR HDD
	HDD AND SSD AT THE SAME LEVEL OF THE MEMORY HIERARCHY

	PROPOSED DATA MIGRATION SCHEME
	DYING DATA
	DATA MIGRATION SCHEME
	SELECTING A VICTIM BLOCK
	MIGRATING DATA BETWEEN HDD AND SSD


	PERFORMANCE EVALUATION
	EXPERIMENT SETUP
	EXPERIMENTAL RESULTS

	CONCLUSIONS
	REFERENCES
	Biographies
	MINGWEI LIN
	RIQING CHEN
	JINBO XIONG
	XUAN LI
	ZHIQIANG YAO


